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Abstract. In this paper an H-generalized Cauchy equation
S(t+5)C = H(S(s), 5(t))

is considered, where {S(t)}»o is a one parameter family of bounded linear operators and H : B(X) X B(X) —
B(X) is a function. In the special case, when H(S(s), S(t)) = S(s)S(t) + D(S(s) — T(s))(S(t) — T(t)) with D € B(X),
solutions of H-generalized Cauchy equation are studied, where {T(t)}»¢ is a C-semigroup of operators. Also
a similar equations are studied on C-cosine families and integrated C-semigroups.

1. Introduction and Preliminaries

Suppose that X is a Banach space and A is a linear operator in X with domain D(A) and range R(A). For
given x € D(A), the abstract Cauchy problem for A with the initial value x, consists of finding a solution
u(t) to the initial value problem

du(t) _
ACP(4; x){ u%) - ?u(t), teR,,

where by a solution we mean a function # : Ry — X, which is continuous for t > 0, continuously
differentiable for t > 0, u(t) € D(A) for t € R, and ACP(A; x) is satisfied (see [15]).

If C € B(X), the space of all bounded linear operators on X, is injective, then a one-parameter C-semigroup
(regularized semigroup) of operators is a family {T(f)};er, € B(X) for which T(0) = C, and T(s+t)C = T(s)T(¢),
s,t > 0, and also is strongly continuous, i.e. for each x € X the mapping ¢ — T(f)x is continuous. An operator
A : D(A) - X with the domain

T —
DA)={xeX: ltin& M exists in the range of C}

define by Ax := C™! limy_o w for x € D(A) is called the infinitesimal generator of T'(f).
With C = I, the identity operator on X, the C-semigroup {T(f)}»o is said to be a Cyp-semigroup.
Regularized semigroups and their connection with the ACP(A; x) have been studied, e.g., in [2, 11, 13, 16].
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Another important family of operators which is related to the following second order ACP

LU — Au@t), teR
- ar \ ’
CP(A, X, y){ M(E)) =x, 1,['(0) =Yy

is the C-cosine operator function. If C € B(X) and {C(t);t € R} € B(X) is a strongly continuous family of
operators, then {C(#)}:cr is a C-cosine operator function on X ( see [8]) if it satisfy
(@) C(0)=C
) [C(t+s) + C(t —s)]C =2C([)C(s), t,s € R;
The associated sine operator function S(.) is defined by the formula S(t) = fot C(s)ds,t € R. The second
infinitesimal generator (or simply the generator) A of S(.) is defined as Ax = C7! lim; t%(S(t) — C)x with
natural domain. A C-cosine operator family gives the solution of a well-posed Cauchy problem. For more
details on the theory of cosine operator function we refer to [8, 10, 13, 17].

Another useful tool to find solutions of the ACP(A;x) is the notion of integrated C-semigroups. A
strongly continuous family {5(t)}:-0 of bounded operators on X is called a integrated C-semigroup if S(0) = 0,
S(H)C = CS(¢), t > 0,and

S(s)S(H)x = f (S(r +t) = S(r)Cxdr = S(t)S(s)x, (s,t>0, x € X)
0
An operator A : D(A) € X — X which is defined as follows
¢
xe€DA)and Ax =y & S{t)x —Cx = f S(s)yds
0

is called the infinitesimal generator of {S(t)};>0. Indeed {S(#)}»0 is uniquely determined by A (see Proposition
1.3 [9])
Integrated semigroups extend the theory of Cp-semigroups to abstract Cauchy problems with operators
which do not satisfy the Hille-Yosida conditions. For more information on this subject one may see
[1,3,4,7,9,12,14? ].

A generalized Cauchy equation

S(t +5) = S5(s)S(t) + a(S(s) — T(s))(S(t) = T(t)), (s,t>0)

where {T(t)}i>0 is a Cp-semigroup and « € C, was first studied in [5, 6] which is called also a mixed semigroup.
Trivially with a = 0 this equation reduces to a Cy-semigroup.

In Section 2, we will consider a regularized type extension of this equation and study its solutions. Also
its corresponding ACP will be introduced in a special case. In Section 3, a mixed type regularized cosine
family is considered and its properties are studied. Next in Section 4, a similar regularized integrated mixed
semigroup will be examined and properties of its solutions will be investigated.

2. Mixed Regularized Semigroups

Let X be a Banach space and C be an injective operator in B(X). A family {S(t)}~0 € B(X) is said to satisfy
a H-generalized Cauchy equation if

S(t+5s)C = H(S(s),5()), (s,t>0) (1)

where H : B(X) X B(X) — B(X) is a function. If H(S(s),S(t)) = S(s)S(t), then {S(t)};>o satisfies in the first
condition of C-semigroups of operators.
In this section, we consider a special case when

H(S(s), 5(8)) = S(s)5(t) + D(S(s) = T(s))(S(t) = T(£)), (s, > 0) ()
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where {T(t)}»0 is a C-semigroup of operators with the infinitesimal generator Ap and D € B(X). In this case
we say that {S(t)} is a H-C- semigroup. Trivially D = 0 is the C-semigroup condition.

Now consider the equation (1) with H as in (2). Define the operator A : D(A) € X — X by A(x) =

C1limy_p w, where D(A) = {x € X : limg_,g SOX-Cx oyists in the range of C}. We shall think of A as the

infinitesimal generator of {S(f)}:so. ’
The following are some examples of H-C-semigroups.

Example 2.1. Suppose that X is a Banach space, A, B, C € B(X), C is injective and CA = AC. Put
S(t) = Ce'* + t(B — A)Ce'* (¢ > 0).

Then one can see that with D = —I, {S(t)}s0 is a H-C- semigroup where T(t) = Ce'/,
In this case, one can see that S5(s)S(t) = S(t)S(s), s,t > 0 if and only if A commutes with B. It will be proved that with
D = -1, every uniformly continuous H-C-semigroup is of this form.

Example 2.2. Let X = LP(Q, u), for some o-finite measureable space Q. Suppose that q1,q2,q3 : Q — C are
measurable functions for which q, is bounded and nonzero almost everywhere and q,, g3 satisfy

esssup, . Reg(s) < oo, i=2,3,
where Re q;(s) is the real part of qi(s). Then it is easy to verify that with D = —I, the family
S(Of = (1 - tqy + tgs)qe" f, (t € [0,0))
of operators on X defines a H-C-semigroup where T(t)f := q1€' f and Cf := g1 f.
In the following lemma some elementary properties of H-C- semigroups is presented.

Lemma 2.3. Let {S(t)}=0 € B(X) be a strongly continuous family, which satisfies (1) with H as (2).

1. If I + D is injective and for any s,t > 0, T(s)S(t) = S(t)T(s), then S(s)S(t) = S(t)S(s), for all s,t > 0 and in
particular S(s)C = CS(s).

2. If D is injective and S(s)S(t) = S(t)S(s) for all s,t > O, then for any s, t > 0, T(s)S(t) = S(£)T(s).

3. IfS(s)S(t) = S(t)S(s) foralls,t > 0and x € D(A), then forany t > 0, S(t)x, T(t)x € D(A) and AS(t)x = S(t)Ax,
AT(t)x = T(H)A(x). In addition, S(t)x, T(t)x € D(Ag) and AoS(t)x = S(t)Aox, AgT(t)x = T(t)Ao(x) for any
X € D(Ao)

Proof. Suppose that I + D is injective and for any s, t > 0, T(s)S(t) = S(t)T(s). For s,t > 0, we have

S(s)S(t) + D(S(s) — T(5))(S(t) - T(H) = S(t+s)C = S(s+1)C
= S(t)S(s) + D(S(t) = T(1)(S(s) — T(s)),

which implies that
(I + D)(S(s)S(t) — S()S(s)) = 0.
This proves 1.

Suppose that D is injective and for any s, > 0, S(s)5(t) = S(t)S(s). For's,t > 0, we have

S(s)S(t) + D(S(s) = T(s))(S() = T(H)) = S(t +5)C = S(s + 1)C
= S(t)S(s) + D(S(t) = T(1)(S(s) — T(s)),

which implies that

D(S(t)T(s) — T(s)S(t) + T(H)S(s) — S(s)T(#)) = .
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Thus injectivity of D yields that 2.

To show 3, let x € D(A). Then lim,_,g w exists in the range of C. For given t > 0 we have

S(s)S(t)x — CS(t)x _ S(t)S(S)x - Cx.
s s
Now let y := lim,_, w which is in the range of C. If y = Cz for some z € X, then

. S(s)S(t)x — CS(t)x
lim .

s—0

= S(t)y = S(t)Cz = CS(t)z.

5(s)S(H)x—CS(t)x
0 S

It follows that lim,_, is in the range of C and

AS(x = C'lim S(s)S(t)xs— CS(t)x
CTS(t)y = S(NC1y = S(B)Ax.

The last part of 3 can be proved similarly. [J

Set A1 = (1 + D)A — DAy, where Ay is the infinitesimal generator of the C-semigroup {T(t)}~0 and A is the
infinitesimal generator of {S(t)};0. The next result reads as follows.

Theorem 2.4. Suppose that {S(t)}=0 € B(X) is a family, which is strongly continuous with S(0) = C and satisfies
(1) with H as (2).

1. Let T1(t)(x) = (1 + D)S(t)x — DT(t)x, x € X and CD = DC. Then {T1(t)}0 is a C-semigroup of operators,
whose infinitesimal generator is an extension of Aj.
2. If D + L is invertible, then the solution of (1) with H as (2) in the strong operator topology is of the form

SHx =DM +D'T(Hx+ (1 +D)'Ti(t)x, xeX

Proof. Trivially T1(0) = C, since T(0) = C = 5(0). Also fors,t > 0, using (1) and (2), and a simple calculation
one may see that T1(s + )C = T1(s)T1(2).

Now we are going to show that an extension of A; = (1 + D)A — DA, is the infinitesimal generator of
{T1(t)}t=0. Let B be the infinitesimal generator of {T1(t)}:0. For given x € D(A1) = D(A)ND(Ay), by definition

of D(A) and D(Ay), lim;_ w and lim,_,g w are in the range of C. Thus

. Th(H)x—Cx . (1+D)S(t)x — DT(t)x — Cx
Iim —— = lim
t—0 t t—0 t
= (4 D)lim 2O gy, T2 Cx
t—0 t t—0 t

exists in the range of C. It follows that x € D(B) and Ai(x) = B(x). Thus the infinitesimal generator of
{T1(#)}t=0 is an extension of A;. This proves 1.
2isevident. O

For D = I, the equation (1) reduces to

S(s +£)C = S(s)S(f) = (T(s) — S(s)(S(#) = T(#)) (s, £>0). ©)
or equivalently

S(s + H)C = T(s + £)C = T(5)S(t) = S(5)T(H) (s, > 0).

Also in this case, with Ay and A as above we have the following theorem which characterize solutions
of (3).
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Theorem 2.5. Let {S(t)}>0 be a strongly continuous commuting family satisfying (3). Then

1. For any x € D(A) N D(Ay), CS(t)x is a differentiable function of t and %CS(t)x = C[AoS(H)x + (A — Ap)T(f)x].
2. Forany x € D(A) N D(Ap), S(t)x = T(t)x + t(A — Ao)T(t)x.

Proof. For x € D(A) N D(Ay), applying Lemma 2.3 we have

d . S(h+B)Cx — S(HCx
goCx = lim I
SM)S(H)x + (T(h) = S))(S(E) = T(H)x — S(E)Cx
= |im h

~ lim T(h)S(t)x — CS(t)x T lim S(WT(t)x — CT(t)x lim T(h)T(t)x — CT(t)x
h—0 h h—0 h h—0 h
= C[AoS{t)x + AT(t)x — AgT(t)x].

This complete the proof of 1.
For establishing 2, let x € D(A) N D(Ay). By the part 1 we have

t
C(S(t)x — T(t)x) fo %CT(t —1)S(1)dt

t
= f (—=CT(t — T)AoS(7)x)
0
+ (Cl[AoS(D)T(t — T)x + (A — Ag)T(T)T(t — T)x])dt

t
f (A — Ag)T(t)Cxdt
0
HA — Ag)T(H)Cx = tC(A — Ay)T(H)x.

Now injectivity of C completes the proof of 2. [

Theorem 2.5 show that for D = —I if {S(f)}»0 is the mixed semigroup with the generator A and {T(#)}:o is
the C-semigroup generated by Ay then u(t) = S(t)x is a solution of the following inhomogeneous ACP

t
u(0) = Cx, xp € D(A) N D(Ay),
with f(t) = T(f)x.
In the following theorem it will be proved that multiplication of a H-C-semigroup and a C-semigroup
is a H-C-semigroup if these two families commute.

{ WO — Agu(t) + (A — A)f(H), teR,,

Theorem 2.6. Let {V(t)}0 be a C-semigroup with the infinitesimal generator B which commute with D € B(H) and
{S(H)}=0 be a commuting strongly continuous H-C-semigroup with the C-semigroup {T(t)}s=0 which also commute
with {V(t)}s0. Then W(t) := V(£)S(t) is a H-C?-semigroup with the infinitesimal generator A + B where A and Ay
are the infinitesimal generators of {S(t)}i=0 and {T(f)}0, respectively.

Proof. Trivially T(0) = C?. Also for any s, t >0,
W(s + £)C2 V(s +t)CS(s + £)C
= VEVOISE)SE) + DSGs) = TS — T(H)]
= WEW() + DW(s) = V) TE))W(E) = VOT()).
Thus {W(t)}o is a H-C?-semigroup which is obviously strongly continuous. Also for any x € D(A) N D(B),

. W(x - Cx . V(®SEHx - CS(Hx  CS(t)x — Cx
lim ——— = lim +

50 h t—0 t t
C?Bx + C?Ax.
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Thus

C%lim
t—0

—W(t)xh_ CX _ B+ aAn

3. Mixed C-Cosine Family

Let X be a Banach space and C be an injective operator in B(X). A family {S(t)};er € B(X) is said to satisfy
a H-C-cosine Cauchy equation if

[S(s + 1) + S(s — t)]C = H(S(s), S(1)), 4)

where H : B(X) x B(X) — B(X) is a function. If H(S(s), S(t)) = 25(s)S(t), then {S(t)};er satisfy in the first
condition of C-cosine family of operators.
In this section we consider a special case when

H(S5(s), S(t)) = 25(5)S(t) + 2D(S(s) = T(s))(S(t) = T(t)) (s,t € R), )

where {T(#)}er is a C-cosine family of operators and D € B(X). Trivially D = 0 is a the C-cosine condition.
Now consider the equation (4) with H as in (5). Let A : D(A) € X — X be defined as A(x) =

C'limy,_,o h%[S(h)x — Cx], where D(A) = {x € X : limy_ ,%[S(s)x — Cx] exists in the range of C}. We shall

think of A as the infinitesimal generator of {S(f)}scr.

Lemma 3.1. Let {S(H)}er € B(X) be a strongly continuous family, with S(0) = C and it satisfies (4) with H as (5).
Then

1. S(s) = S(—s) and S(s)C = CS(s) for all s.

2. If 1+ D is injective and for any s, t, T(s)S(t) = S(t)T(s), then S(s)S(t) = S(t)S(s) for all s, t.

3. If D is injective and S(s)S(t) = S(t)S(s) for all s, t, then for any s, t, T(s)S(t) = S(£)T(s).

4. If {S(H}ier is a commuting family and x € D(A) then for any t, S(t)x € D(A) and AS(t)x = S(t)Ax.

Proof. Letting s = 0 in (4) we get

[S(t) + S(=1)]C = 2CS(t) + 2D(0) = 2CS(t) (t € R) (6)
SO

S(t)C + S5(-t)C = 2CS(t) and S(—t)C + S(t)C = 2CS(-t) (t € R).
Subtracting these equalities and using injectivity of C we find

S(t)=S(-t) (teR).

So by (6) we obtain 25(t)C = 2CS5(t) or S(t)C = CS(¢) for all t € R. This prove 1.
For proving 2, let I + D be injective and for any s, t, T(s)S(t) = S(t)T(s) . From part 1 we have
25(5)S(t) + 2D(S(s) — T(s))(S(t) — T(¢)) [S(s + 1)+ S(s—t)]C
[S(t+s)+ St —s)]C (7)
25(£)S(s) + 2D(S(t) — T(£))(S(s) — T(s)),
On the other hand T(s)T(t) = T(t)T(s) (see [8]) and by hypothesis S(t)T(s) = T(s)S(t). Thus (7) implies that

(I + D)(S(s)S(t) — S()S(s)) =0, (5,t € R).
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Now injectivity of I + D implies 2.
Suppose that D is injective and for any s, ¢, S(s)S(t) = S(t)S(s). Applying this condition on (7) we get

D(S(t)T(s) — T(s)S(t) + T(t)S(s) = S(s)T(t)) =0 (s,t € R).
which implies 3.

For proving 4, let x € D(A). So y := limy_ Z[S(h)x — Cx] exists in the range of C. Put y = Cz for some z € X.
Now for a given t by part 2 we have

%[S(h)S(t)x —CS(t)x] = S(t)h%[S(h)x -Cx] (teR).
Thus
}E)% %[S(h)S(t)x —CS(t)x] = S(t)y = S(#)Cz = CS(H)z (t € R).
This implies that limy,_,o h—zz[S(h)S(t)x — CS(t)x] is in the range of C and also

AS(H)x

Clim %[S(h)sa)x — CS(t)x]

C'S(tyy = S()C 'y = S(t)Ax.
O

Theorem 3.2. Suppose that {S(t)}er € B(X) is a commuting strongly continuous family with S(0) = C and it
satisfies (4) with H as (5). Let T1(t)x := (1+D)S(t)x—DT(t)x, x € X, then {T1(t)}ter is a C-cosine family. Furthermore
if Ay is the infinitesimal generator of the C-cosine family {T(t)}ier, then an extension of Ay := (1 + D)A — DAy is the
generator of {T1(t)}ser.

Proof. Applying (5) and Lemma 3.1 we get

[T1(t +s) + T1(t — s)]Cx [(1 + D)S(t + s) — DT(t +5)) + ((1 + D)S(t — s) — DT(t — 5))]Cx
= [+ D)t +s)+S(t—s))—D(T(t+s)+ T(t—s))]Cx
= [(1+D)25(1)S(s) + 2D(5(t) = T()(S(s) — T(s))) = DT ($)T(s))]x

= 2[(1+ D)S(t)S(s) + D(1 + D)S(£)S(s) — D(1 + D)S(t)T(s)

— DA+ D)T()S(s) + D(1 + D)T(H)T(s) — DT(t)T(s)]x

= 2[(1+ D)*S(t)S(s) — D(1 + D)S(t)T(s)

—  D(1+ D)T(t)S(s) + D*T(t)T(s)]x

= 2[(1+D)S(t) - DT + D)S(s) — DT(s)]x

= 2T1(H)Ty(s)x.
Moreover T1(0)x = (1 + D)S(0)x — DT(0)x = (1 + D)Cx — DCx = Cx. These establish the C-cosine properties
of {T1(t)}seRr-
Wef ai‘(e )g}ftoiﬂ;lg to show that an extension of A; = (1 + D)A — DA, is the infinitesimal generator of {T;(t)}. Let
B be the infinitesimal generator of {T;(t)};cr. For a given x € D(A;) = D(A) N D(Ay), by definition of D(A)
and D(Ay), limyo Z[T(h)x — Cx] and limy,_o #[S(h)x — Cx] are in the range of C. Thus

.2 2
lim 5 [Ti(x ~Cx] = lim 75 [(1 + D)S(ix ~ DT(1)x — Cx]

.2 .2
(I+D) }g& ﬁ[S(h)x -Cx]+D }11_1‘)% ﬁ[T(h)x — Cx]

exists in the range of C. This implies that x € D(B) and A;(x) = B(x) and the proof is complete. [
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The previous theorem implies that if (I + D) is invertible then the solution 5(f) of (4) with H as (5) is of the
form

SHx =DM +D'T(Hx + (1 + D) 'Ti(t)x, (x € X).

4. Mixed Integrated Semigroups
In this section we consider the following equation for C-integrated case
V(s)V(t) - f (V(t +1) = V(1))Cdr = D(V(s) — W(s)(W(t) — V(1)) (s,t>0) (8)
0

where {W(f)};»0 is a integrated C-semigroup and D € B(X). This equation is called a mixed integrated
C-semigroup.

Proposition 4.1. Let (V(t)}s»0 be a mixed integrated C-semigroup.

1. If 1+ D is injective and for any s,t > 0, V(s)W(t) = W(t)V(s), then V(s)V(t) = V(t)V(s) forall s,t > 0.
2. If D is injective and V(s)V(t) = V()V(s) for all s,t > O, then for any s, t > 0, V(s)W(t) = W)V (s).

Proof. For any s,t > 0, we have

S t
f (V(t+17)-V(1)Cdt = f (V(s + 1) — V(1))Cdr, 9)
0 0
since

fs(V(t +17)=V(1)Cdt = fs V(t + 1)Cdt - fs V(7)Cdt
0 0 0

S+t S
j; V(T)CdT—fO‘ V(t)Cdt
f V(T)CdT—f V(T)Cd’[—f V(7)Cdt

0 0 0

S S+t t S
fV(’L’)CdT+f V(T)Cd”c—f V(T)Cd”[—f V(7)Cdr
0 s 0 0

f (V(s+ 1) - V(1))Cdt
0

First suppose that V(s)W(t) = W(t)V(s) for any s,t > 0. It follows from the definition of {V(f)};»o that

Vi)V = fO‘S(V(t + 1) = V(1))Cdt + D(V(s) — W(s))(W(t) — V()

f S(V(t +17) = V(1))Cdt + D(V(S)W(t) — V(S)V () — W(s)W(t) + W(S)V(E)).
0

On the other hand

t
V(t)V(s) j(; (V(s+ 1) = V(1))Cdt + D(V(t) — W(£))(W(s) = V(s))

ft(V(s + 1) — V(1))Cdt
0
D(V(t)W(s) — V(£)V(s) — WE)W(s) + W)V (s)).

+
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Hence by (9) we have

[+ D(V(S)V() = I+ D(V(H)V(s)).

Now injectivity of I + D implies that V(s)V(t) = V(£)V(s).
The proof of (2) is similar and so we omitit. [

Now suppose that Ay is the infinitesimal generator of the integrated C-semigroup {W(f)}0. With A; =
(1 + D)A — DAy, we have the following result.

Theorem 4.2. Suppose that {V(t)}»0 € B(X) is a family with V(0) = 0 and it satisfies (8).

1. Let T1(t)(x) = (1 + D)V(t)x — DW(t)x, x € X. Then {T1(t)}s=0 is a integrated C-semigroup of operators whose
infinitesimal generator is an extension of Aj.
2. If D + L is invertible then the solution of (8) in the strong operator topology is of the form

Vit)x =DMD + ) 'W(x+ (1 +D)'Ti(t)x, xe X

Proof. Trivially T1(0) = 0, since W(0) = 0 = V(0). Also fors,t > 0, using (8), and a simple calculation one
may observe that T1(t)C = CT(t) as well as

f S(Tl(t +17) = Ti(1))Cdt f S((l +D)V(t + 7) — DW(t + 7) — (1 + D)V(1) + DW(7))Cdt
0 0

= (1+D) f S(V(t +17) = V(1))Cdt - D f S(W(t +17) — W(1))Cdt
0 0

= (1+D)[V(s)V(t) = D(V(s) — W(s))(W(t) - V(t))] - DIW(s)W(#)]

= (1+D)*V(s)V(t) — (1 + D)DV(s)W(t) — (1 + D)DW(s)V () + D*W(s)W(¢)
= [(1+ D)V(s) - DW(s)I[(1 + D)V (t) — DW(1)]

= T (S)T1 (t)x.

Now we are going to show that an extension of A; = (1+D)A—DAy is the infinitesimal generator of {1 (¢)} 0.
Let B be the infinitesimal generator of {T1(f)}:0. For a given x € D(A;) = D(A) N D(Ay), by definition of D(A)

and D(Ay), fot V(s)yds = V(t)x - Cx & Ax = y and fot W(s)yds = W(t)x — Cx & Apx = y. Thus

¢ ¢
](; Ti(s)yds = j(; [(1+ D)V(s) — DW(s)]yds
=1+ D) V(t)x — Cx) — DIW(t)x — Cx) = T1(t)x — Cx

if and only if Ajx = y. This implies that x € D(B) and A;(x) = B(x). Thus the infinitesimal generator of
{T1(t)}t=0 is an extension of A;. This proves (1).
(2) is trivial. O

References

[1] W. Arendt, Resolvent positive operators and integrated semigroups, Proc. Lond. Math. Soc. 54 (3) (1987) 321-349.

[2] E.B. Davies, M. M. H. Pang, The Cauchy problem and a generalization of the Hille-Yosida approximation, Proc. Lond. Math.
Soc. 55 (3) (1987) 181-208.

[3] R.deLaubenfels, Integrated semigroups, C-semigroups and the abstract Cauchy problem, Semigroup Forum 41(1) (1990) 83-95.

[4] A.Ducrot, P. Magal, K. Prevost, Integrated semigroups and parabolic equations, Part I: linear perburbation of almost sectorial
operators, J. Evol. Equ. 10 (2010) 263-291.

[5] S.Harshinder, The mixed semigroup relation, Indian J. Pure Appl. Math. 9 (4) (1978) 255-267.

[6] S.Harshinder, A. B. Buche, On some analytic properties of the modified exponential-cosine operator. Indian J. Pure Appl Math
10 (8) (1979) 913-919.

[7] H.Kellermann, M. Hieber, Integrated semigroups, J. Funct. Anal. 84 (1989) 160-180.

[8] C.C.Kuo, S.Y. Shaw, C-cosine functions and the abstract Cauchy problem, I*. ]. Math. Anal. Appl 210 (1997) 632-646.



[9]
[10]
[11]
[12]
[13]
[14]
[15]

[16]
[17]

[18]

M. Mosallanezhad, M. Janfada / Filomat 30:10 (2016), 2673-2682 2682

.Kuo, S. Y. Shaw, On a-times integrated C-semigroups and the abstract Cauchy problem, Studia Math. 142(3) (2000) 201-217.
. Kuo, Note on local integrated C-cosine function and abstract Cauchy problems, Taiwanese J. Math. 17 (3) (2013) 957-980.
C. Kuo, Additive perturbations of local C-semigroups, Acta Mathematica Scientia, 35B(6) (2015) 1566-1576.

Kosti¢, On analytic integrated semigroups, Novi. Sad. J. Math. 33(1) (2005) 127-135.

M. Kosti¢ , Hille-Yosida theorems for local convoluted C-semigroups and cosine functions, Filomat 25(4) (2011) 177-190.

F. Neubrander, Integrated semigroups and their application to the abstract Cauchy problem, Pacific . Math. 135 (1988) 111-155.
A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences: 44.
Springer-Verlag, New York, 1983.

J. Qiang, M. Li, Q. Zheng, The applications of C-semigroups to the Dirac equation, Appl. Math. Lett. 22 (2009) 422-427.

T. Takenaka, S. Piskarev, Local C-cosine families and N-times integrated local cosine families, Taiwanese J. Math. 8(3) (2004)
515-545.

LI Vrabie, Cp-Semigroups and Applications, Elsevier Science B. V., 2003.

C
C

C.
C.
C.-
M.



