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Abstract. In this paper, the mixed norm sequence spaces `p,q for 1 ≤ p, q ≤ ∞ are the subject of our research;
we establish conditions for an operator Tλ to be compact, where Tλ is given by a diagonal matrix. This
will be achieved by applying the Hausdorff measure of noncompactness and the theory of BK spaces. This
problem was treated and solved in [5, 6], but in a different way, without the application of the theory of
infinite matrices and BK spaces. Here, we will present a new approach to the problem. Some of our results
are known and others are new.

1. Introduction and Preliminaries

As usual, let ω denote the set of all complex sequences x = (xn)∞n=0, `∞ the set of all bounded sequences
in ω, and `p = {x ∈ ω |

∑
∞

n=0 |xn|
p < ∞} for 0 < p < ∞.

The spaces `p,q were introduced by Kellogg in [7] and further studied by many authors [1–6]; they are
defined for 1 ≤ p, q < ∞ by

`p,q =
{
x ∈ ω |

∞∑
m=0

( ∑
n∈I(m)

|xn|
p
)q/p

< ∞
}
, (1.1)

where I(0) = {0} and I(m) = {n ∈ N | 2m−1
≤ n < 2m

} for m > 0. They are Banach spaces equipped with the
norms

‖x‖p,q =
( ∞∑

m=0

( ∑
n∈I(m)

|xn|
p
)q/p)1/q

, (1.2)

and referred to as mixed norm spaces.
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Let us remark that we could generalize our research by replacing dyadic blocks by arbitrary blocks,
similarly as in [1]. In that case we would have I(m) = {n ∈ IN | k(m) ≤ n ≤ k(m + 1) − 1} for m = 0, 1, . . .
where (k(m))∞m=0 is a strictly increasing sequence of integers with k(0) = 0.

If p = ∞ or q = ∞, the corresponding sum should be replaced by the supremum, that is,

• for p = ∞ and 1 ≤ q < ∞,

`∞,q =
{
x ∈ ω |

∞∑
m=0

(
sup

n∈I(m)
|xn|

)q
< ∞

}
(1.3)

with the norm

‖x‖∞,q =
( ∞∑

m=0

(
sup

n∈I(m)
|xn|

)q)1/q
; (1.4)

• for 1 ≤ p < ∞ and q = ∞,

`p,∞ =
{
x ∈ ω | sup

m

( ∑
n∈I(m)

|xn|
p
)1/p

< ∞
}

(1.5)

with the norm

‖x‖p,∞ = sup
m

( ∑
n∈I(m)

|xn|
p
)1/p

; (1.6)

• for p = q = ∞,

`∞,∞ =
{
x ∈ ω | sup

m
( sup
n∈I(m)

|xn|) < ∞
}

(1.7)

with the norm

‖x‖∞,∞ = sup
m

( sup
n∈I(m)

|xn|). (1.8)

Note that `p,p = `p for 1 ≤ p ≤ ∞.
For any two subsets E and F of ω, the set of multipliers from E to F, is defined as

M(E,F) =
{
λ = (λk)∞k=0 ∈ ω | λx = (λkxk)∞k=0 ∈ F for each x = (xk)∞k=0 in E

}
.

The following results are of interest for the characterizations of the multipliers M(`r,s, `u,v).

Theorem 1.1. [7, Theorem 1] Let 1 ≤ r, s,u, v ≤ ∞, and define p and q by

1/p = 1/u − 1/r if r > u, p = ∞ if r ≤ u,

1/q = 1/v − 1/s if s > v, q = ∞ if s ≤ v.

Then M(`r,s, `u,v) = `p,q.

Further, for λ ∈M(`r,s, `u,v), let us consider operator Tλ : `r,s
→ `u,v defined by

Tλ(x) = λx = (λnxn)∞n=0 (x ∈ `r,s).
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Kellogg [7] proved that Tλ defined in such a way is a bounded linear operator with norm ‖Tλ‖ = ‖λ‖p,q,
where r, s,u, v, p and q satisfy the conditions stated in the previous theorem [5]. Actually, Tλ : `r,s

→ `u,v is a
bounded linear operator if and only if λ ∈ `p,q.

In [5, 6], the authors studied the Hausdorff measure of noncompactness of the operator Tλ depending
on different cases and found the exact measure or gave estimates for it. They did, however, not make use
of any relation between matrix transformations between sequence spaces and bounded linear operators.

Our idea is to give a new approach to the same problem, by using the theory of BK spaces and matrix
transformations.

We use the following standard notations.
We write B(X,Y) for the set of all bounded linear operators between the normed spaces X and Y. If X

and Y are any subsets of ω, then (X,Y) denotes the set of all infinite matrices A = (ank)∞n,k=0 that map X into
Y, that is, A ∈ (X,Y) if and only if the series Anx =

∑
∞

k=0 ankxk converge for all n = 0, 1, . . . and all x ∈ X, and
Ax = (Anx)∞n=0 ∈ Y for all x ∈ X. We write An = (ank)∞k=0 for the sequence in the n–th row of the matrix A.

A BK space is a Banach sequence space X with continuous coordinates Pn (n = 0, 1, . . . ) where Pn(x) = xn
for each sequence x = (xk)∞k=0 ∈ X. By φ we denote the set of all finite sequences. A BK space X ⊃ φ is said
to have AK if x[m] =

∑m
k=0 xke(k)

→ x (m→∞) for every sequence x = (xk)∞k=0 ∈ X.
It is known [4, Example 3.4 (a)] that the space `p,q is a BK space with AK for 1 ≤ p ≤ ∞, 1 ≤ q < ∞. Also,

the space `∞,q is a BK space for 1 ≤ q ≤ ∞.
We need the following important result.

Proposition 1.2. Let X and Y be BK spaces.
(a) Then we have (X,Y) ⊂ B(X,Y), that is, every matrix A ∈ (X,Y) defines an operator LA ∈ B(X,Y), where
LA(x) = Ax for all x ∈ X [10, Theorem 4.2.8].
(b) If X has AK then we have B(X,Y) ⊂ (X,Y), that is, every operator L ∈ B(X,Y) is given by a matrix A ∈ (X,Y),
where Ax = L(x) for all x ∈ X [3, Theorem 1.9].

Hence, we can consider the infinite matrix A = A(λ) = (ank)∞n,k=0 associated to the operator Tλ such that
Tλx = Ax for all x ∈ `r,s for 1 ≤ r ≤ ∞ and 1 ≤ s ≤ ∞. The matrix A clearly is the diagonal matrix with the
sequence λ on its diagonal. It is also clear that Ax = (λnxn)∞n=0 for all x ∈ `r,s.

As mentioned before, the compactness of operators will be treated by applying the theory of infinite
matrices and the Hausdorff measure of noncompactness, so the next definition and results will be very
useful for our work.

We recall the definition of the Hausdorff measure of noncompactness of bounded sets in metric spaces
and operators between Banach spaces. Let X be a complete metric space and MX denote the class of
bounded subsets of X. Then the function χ :MX → [0,∞) defined by

χ(Q) = inf{ε > 0 | Q can be covered by finitely many open balls of radii < ε}

is called the Hausdorff measure of noncompactness; χ(Q) is called the Hausdorff measure of noncompact-
ness of the set Q ∈ MX. Let χ1 and χ2 be Hausdorff measures of noncompactness on the Banach spaces X
and Y. An operator L : X→ Y is said to be (χ1, χ2)–bounded if L(Q) ∈ MY for all Q ∈ MX and there exists a
non–negative real number c such that

χ2(L(Q)) ≤ c · χ1(Q) for all Q ∈ MX. (1.9)

If an operator L is (χ1, χ2)–bounded, then the number

‖L‖χ = inf{c ≥ 0 : (1.9) holds }

is called the Hausdorff measure of noncompactness of L.

Theorem 1.3. ([8, Theorem 2.25]) Let X and Y be Banach spaces, A ∈ (X,Y), and SX = {x ∈ X | ‖x‖ = 1}
and B̄X = {x ∈ X | ‖x‖ ≤ 1} denote the unit sphere and closed unit ball in X. Then the Hausdorff measure of
noncompactness of the operator LA, denoted by ‖LA‖χ, is given by

‖LA‖χ = χ(LA(B̄X)) = χ(LA(SX)).
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Theorem 1.4. ([5, Lemma 2.1]) Let Q ∈ M`p,q (p ∈ [1,∞], q ∈ [1,∞)), and let Rn : `p,q
→ `p,q for n = 0, 1, 2, ... be

the operator defined by Rn(x) = x − x[n] for all x = (xm)∞m=0 ∈ `
p,q. Then we have

χ(Q) = lim
n→∞

sup
x∈Q
‖Rn(x)‖

 .
Theorem 1.5 (Goldenštein, Gohberg, Markus). ([8, Theorem 2.23]) Let X be a Banach space with Schauder
basis {e1, e2, ...}, Q be a bounded subset of X, and Pn : X → X be the projector onto the linear span of {e1, e2, ..., en}.
Then we have

1
a

lim sup
n→∞

(sup
x∈Q
‖(I − Pn)x‖) ≤ χ(Q) ≤ lim sup

n→∞
(sup

x∈Q
‖(I − Pn)x‖),

where a = lim supn→∞ ‖I − Pn‖.

2. Main Results

Let m and n be non–negative integers. We write I(m,n) = I(m)\{0, 1, 2, ...,n} and λ(n) = Rn(λ). So the
operator T(n)

λ is associated with the diagonal matrix A(n)(λ) which is obtained from the diagonal matrix A(λ)
by replacing λ0, λ1, . . . , λn by 0.

Theorem 2.1. Let r, s,u, v, p, q be as in Theorem 1.1. Then we have for λ ∈ `p,q

(i) ‖Tλ‖χ = lim
n→∞

( ∞∑
m=0

( ∑
k∈I(m,n)

|λk|
p
)q/p)1/q

if v < ∞ and v < s and r > u;

(ii) ‖Tλ‖χ = lim
n→∞

( ∞∑
m=0

(
sup

k∈I(m,n)
|λk|

)q)1/q
if v < ∞ and v < s and r ≤ u;

(iii) ‖Tλ‖χ = lim
n→∞

(
sup

m

( ∑
k∈I(m,n)

|λk|
p
)1/p)

if v < ∞ and v ≥ s and r > u;

(iv) ‖Tλ‖χ = lim sup
n→∞

|λn| if v < ∞ and v ≥ s and r ≤ u;

(v) 0 ≤ ‖Tλ‖χ ≤ lim
n→∞
‖λ(n)
‖p,q if v = ∞.

Proof. We write K = B`r,s , for short, and denote by A the diagonal matrix that represents the operator T(λ).
First, we consider the case v < ∞. The subcases are v < s and v ≥ s.

• We assume v < s.
If r > u, then we have by Theorem 1.4

‖Tλ‖χ = χ(LA(K)) = lim
n→∞

sup
x∈K
‖Rn(Ax)‖ = lim

n→∞
sup
x∈K
‖λ · x − (λ · x)[n]

‖

= lim
n→∞

sup
x∈K
‖T(n)

λ (x)‖ = lim
n→∞
‖λ(n)
‖p,q

= lim
n→∞

( ∞∑
m=0

( ∑
k∈I(m,n)

|λk|
p
)q/p)1/q

.

If r ≤ u, then p = ∞ and once again we can apply Theorem 1.4, and obtain in the same way as in the
previous case

‖Tλ‖χ = lim
n→∞
‖λ(n)
‖∞,q = lim

n→∞

( ∞∑
m=0

(
sup

k∈I(m,n)
|λk|

)q)1/q
.
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• Now we assume v ≥ s.
The fact that v ≥ s means that q = ∞. Since v is still less than infinity, we can apply Theorem 1.4 and
obtain as in the case v > s the following subcases and corresponding results.

For r > u, we have

‖Tλ‖χ = lim
n→∞
‖λ(n)
‖p,∞ = lim

n→∞

(
sup

m

( ∑
k∈I(m,n)

|λk|
p
)1/p)

.

Similarly, for r ≤ u, we actually obtain p = q = ∞, and so

‖Tλ‖χ = lim
n→∞
‖λ(n)
‖∞,∞ = lim sup

n→∞
|λn|.

We have covered all cases where we were able to apply Theorem 1.4, and established identities for the
Hausdorff measure of noncompactness of the operator Tλ. In the case of v = ∞, we will not be able to apply
Theorem 1.4. In this case, we will only give estimates for the Hausdorff measure of noncompactness of the
operator. As a consequence of this, we will not be able to give necessary and sufficient conditions for the
compactness of the operator Tλ as in the case v < ∞.

We assume v = ∞, and that K is unit sphere in `r,s, r, s ∈ [1,∞]. We define the operators Pn,Rn : `u,∞
→

`u,∞ (n = 0, 1, . . .) byPn(x) = x[n] andRn(x) = x−x[n] for x = (xk)∞k=0 ∈ `
u,∞. Since LA(K) ⊂ Pn(LA(K))+Rn(LA(K)),

it follows from the elementary properties of the function χ [8, Theorem 2.12] that

χ(LA(K)) ≤ χ(Pn(LA(K))) + χ(Rn(LA(K))) = χ(Rn(LA(K))) ≤ sup
x∈K
‖Rn(LA(x))‖.

Taking into account the special form of the infinite matrix A associated with the operator Tλ, we obtain

sup
x∈K
‖Rn(LA(x))‖ = sup

x∈K
‖λ · x − (λ · x)[n]

‖ = sup
x∈K
‖T(n)

λ (x)‖ = ‖T(n)
λ ‖ = ‖λ(n)

‖p,q.

It is clear that in this case we have q = ∞ (either s = v = ∞, or s < v = ∞). The subcases which can
be considered are r > u and r ≤ u; they can be treated in the same way as before. Hence, we obtain
0 ≤ ‖Tλ‖χ ≤ lim

n→∞
‖λ(n)
‖p,∞ if v = ∞, that is,

0 ≤ ‖Tλ‖χ ≤ lim
n→∞

sup
m

( ∑
k∈I(m,n)

|λk|
p
)1/p

, if v = ∞ and r > u;

0 ≤ ‖Tλ‖χ ≤ lim
n→∞

sup
k∈I(m,n)

|λk|, if v = ∞ and r ≤ u.

All considered cases imply the following corollary by [8, Corollary 2.26 (2.58)].

Corollary 2.2. Let r, s,u, v, p, q be as in Theorem 1.1. Then we have for λ ∈ `p,q

(i) Tλ is compact if and only if lim
n→∞

( ∞∑
m=0

( ∑
k∈I(m,n)

|λk|
p
)q/p)1/q

= 0 if v < ∞ and v < s and r > u;

(ii) Tλ is compact if and only if lim
n→∞

( ∞∑
m=0

(
sup

k∈I(m,n)
|λk|

)q)1/q
= 0 if v < ∞ and v < s and r ≤ u;

(iii) Tλ is compact if and only if lim
n→∞

(
sup

m

( ∑
k∈I(m,n)

|λk|
p
)1/p)

= 0 if v < ∞ and v ≥ s and r > u;

(iv) Tλ is compact if and only if lim sup
n→∞

|λn| = 0 if v < ∞ and v ≥ s and r ≤ u;
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(v) If lim
n→∞
‖λ(n)
‖p,q = 0 and v = ∞, then Tλ is compact.

Let us remark that in the case when v = ∞, we obtain only a sufficient condition for the compactness
of the operator Tλ. The application of the Goldenštein-Gohberg-Markus theorem only gives sufficient
conditions for the compactness of the operator Tλ associated with the matrix A when `u,v has no Schauder
basis. In our paper, that is the case v = ∞, that is Tλ : `r,s

→ `u,∞. But we will give an improvement for a
few subcases.

Theorem 2.3. Let r, s,u, v, p, q be as in Theorem 1.1, r′, s′,u′, p′, q′ be the conjugate numbers of r, s,u, p, q, v = ∞
and s , ∞. Then we have for Tλ : `r,s

→ `u,∞:

(i) Tλ is compact if and only if lim
n→∞

(
sup

m

( ∑
k∈I(m,n)

|λk|
p′
)1/p′)

= 0 if 1 < s′ < ∞ and r′ < u′;

(ii) Tλ is compact if and only if lim sup
n→∞

|λn| = 0 if 1 < s′ < ∞ and u′ ≤ r′;

(iii) If lim
n→∞
‖λ(n)
‖p′,q′ = 0 and s = 1, then Tλ is compact.

Proof. We consider the case v = ∞. Then `u′,v′ = `u′,1 is a BK space with AK. Hence, for s < ∞we can apply
[10, Theorem 8.3.9] and obtain the following: A ∈ (`r,s, `u,∞) if and only if AT

∈ (`u′,1, `r′,s′ ), where AT is
transpose matrix of A. Since A = A(λ) is the diagonal matrix with the sequence λ on its diagonal, we have
(A(λ))T = A(λ). Further, applying [9, Theorem 3], we have that the operator Tλ associated with the matrix
A ∈ (`r,s, `u,∞) is compact if and only if the operator TT

λ associated with the transpose matrix AT
∈ (`u′,1, `r′,s′ )

is compact. Since s , ∞, we have that s′ , 1, that is, 1 < s′ ≤ ∞. Now, the results follow directly from
Theorem 1 and Corollary 2 having in mind the definition of the matrix A = A(λ) and the following table:

Before 7→ Now
r 7→ u′

s 7→ 1
u 7→ r′

v = ∞ 7→ s′

The only case which cannot be improved, that is, only a sufficient condition can be defined is when
v = s = ∞.
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