
Filomat 30:8 (2016), 2233–2247
DOI 10.2298/FIL1608233P

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. The purpose of this paper is to propose a new effective model describing lubrication process with
incompressible micropolar fluid. Instead of usual zero Dirichlet boundary condition for the microrotation,
we consider more general (and physically justified) type of boundary condition at the fluid-solid interface,
linking the velocity and microrotation through a so-called boundary viscosity. Starting from the linearized
micropolar equations, we derive the second-order effective model by means of the asymptotic analysis with
respect to the film thickness. The resulting equations, in the form of the Brinkman-type system, clearly show
the influence of new boundary conditions on the effective flow. We also discuss the rigorous justification
of the obtained asymptotic model.

1. Introduction

Lubrication is mostly concerned with the behavior of a lubricant flowing through a narrow gap. If the
gap between the moving surfaces becomes very small, the experimental results appearing in the lubrication
literature (see e.g. [1, 10, 12, 13]) indicate that the fluid’s internal structure and the intrinsic motion of its
particles must be taken into account. A possible way to introduce the obtained experimental facts is to
employ micropolar fluid model. Proposed by Eringen [9] in 60’s, the model of micropolar fluid has gained
much attention since it captures the effects of local structure and micro-motions of the fluid elements that
cannot be described by the classical models. Physically, it represents fluids consisting of rigid, spherical
particles suspended in a viscous medium, where the deformation of fluid particles is ignored. The related
mathematical model is based on the introduction of new vector field, the angular velocity field of rotation
of particles (microrotation), to the classical pressure and velocity fields. Correspondingly, one new (vector)
equation is added, expressing the conservation of the angular momentum. As a result, a nonlinear coupled
system of PDEs is obtained, representing a significant generalization of the Navier-Stokes equations with
four new viscosities introduced. We refer the reader to the monograph [11] which provides a unified picture
of the mathematical theory underlying this particular model.

To close up the governing problem, one should specify the reasonable boundary conditions for the velocity
and microrotation. While the classical no-slip condition for the velocity is widely used (and physically
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clear), the situation is much more complicated for the microrotation as it reflects the fluid-solid interaction.
Throughout the literature, using simple zero Dirichlet boundary condition for the microrotation1) has been
a common practice. The reason lies in the fact that not much has been done in proving the well-posedness
of the corresponding boundary-value problem for different types of boundary conditions. Recently, in [2],
the micropolar flow associated with another type of boundary condition for microrotation has been treated
from the mathematical point of view. This new type of boundary condition is based on the concept of
the so-called boundary viscosity and was originally proposed in [6, 7]. As such, it is much more physically
justified than the simple zero boundary condition. It links the value of microrotation with the rotation of
the velocity in the following manner:

w × n =
α
2

(rot u) × n (1)

where n denotes normal unit vector to the boundary. The coefficient α characterizes the microrotation on
the solid surfaces and is computed from a boundary viscosity value and other viscosity coefficients (see
(14)). The authors in [2] managed to prove the existence and uniqueness of the corresponding weak solution
providing the well-posedness of the governing problem. It is shown that, in such setting, classical no-slip
condition for the velocity should be replaced by the condition allowing the slippage at the wall:

(u − s) × n = δ (rot w) × n , u · n = 0 . (2)

Here s is the given velocity of the wall, while δ is a real parameter allowing the control of the slippage.
Such fundamental result enables us to perform an asymptotic study of the micropolar flow associated with
new boundary conditions (1)-(2).

The goal of this paper is to derive the new asymptotic model for lubrication process explicitly acknowl-
edging the effects of boundary conditions (1)-(2). We study the situation appearing naturally in numerous
engineering applications consisting of moving machine parts: two rigid surfaces being in relative motion
are separated by a thin layer of fluid, lower surface is assumed to be perfectly smooth, while the upper is
rough with roughness described by some function h. We start from linearized micropolar equations posed
in a thin three-dimensional domain describing real physical situation. Our method relies on the technique
of two-scale asymptotic expansion of the solution in powers of the small parameter ε, where εh represents
the film thickness. Noticing the analogy between porous medium flow and thin film flow2), we follow the
approach recently proposed in [15]. Instead of computing only the first term, we compute the successive
terms in the asymptotic expansion of the solution in a way that they have zero mean value. That requirement
forces us to correct the macroscopic equation and, as a result, we obtain new second-order model governing
the flow. It has the form of the Brinkman-type system3) clearly showing the influence of fluid microstructure
and new boundary conditions on the effective flow. As far as we know, such contribution cannot be found
in the context of tribology.

There are not many papers dealing with mathematical modeling of lubrication with micropolar fluid.
In [5] (see also [4]), the authors consider two-dimensional linearized problem in which the microrotation
is a scalar function. Assuming that viscosity coefficients depend on small gap parameter, they rigorously
derive the corrected version of the standard Reynolds equation. In [14], the corresponding 3D problem has
been addressed with no assumptions made on the viscosity coefficients. The higher-order effective model

1)It means that the fluid microelements cannot rotate on the solid surface.
2)In both cases we have low permeable domain so the domain permeability can be used as the small parameter.
3)H. Brinkmann [8] in 1947 modified the well-known Darcy law to be able to impose the no-slip boundary condition on an obstacle

submerged in a porous medium. Brinkman law has the form:

µB u − µB ∆u + ∇p = f, div u = 0 , B = K−1, (K − permeability).
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is obtained and compared with the one obtained in [16] for classical Newtonian fluid film lubrication. In
all those references it is assumed that

u = s = (s1, s2) , w = 0 (3)

at the boundary. In [2], the generalized micropolar Reynolds equation is derived in the case of new boundary
conditions (1)-(2) using weak convergence method. The authors again start from the simplified 2D problem
with ε-dependent viscosity coefficients and derive the effective model in the specific critical case. In this
paper, we manage to obtain completely new effective model in the form of the Brinkman-type system (see
Sec. 3.3) starting from the original 3D problem with no assumptions made on the viscosity coefficients.
Therefore, we believe that our result could be instrumental for creating more efficient numerical algorithms
explicitly acknowledging the microstructure effects on the lubrication process. Last but not least, in Section
4 we discuss rigorous justification of the formally obtained asymptotic model. We especially focus on
the mathematical difficulties associated with non-periodic physical boundary conditions. We first prove
an important auxiliary result by introducing the appropriate geometric tools (see Lemma 4.1). The result
presented there is rather general and can be applied in different situations, especially those involving
boundary layer phenomenae. Then, we prove a priori estimates for the solution of the obtained Brinkman
approximation (see Theorem 4.2) and clearly indicate the main technical difficulties which prevent us to
derive satisfactory L2 and H1 estimates. We also offer possible ways to avoid those difficulties.

2. Description of the Problem

2.1. The Domain

We consider a micropolar fluid flow in a three-dimensional domain Ωε defined by (see Fig. 1):

Ωε = {x = (x′, x3) ∈ R3 : x′ ∈ O , 0 < x3 < ε h(x′)} . (4)

Figure 1: The domain considered.
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Here O ⊂ R2 is a bounded domain, h : O → 〈0,+∞〉 is a smooth positive function and ε > 0 is a small
parameter. We denote by Γε0, Γε1 and Γε` the lower, the upper and the lateral boundary of Ωε:

Γε0 = {(x′, x3) ∈ R3 : x′ ∈ O , x3 = 0} ,

Γε1 = {(x′, x3) ∈ R3 : x′ ∈ O , x3 = ε h(x′)} , (5)

Γε` = {(x′, x3) ∈ R3 : x′ ∈ ∂O , 0 < x3 < ε h(x′)} .

2.2. The Equations and Boundary Conditions

In view of the application we want to model, we can assume a small Reynolds number and neglect the
inertial terms in the governing equations. Thus, we assume that the flow in Ωε is governed by the following
equations:

−(ν + νr) ∆uε + ∇pε = 2νrrot wε , (6)

div uε = 0 , (7)

−(ca + cd) ∆ wε
− (c0 + cd − ca)∇divwε + 4νrwε = 2νrrot uε . (8)

The unknown functions are uε, wε and pε representing the velocity, the microrotation and the pressure of the
fluid respectively. Positive constants ν, νr, c0, ca, cd are the viscosity coefficients: ν is the usual kinematic
Newtonian viscosity, while νr, c0, ca, cd are new viscosities connected with the asymmetry of the stress
tensor and, consequently, with the appearance of the microrotation field wε. For the sake of notational
simplicity, external forces and moments are neglected and fluid density is assumed to be one.

As discussed in the Introduction, the following boundary conditions are imposed:

uε = 0 , wε = 0 on Γε1 , (9)

uε = g , wε = 0 on Γε` , (10)

uε · k = 0 , wε
· k = 0 on Γε0 , (11)

wε
× k =

α
2

(rot uε) × k on Γε0 , (12)

(rot wε) × k =
2νr

ca + cd
β (uε − s) × k on Γε0 . (13)

As we can see, the usual boundary conditions (9)-(10) for the velocity and microrotation are prescribed on
Γε1∪Γε` . However, on the lower part Γε0 (corresponding to moving boundary), the impermeability of the wall
leads to (11) associated with new type of boundary conditions (12)-(13). The coefficient α > 0 appearing in
(12) takes a microrotation retardation at the boundary into account and can be defined, according to [6, 7],
by means of the boundary viscosity νb:

α =
ν + νr − νb

νr
. (14)

Finally, the coefficient β in (13) allows the control of the slippage at the wall when the value u− s is not zero.

Remark 2.1. The concept of boundary viscosity is motivated by the experimental results suggesting that chemical
interactions between solid surface and the lubricant cannot be neglected especially in the case of thin film flow of a
non-Newtonian fluid. This phenomenon can be taken into account by introducing a viscosity νb in the vicinity of the
surface which is different from ν and νr. The slippage condition, expressed in (13), is related to the chemical properties
of the surface and its effects are also enhanced by the non-Newtonian characteristics of the fluid.
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The well-posedness of the above setting is established in [2, Theorem 2.2] by proving that boundary-
value problem (6)–(13) has only one weak solution (uε, pε,wε) in appropriate spaces. Our goal is to find
an effective law describing the asymptotic behavior of the flow in a thin domain Ωε. For the convenience
of our analysis, let us first homogenize the boundary condition (10)1. Assuming g ∈ H

1
2

(
Γε`

)
,
∫

Γε`
g · n = 0,

using standard procedure we can construct a lift function Jε ∈ H1 (Ωε) such that

div Jε = 0 in Ωε, Jε = 0 on Γε1, Jε = g on Γε` , Jε3 = 0 on Γε0. (15)

Introducing
vε = uε − Jε

the system (6)–(13) can be rewritten as

−(ν + νr) ∆ (vε + Jε) + ∇pε = 2νrrot wε in Ωε , (16)

div vε = 0 in Ωε , (17)

−(ca + cd) ∆ wε
− (c0 + cd − ca)∇divwε + 4νrwε = 2νr (rot vε + rot Jε) in Ωε, (18)

vε = wε = 0 on Γε1 ∪ Γε` , (19)

vε · k = 0 , wε
· k = 0 on Γε0 , (20)

wε
× k =

α
2

(rot (vε + Jε)) × k on Γε0 , (21)

(rot wε) × k =
2νr

ca + cd
β (vε + f − s) × k on Γε0 . (22)

and this is the problem we are going to treat.

Remark 2.2. Note that only normal component of the velocity is known on Γε0, while the tangential component is not
given, see (11)1. Nevertheless. we can choose an artificial value f = ( f1, f2) of the velocity on Γε0 appearing in (22).
We choose it in a way such that function d ∈ H

1
2 (∂Ωε) defined by

d =


0 on Γε1 ,

g on Γε` ,

(f, 0) on Γε0

satisfies
∫
∂Ωε d · n = 0. Consequently, we are in position to construct the lift function Jε as in (15). It is important to

observe that Jε =
(
Jε1, J

ε
2, J

ε
3

)
depends on the small parameter ε and is, in fact, given by

Jεi (x′, x3) = Ji

(
x′,

x3

ε

)
, i = 1, 2, Jε3(x′, x3) = εJ3

(
x′,

x3

ε

)
. (23)

Here the function J = (Ĵ, J3), Ĵ = J1 i + J2 j, is defined on ε-independent domain

Ω = {(x′, y) ∈ R3 : x′ ∈ O , 0 < y < h(x′)}

satisfying the divergence equation divx′ Ĵ + ∂J3
∂y = 0 in Ω and the corresponding boundary conditions.
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3. Asymptotic Analysis

First, let us fix the notation employed in the sequel. We denote the fast variable by y = x3
ε and use the

following partial differential operators:

∇x′φ =
∂φ

∂x1
i +

∂φ

∂x2
j, rotx′φ =

∂φ

∂x2
i −

∂φ

∂x1
j, ∆x′v =

∂2v
∂x2

1

+
∂2v
∂x2

2

, divx′v =
∂v1

∂x1
+
∂v2

∂x2

for a scalar function φ and v = v1 i + v2 j + v3 k. Following the multiscale expansion technique, we construct
an expansion of the unknowns vε, pε and wε in the following form:

vε = v0(x′, y) + εv1(x′, y) + ε2 v2(x′, y) + · · · , (24)

pε =
1
ε2 p0(x′) +

1
ε

p1(x′, y) + p2(x′, y) + · · · , (25)

wε = w0(x′, y) + εw1(x′, y) + ε2 w2(x′, y) + · · · . (26)

We employ the standard approach: we replace formally
(
vε, pε, wε) in (16)–(18) by its asymptotic expan-

sions and determine the profiles
(
vi, pi,wi

)
by identifying all terms of the same order (with respect to ε) and

taking into account the boundary conditions (19)–(22). However, an additional requirement is imposed
in the process: the correctors in (24)–(26) are to be computed such that they have zero-mean value. As a
consequence, we will obtain new higher-order model describing the macroscopic flow.

We begin by plugging the expansions into momentum equation (16). It leads to

1
ε2

[
−(ν + νr)

∂2v0

∂y2 − (ν + νr)
∂2Ĵ
∂y2 + ∇x′p0 +

∂p1

∂y
k
]

+
1
ε

−(ν + νr)
∂2v1

∂y2 − (ν + νr)
∂2 J3

∂y2 k + ∇x′p1 +
∂p2

∂y
k + 2νr

∂w0
2

∂y
i −

∂w0
1

∂y
j


+

[
− (ν + νr)

∂2v2

∂y2 − (ν + νr) ∆x′ v0
− (ν + νr) ∆x′ Ĵ + ∇x′p2 +

∂p3

∂y
k +

+ 2νr

∂w1
2

∂y
i −

∂w1
1

∂y
j

 − 2νr rotx′w0
3 − 2νr

∂w0
2

∂x1
−
∂w0

1

∂x2

 k
]

+ · · · = 0 . (27)

3.1. Main-order Approximation

For the moment, let us keep only the main order term in (27):

−(ν + νr)
∂2v0

∂y2 − (ν + νr)
∂2Ĵ
∂y2 + ∇x′p0 +

∂p1

∂y
k = 0 , v0 = 0 for y = h , v0

3 = 0 for y = 0 .

The above system can be solved by taking p1 = p1(x′) and

v0 =
1

2(ν + νr)
y (h(x′) − y) r(x′) − Ĵ +

(
1 −

y
h(x′)

)
Â(x′) , r = − ∇x′p0 . (28)
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The unknown function Â = A1 i + A2 j is to be determined by taking into account the boundary condition
(21). The main order term gives

1
ε

: −

∂v0
2

∂y
+
∂J2

∂y

 (i × k) +

∂v0
1

∂y
+
∂J1

∂y

 (j × k) = 0 for y = 0 (29)

implying Â = h2

2(ν+νr)
r. On the other hand, the divergence equation (17) yields

1 : divx′v0 +
∂v1

3

∂y
= 0 in Ω . (30)

Integrating from 0 to h(x′) with respect to y and using a simple formula

∂
∂xi

∫ h(x′)

0
φ(x′, y) dy =

∫ h(x′)

0

∂φ

∂xi
(x′, y)dy − φ(x′, h(x′))

∂h
∂xi

we get

divx′

(∫ h

0
v0 dy

)
= divx′

(
h3

12(ν + νr)
r +

h
2

Â
)

= 0 . (31)

Consequently,

divx′
(
h3 r

)
= 0 in O . (32)

Taking into account that Â = h2

2(ν+νr)
r, from (28) we deduce that we should impose r = 0 on ∂O. Indeed,

by imposing r = 0 on ∂O we would ensure that v0 = 0 for x′ ∈ ∂O, as requested by (19). However, such
condition cannot be imposed on ∂O since then the equation (32) would lead to a trivial solution r = 0 in O.
The best we can do is r · n = 0 but that does not meet our purposes. All of that motivates us to continue
the computation and to seek for the higher-order approximation. We compute the correctors in a way that

they have zero mean value
∫ h(x′)

0 ·dy. By doing so, the correctors do not contribute to the net flow rate.
Furthermore, such requirement will force us to change the leading order term v0 which now has to carry
the whole flow rate. However, those changes will be of the lower order. By computing the correctors in
such way, the macroscopic equation for the mean flow rate r is going to be changed. It means that r will
not obey the simple equation r +∇x′p0 = 0 anymore. The new (small) terms will appear changing the order
and, thus, the nature of the obtained effective equations (see (45)).

Before constructing correctors, let us just identify the leading term w0 in the expansion (26). From (18)-(20)
and (22) we deduce

1
ε2 : −(ca + cd) ∂

2w0

∂y2 − (c0 + cd − ca)
∂2w0

3
∂y2 k = 0 in Ω ,

w0 = 0 for y = h , w0
3 = 0 for y = 0 ,

1
ε :

∂w0
1

∂y =
∂w0

2
∂y = 0 for y = 0

(33)

implying w0 = 0.

3.2. Correctors
In this section we construct the correctors in the asymptotic expansions. The next term in the expansion

for the velocity is given by the following problem:
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

1
ε : −(ν + νr) ∂

2v1

∂y2 − (ν + νr)
∂2 J3
∂y2 k + ∇x′p1 +

∂p2

∂y k = 0 , in Ω ,

1 : divx′v0 +
∂v1

3
∂y = 0 in Ω ,

v1 = 0 for y = h , v1
3 = 0 for y = 0 ,

1 :
∂v1

1
∂y =

∂v1
2

∂y = 0 for y = 0 .

(34)

From (34)2 we obtain

v1
3 = −

∫ y

0
divx′ v0(x′, ξ) dξ

=
1

ν + νr

(
y3

6
−

h2y
2

)
divx′ r −

hy
ν + νr

∇x′ h · r − J3 . (35)

Note that v1
3|y=0,h = 0, in view of (32). We demand

∫ h

0 v1
1 dy =

∫ h

0 v1
2 dy = 0, so we deduce v1

1 = v1
2 = 0, p1 = 0

and

p2 = (ν + νr)

∂ v1
3

∂y
+
∂J3

∂y

 + Q2(x′) = −
1
2

divx′ (h2 r) +
y2

2
divx′ r + Q2(x′) .

We determine Q2(x′) such that
∫ h

0 p2 dy = 0 implying

p2 = −
1
2

divx′ (h2 r) +
y2

2
divx′ r . (36)

Now we compute w1 from the expansion for microrotation. Taking into account the angular momentum
equation (18) together with boundary conditions (20) and (22), we arrive at:

1
ε : −(ca + cd) ∂

2w1

∂y2 − (c0 + cd − ca)
∂2w1

3
∂y2 k

= 2νr

[
−

(
∂v0

2
∂y + ∂J2

∂y

)
i +

(
∂v0

1
∂y + ∂J1

∂y

)
j
]

+ B(x′) in Ω ,

w1 = 0 for y = h , w1
3 = 0 for y = 0 ,

1 :
∂w1

1
∂y = 2νr

ca+cd
β (v0

2 + f2 − s2) ,
∂w1

2
∂y = − 2νr

ca+cd
β (v0

1 + f1 − s1) for y = 0.

(37)

We additionally impose
∫ h

0
w1 dy = 0. To satisfy that, we need to introduce an additional term, denoted

by B(x′), to angular momentum equation ( see (37)1). Since w1
3|y=0,h = 0, we immediately conclude w1

3 = 0.
Taking into account (28) and zero mean value condition, the remaining two components can be explicitly
computed from the system (37):

w1
1 =

1
ca + cd

[
νr

ν + νr

(
−

y3

3
+

3
8

hy2
−

h3

24

)
r2

−2βνr

(
h2

2(ν + νr)
r2 + f2 − s2

) (
3
4h

y2
− y +

h
4

) ]
, (38)
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w1
2 = −

1
ca + cd

[
νr

ν + νr

(
−

y3

3
+

3
8

hy2
−

h3

24

)
r1

−2βνr

(
h2

2(ν + νr)
r1 + f1 − s1

) (
3
4h

y2
− y +

h
4

) ]
. (39)

It remains to construct the corrector v2. In view of (27), boundary conditions (19)-(21) and preceding
calculation, it is given by

1 : −(ν + νr) ∂
2v2

∂y2 = (ν + νr) ∆x′ v0 + (ν + νr) ∆x′ Ĵ − ∇x′p2
−

∂p3

∂y k

+ 2νr

(
−
∂w1

2
∂y i +

∂w1
1

∂y j
)

+ C(x′) in Ω ,

v2 = 0 for y = h , v2
3 = 0 for y = 0 ,

ε : ∂v2

∂y = 1
α ·

1
ca+cd

[
νr
ν+νr

h3

12 r + βνrh
(

h2

2(ν+νr)
r + f − s

)]
for y = 0 ,∫ h

0
v2 dy = 0 .

(40)

Due to requirement (40)4, we had to add an additional term to momentum equation, denoted by C(x′).
Notice that, by intervening in the second order corrector ε2 v2, we, in fact, change the leading order term v0

which now has to carry the whole flow rate. However, those changes will be of of the lower order. Now we
solve (40). First, we set p3 = 0, leading to v2

3 = 0, in order to keep the divergence equation satisfied. Then,
we need to compute ∆x′v0 and ∇x′p2 appearing on the right-hand side in (40)1. Using the decomposition

∆x′ (h2 r) = 2 |∇x′h|2 r + 2h(∆x′h) r + 4h∇x′h · (∇x′r)τ + h2∆x′r (41)

from (28) we deduce

(ν + νr) ∆x′v0 = |∇x′h|2 r + h(∆x′h) r + 2h∇x′h · (∇x′r)τ

+
1
2

(
h2
− y2

)
∆x′r − (ν + νr) ∆x′ Ĵ . (42)

Using (32) we get from (36):

∇x′p2 =

(
−

3y2

2h
+

h
2

)
∇x′ (∇x′h · r) −

(
3y2

2
+

h2

2

)
∇x′

(1
h

)
(∇x′h · r). (43)

Straightforward calculation now yields the following expression for v2:

v2 =
1

2(ν + νr)

(
y4

12
−

h2y2

2

)
∆x′r −

y2

2(ν + νr)

(
h∆x′h + |∇x′h|2

)
r

−
hy2

(ν + νr)
∇x′h · (∇x′r)τ +

1
ν + νr

(
hy2

4
−

y4

8h

)
∇x′ (∇x′h · r)

−
1

ν + νr

(
y4

8
+

h2y2

4

)
∇x′

(1
h

)
(∇x′h · r) +

1
ca + cd

(
νr

ν + νr

)2
(

y4

6
−

hy3

4

)
r

+4β
ν + νr

ca + cd

(
νr

ν + νr

)2
(

h2

2(ν + νr)
r + f − s

) (
y3

4h
−

y2

2

)
−

y2

2(ν + νr)
C(x′) −

y
ν + νr

D(x′) + E(x′) , (44)
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with

C(x′) = −|∇x′h|2 r − h(∆x′h) r − 2h∇x′h · (∇x′r)τ −
2h2

5
∆x′r +

h
5
∇x′ (∇x′h · r)

−
4h2

5
∇x′

(1
h

)
(∇x′h · r) −

ν + νr

ca + cd

(
νr

ν + νr

)2 13h2

80
r

−
7
4
β

ν2
r

ca + cd

(
h2

2(ν + νr)
r + f − s

)
+

1
α
ν + νr

ca + cd

(
νr

ν + νr

h2

8
r +

3
2
βνr

(
h2

2(ν + νr)
r + f − s

))

D(x′) = −
1
α
ν + νr

ca + cd

(
νr

ν + νr

h3

12
r + βνrh

(
h2

2(ν + νr)
r + f − s

))
,

E(x′) =
h4

120(ν + νr)
∆x′r −

h3

40(ν + νr)
∇x′ (∇x′h · r) −

h4

40(ν + νr)
∇x′

(1
h

)
(∇x′h · r)

+
1

ca + cd

(
νr

ν + νr

)2 h4

480
r + β

ν + νr

ca + cd

(
νr

ν + νr

)2
(

h2

2(ν + νr)
r + f − s

)
h2

8

+
h

4(ν + νr)
D(x′) .

3.3. Brinkman Approximation
After we have computed the correctors, we return to the referent equation (27) once again and integrate

it with respect to y from 0 to h(x′). It follows

r + ∇x′ p0
− ε2

{
2h2

5
∆x′r + 2h∇x′h · (∇x′r)τ −

h
5
∇x′ (∇x′h · r) +

(
h∆x′h + |∇x′h|2

)
r

+
4h2

5
∇x′

(1
h

)
(∇x′h · r) +

ν + νr

ca + cd

[(
νr

ν + νr

)2 (13
80

+
7
8
β
)
−

1
α

(
νr

ν + νr

) (1
8

+
3
4
β
)]

h2r
}

= βνrε
2
(7

4
νr

ca + cd
−

3
2α

ν + νr

ca + cd

)
(f − s) in O, (45)

divx′
(
h3 r

)
= 0 in O ,

r = 0 on ∂O .

This second-order system, in the form of the Brinkman-type law, satisfied by (r, p0), describes two-
dimensional macroscopic flow4). Its solvability can be established in a standard manner since this is,
in fact, a linear system. It is essential to emphasize that r does not obey the equation r + ∇x′p0 = 0 but
the new asymptotic model (45). As you can see, the new lower-order terms appear which changes the
order and the nature of the obtained effective equations. That was exactly what we wanted as indicated
in the discussion in Sec. 3.1. Since new effective equations contain the second order derivatives of r, we
can now impose zero boundary condition on ∂O. Let us recall that we were not in position to do so for
zero-order approximation satisfying (32). Furthermore, if we compare it to the effective system derived for
the standard setting (3) and proposed in [14], we clearly detect the effects arising due to the new boundary
conditions prescribed for the microrotation.

4)The third component of the velocity is then determined from (35).
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4. Rigorous Justification

In the previous section, the higher-order asymptotic model for micropolar fluid film lubrication is de-
rived. Though the derivation was just formal, it provides a very good platform for understanding the direct
influence of the fluid microstructure on the lubrication process. However, from the strictly mathematical
point of view, formally derived model should be rigorously justified by proving the corresponding error
estimate. If we impose periodic boundary conditions on ∂O, we can easily prove the satisfactory error esti-
mates using classical techniques (see [15] for details). In the case of original, physically relevant, Dirichlet
boundary conditions, the situation is much more complicated. The aim of this section is to present the
main mathematical difficulties which prevent us to derive satisfactory L2 and H1 error estimates in case of
non-periodic physical boundary conditions.

First we prove the following technical result being essential for further discussion:

Lemma 4.1. Let v be a given (smooth enough) function on O such that v · n = 0 on ∂O. Then for every ε > 0, there
exists a function c such that

div c = 0 in O , c = v on ∂O .

Furthermore, c can be chosen such that

|c|L2(O) ≤ C
√
ε , |∇c|L2(O) ≤

C
√
ε
,

with constant C > 0 being independent of ε.

Proof. The main idea is to introduce the local curvilinear coordinates in the vicinity the domain boundary ∂O
and to write the divergence operator in such coordinates. In view of that, let us suppose that the boundary
is a smooth curve in R2, denoted by γ and parameterized by its arc length s ∈ [0, `]. Let π : [0, `] → R2 be
its natural parametrization such that dπ

ds , 0. At each point π(s) of the curve γ we define the curvature as
κ(s) = | d

2π
ds2 | and introduce the local basis:

t =
dπ
ds

(the tangent), n =
1
κ

dt
ds

(the normal) .

We assume that n is extended by continuity in points where curvature is zero. It holds dt
ds = κn, dn

ds = −κt.
Now we introduce the mapping

Φ(s, η) = π(s) + ηn(s)

and compute the corresponding covariant and contravariant basis. The covariant basis is defined as the
gradient of the mappingΦ:

a1 =
∂Φ
∂s

= (1 − κη)t , a2 =
∂Φ
∂η

= n .

The contravariant basis is defined by the relation ai
· a j = δi j implying

a1 =
1

1 − κη
t , a2 = n .

Since the vectors of the contravariant basis represent the rows of (∇Φ)−1 we conclude

(∇Φε)−1 =

[ 1
1−κη 0

0 1

]
Bτ , B =

[
t n

]
.
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Christoffel’s symbols are given by

Γi
1 j = ai

·
∂a j

∂s
, Γi

2 j = ai
·
∂a j

∂η
i, j = 1, 2

and they are symmetric in lower indices. We put them in the matrices Γi = [Γi
jk] j,k :

Γ1 =

 − κ′η
1−κη −

κ
1−κη

−
κ

1−κη 0

 , Γ2 =

[
(1 − κη)κ 0

0 0

]
.

We employ the following formula for the nabla operator in the curvilinear coordinates:

(∇u) ◦Φ = (∇Φ)−T

 ∂U1
∂s

∂U1
∂η

∂U2
∂s

∂U2
∂η

 −U1Γ
1
−U2Γ

2

 (∇Φ)−1, U = u ◦Φ = Ut t + Un n,

with U1 = U · a1 = (1 − κη)Ut, U2 = U · a2 = Un being the contravariant components of U. By direct
calculation we obtain

(∇u) ◦Φ = B

 1
1−κη

(
∂Ut
∂s − κUn

)
0

1
1−κη

(
∂Un
∂s + κUt

)
∂Un
∂η

 BT . (46)

Taking the trace in (46) leads to

div u ◦Φ =
1

1 − κη

(
∂Ut

∂s
− κUn

)
+
∂Un

∂η
. (47)

Now we are in position to construct the function c with desired properties. We define

C = c ◦Φ = Ct t + Cn n . (48)

For arbitrary ε > 0 we put

Ct(s, η) = e−
η
ε Vt(s, 0) , (49)

where Vt stands for the tangential component of the given function V = v ◦Φ. We demand

div c ◦Φ =
1

1 − κη

(
∂Ct

∂s
− κCn

)
+
∂Cn

∂η
= 0 , Cn(s, 0) = 0

implying the second component to be given by

Cn(s, η) = ε
e−

η
ε − 1

1 − κη
∂Vt(s, 0)
∂s

. (50)

By a simple change of variables, one can easily verify that

|c|L2(O) ≤ C
√
ε , |∇c|L2(O) ≤

C
√
ε
.

Now we prove sharp a priori estimates for the solution of the Brinkman system (45). To avoid notational
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complexities, let us take h = 1. The general case can be treated following exactly the same arguments as
presented in the sequel. For h = 1 the effective problem (45) reduces to

r −
2ε2

5
∆r − C1ε

2r + ∇p0 = C2ε
2(f − s) in O ,

div r = 0 in O , (51)

r = 0 on ∂O ,

with C1 = ν+νr
ca+cd

[(
νr
ν+νr

)2 (
13
80 + 7

8β
)
−

1
α

(
νr
ν+νr

) (
1
8 + 3

4β
)]

, C2 = βνr

(
7
4

νr
ca+cd
−

3
2α

ν+νr
ca+cd

)
being constants independent

of ε.

Theorem 4.2. Suppose that f ∈ Hl(O)2 for some l ≥ 0. Then there exists a constant C > 0, independent of ε, such
that

|r|L2(O) ≤ C , (52)

|∇r|L2(O) ≤
C
√
ε
, (53)

|r|Hm(O) ≤
C

εm− 1
2

, m ∈ {0, . . . , l + 2} , (54)

|p0
|H1(O) ≤ C . (55)

Proof. We introduce (r0, q) as the solution of the following system

r0 + ∇q = C2ε
2(f − s) , div r0 = 0 in O ,

r0 · n = 0 on ∂O

and compare it with (r, p0) from (51). Denoting their differences by E = r − r0 and e = p0
− q, we deduce(

1 − C1ε
2
)

E −
2ε2

5
∆E + ∇e =

2ε2

5
∆r0 + C1ε

2r0 , div E = 0 in O, (56)

E = −r0 on ∂O . (57)

According to Lemma 4.1., there exists c ∈ H1(O)2 such that

div c = 0 in O , c = r0 on ∂O

and

|c|L2(O) ≤ C
√
ε , |∇c|L2(O) ≤

C
√
ε
.

Using E + c as a test-function in (56)1 we obtain(
1 − C1ε

2
) ∫
O

|E|2 +
2ε2

5

∫
O

|∇E|2 =

=

∫
O

(
−

(
1 − C1ε

2
)

E · c −
2ε2

5
∇E∇c +

2ε2

5
∆r0 (E + c) + C1ε

2r0(E + c)
)
≤

≤ C
(√
ε |E|L2(O) + ε3/2

|∇E|L2(O) + ε3/2
)
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implying

|E|L2(O) ≤ C
√
ε , |∇E|L2(O) ≤

C
√
ε
. (58)

That proves (52) and (53). Introducing % = 5
2ε2 e we can rewrite (56)-(57) in the following form

− ∆E + ∇% = −
( 5

2ε2 −
5
2

C1

)
E + ∆r0 +

5
2

C1r0, div E = 0 in O ,

E = −r0 on ∂O .

Applying the standard a priori estimate for the Stokes system (see e.g. [17]) with a right-hand side in L2

and taking into account (58), we obtain

|E|H2(O) ≤ C ε−2
|E|L2(O) ≤ C ε−3/2 , (59)

|%|H1(O) ≤ C ε−3/2
⇒ |p0

|H1(O) ≤ C
√
ε . (60)

Supposing further regularity on f, treating the right hand side as an H1 function and using the estimate
(53), we get

|E|H3(O) + |%|H2(O) ≤ Cε−2(|r|H1(O) + ε2
|f|L2(O)) ≤ Cε−5/2 .

That process can be continued for higher Sobolev norms to obtain

|E|H4(O) + |%|H3(O) ≤ Cε−7/2 .

As we can see, the negative powers of ε appear in the a priori estimates (53)-(54). Such outcome is essentially
caused by the boundary layer effects and it represents the main obstacle for proving satisfactory L2 and H1

error estimates. Nevertheless, we can try to obtain error estimates in the weaker Sobolev norms, namely
H−2 norm. That is the subject of our current investigation.

5. Conclusion

In the previous section, new second-order asymptotic model for micropolar fluid film lubrication has
been proposed. We start from linearized micropolar equations and perform an asymptotic analysis with
respect to the film thickness. No assumptions are made in order to simplify the original 3D problem. Instead
of using simple zero boundary condition for microrotation (commonly used in the literature), we impose
more complex type of boundary condition for microrotation linking the value of the microrotation with
rotation of the velocity. It is based on the concept of boundary viscosity and, as such, turns out to be more
physically justified. Observing the analogy between thin film flow and flow through a porous medium, we
apply the idea recently proposed in [15]. As a result, we obtain second-order effective model in the form
of the Brinkman system describing the macroscopic flow. We clearly detect the effects of new boundary
conditions and that represent our main contribution. Of course, from the strictly mathematical point of
view, formally derived Brinkman approximation should be rigorously justified by proving some kind of
error estimate. As indicated in Section 4, proving satisfactory L2 or H1 error estimates is not possible. That
is essentially due to boundary layer effects polluting those estimates. A possible way to avoid technical
difficulties caused by the boundary layer is to prescribe periodicity as a boundary condition, or to try to
obtain satisfactory error estimates in the weaker Sobolev norms. The latter is the subject of our current work.
Nevertheless, we believe that the result presented in this paper provides a good platform for understanding
the direct influence of the fluid microstructure on the lubrication process and, thus, could be important for
developing more efficient numerical algorithms.
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