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Abstract. In this paper an H-generalized Cauchy equation

S(t + s)C = H(S(s),S(t))

is considered, where {S(t)}t≥0 is a one parameter family of bounded linear operators and H : B(X) × B(X)→
B(X) is a function. In the special case, when H(S(s),S(t)) = S(s)S(t) + D(S(s)−T(s))(S(t)−T(t)) with D ∈ B(X),
solutions of H-generalized Cauchy equation are studied, where {T(t)}t≥0 is a C-semigroup of operators. Also
a similar equations are studied on C-cosine families and integrated C-semigroups.

1. Introduction and Preliminaries

Suppose that X is a Banach space and A is a linear operator in X with domain D(A) and range R(A). For
given x ∈ D(A), the abstract Cauchy problem for A with the initial value x, consists of finding a solution
u(t) to the initial value problem

ACP(A; x)
{

du(t)
dt = Au(t), t ∈ R+,

u(0) = x,

where by a solution we mean a function u : R+ → X, which is continuous for t ≥ 0, continuously
differentiable for t > 0, u(t) ∈ D(A) for t ∈ R+ and ACP(A; x) is satisfied (see [15]).

If C ∈ B(X), the space of all bounded linear operators on X, is injective, then a one-parameter C-semigroup
(regularized semigroup) of operators is a family {T(t)}t∈R+

⊂ B(X) for which T(0) = C, and T(s+t)C = T(s)T(t),
s, t ≥ 0, and also is strongly continuous, i.e. for each x ∈ X the mapping t 7→ T(t)x is continuous. An operator
A : D(A)→ X with the domain

D(A) = {x ∈ X : lim
t→0

T(t)x − Cx
t

exists in the range of C}

define by Ax := C−1 limt→0
T(t)x−Cx

t for x ∈ D(A) is called the infinitesimal generator of T(t).
With C = I, the identity operator on X, the C-semigroup {T(t)}t≥0 is said to be a C0-semigroup.
Regularized semigroups and their connection with the ACP(A; x) have been studied, e.g., in [2, 11, 13, 16].
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Another important family of operators which is related to the following second order ACP

CP(A; x; y)
{

d2u(t)
dt2 = Au(t), t ∈ R,

u(0) = x,u′ (0) = y

is the C-cosine operator function. If C ∈ B(X) and {C(t); t ∈ R} ⊆ B(X) is a strongly continuous family of
operators, then {C(t)}t∈R is a C-cosine operator function on X ( see [8]) if it satisfy
(a) C(0) = C;
(b) [C(t + s) + C(t − s)]C = 2C(t)C(s), t, s ∈ R;
The associated sine operator function S(.) is defined by the formula S(t) =

∫ t

0 C(s)ds, t ∈ R. The second
infinitesimal generator (or simply the generator) A of S(.) is defined as Ax = C−1 limt→0

2
t2 (S(t) − C)x with

natural domain. A C-cosine operator family gives the solution of a well-posed Cauchy problem. For more
details on the theory of cosine operator function we refer to [8, 10, 13, 17].

Another useful tool to find solutions of the ACP(A; x) is the notion of integrated C-semigroups. A
strongly continuous family {S(t)}t≥0 of bounded operators on X is called a integrated C-semigroup if S(0) = 0,
S(t)C = CS(t), t > 0, and

S(s)S(t)x =

∫ s

0
(S(r + t) − S(r))Cxdr = S(t)S(s)x, (s, t > 0, x ∈ X)

An operator A : D(A) ⊆ X→ X which is defined as follows

x ∈ D(A) and Ax = y⇔ S(t)x − Cx =

∫ t

0
S(s)yds

is called the infinitesimal generator of {S(t)}t≥0. Indeed {S(t)}t≥0 is uniquely determined by A (see Proposition
1.3 [9])
Integrated semigroups extend the theory of C0-semigroups to abstract Cauchy problems with operators
which do not satisfy the Hille-Yosida conditions. For more information on this subject one may see
[1, 3, 4, 7, 9, 12, 14? ].

A generalized Cauchy equation

S(t + s) = S(s)S(t) + α(S(s) − T(s))(S(t) − T(t)), (s, t > 0)

where {T(t)}t≥0 is a C0-semigroup andα ∈ C, was first studied in [5, 6] which is called also a mixed semigroup.
Trivially with α = 0 this equation reduces to a C0-semigroup.
In Section 2, we will consider a regularized type extension of this equation and study its solutions. Also
its corresponding ACP will be introduced in a special case. In Section 3, a mixed type regularized cosine
family is considered and its properties are studied. Next in Section 4, a similar regularized integrated mixed
semigroup will be examined and properties of its solutions will be investigated.

2. Mixed Regularized Semigroups

Let X be a Banach space and C be an injective operator in B(X). A family {S(t)}t≥0 ⊆ B(X) is said to satisfy
a H-generalized Cauchy equation if

S(t + s)C = H(S(s),S(t)), (s, t > 0) (1)

where H : B(X) × B(X) → B(X) is a function. If H(S(s),S(t)) = S(s)S(t), then {S(t)}t≥0 satisfies in the first
condition of C-semigroups of operators.

In this section, we consider a special case when

H(S(s),S(t)) = S(s)S(t) + D(S(s) − T(s))(S(t) − T(t)), (s, t > 0) (2)
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where {T(t)}t≥0 is a C-semigroup of operators with the infinitesimal generator A0 and D ∈ B(X). In this case
we say that {S(t)} is a H-C- semigroup. Trivially D = 0 is the C-semigroup condition.

Now consider the equation (1) with H as in (2). Define the operator A : D(A) ⊆ X → X by A(x) =

C−1 lims→0
S(s)x−Cx

s , where D(A) = {x ∈ X : lims→0
S(s)x−Cx

s exists in the range of C}. We shall think of A as the
infinitesimal generator of {S(t)}t≥0.

The following are some examples of H-C-semigroups.

Example 2.1. Suppose that X is a Banach space, A,B,C ∈ B(X), C is injective and CA = AC. Put

S(t) = CetA + t(B − A)CetA (t > 0).

Then one can see that with D = −I, {S(t)}t≥0 is a H-C- semigroup where T(t) = CetA.
In this case, one can see that S(s)S(t) = S(t)S(s), s, t ≥ 0 if and only if A commutes with B. It will be proved that with
D = −I, every uniformly continuous H-C-semigroup is of this form.

Example 2.2. Let X = Lp(Ω, µ), for some σ-finite measureable space Ω. Suppose that q1, q2, q3 : Ω → C are
measurable functions for which q1 is bounded and nonzero almost everywhere and q2, q3 satisfy

ess sups∈ΩRe qi(s) < ∞, i = 2, 3,

where Re qi(s) is the real part of qi(s). Then it is easy to verify that with D = −I, the family

S(t) f := (1 − tq2 + tq3)q1etq2 f , (t ∈ [0,∞))

of operators on X defines a H-C-semigroup where T(t) f := q1etq2 f and C f := q1 f .

In the following lemma some elementary properties of H-C- semigroups is presented.

Lemma 2.3. Let {S(t)}t≥0 ⊆ B(X) be a strongly continuous family, which satisfies (1) with H as (2).

1. If I + D is injective and for any s, t ≥ 0, T(s)S(t) = S(t)T(s), then S(s)S(t) = S(t)S(s), for all s, t ≥ 0 and in
particular S(s)C = CS(s).

2. If D is injective and S(s)S(t) = S(t)S(s) for all s, t ≥ 0, then for any s, t ≥ 0, T(s)S(t) = S(t)T(s).
3. If S(s)S(t) = S(t)S(s) for all s, t ≥ 0 and x ∈ D(A), then for any t ≥ 0, S(t)x,T(t)x ∈ D(A) and AS(t)x = S(t)Ax,

AT(t)x = T(t)A(x). In addition, S(t)x,T(t)x ∈ D(A0) and A0S(t)x = S(t)A0x, A0T(t)x = T(t)A0(x) for any
x ∈ D(A0).

Proof. Suppose that I + D is injective and for any s, t ≥ 0, T(s)S(t) = S(t)T(s). For s, t ≥ 0, we have

S(s)S(t) + D(S(s) − T(s))(S(t) − T(t)) = S(t + s)C = S(s + t)C
= S(t)S(s) + D(S(t) − T(t))(S(s) − T(s)),

which implies that

(I + D)(S(s)S(t) − S(t)S(s)) = 0.

This proves 1.

Suppose that D is injective and for any s, t ≥ 0, S(s)S(t) = S(t)S(s). For s, t ≥ 0, we have

S(s)S(t) + D(S(s) − T(s))(S(t) − T(t)) = S(t + s)C = S(s + t)C
= S(t)S(s) + D(S(t) − T(t))(S(s) − T(s)),

which implies that

D(S(t)T(s) − T(s)S(t) + T(t)S(s) − S(s)T(t)) = 0.
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Thus injectivity of D yields that 2.

To show 3, let x ∈ D(A). Then lims→0
S(s)x−Cx

s exists in the range of C. For given t ≥ 0 we have

S(s)S(t)x − CS(t)x
s

= S(t)
S(s)x − Cx

s
.

Now let y := lims→0
S(s)x−Cx

s which is in the range of C. If y = Cz for some z ∈ X, then

lim
s→0

S(s)S(t)x − CS(t)x
s

= S(t)y = S(t)Cz = CS(t)z.

It follows that lims→0
S(s)S(t)x−CS(t)x

s is in the range of C and

AS(t)x = C−1 lim
s→0

S(s)S(t)x − CS(t)x
s

= C−1S(t)y = S(t)C−1y = S(t)Ax.

The last part of 3 can be proved similarly.

Set A1 = (1 + D)A − DA0, where A0 is the infinitesimal generator of the C-semigroup {T(t)}t≥0 and A is the
infinitesimal generator of {S(t)}t≥0. The next result reads as follows.

Theorem 2.4. Suppose that {S(t)}t≥0 ⊆ B(X) is a family, which is strongly continuous with S(0) = C and satisfies
(1) with H as (2).

1. Let T1(t)(x) = (1 + D)S(t)x − DT(t)x, x ∈ X and CD = DC. Then {T1(t)}t≥0 is a C-semigroup of operators,
whose infinitesimal generator is an extension of A1.

2. If D + I is invertible, then the solution of (1) with H as (2) in the strong operator topology is of the form

S(t)x = D(D + I)−1T(t)x + (1 + D)−1T1(t)x, x ∈ X.

Proof. Trivially T1(0) = C, since T(0) = C = S(0). Also for s, t ≥ 0, using (1) and (2), and a simple calculation
one may see that T1(s + t)C = T1(s)T1(t).
Now we are going to show that an extension of A1 = (1 + D)A − DA0 is the infinitesimal generator of
{T1(t)}t≥0. Let B be the infinitesimal generator of {T1(t)}t≥0. For given x ∈ D(A1) = D(A)∩D(A0), by definition
of D(A) and D(A0), limt→0

T(t)x−Cx
t and limt→0

S(t)x−Cx
t are in the range of C. Thus

lim
t→0

T1(t)x − Cx
t

= lim
t→0

(1 + D)S(t)x −DT(t)x − Cx
t

= (I + D) lim
t→0

S(t)x − Cx
t

+ D lim
t→0

T(t)x − Cx
t

exists in the range of C. It follows that x ∈ D(B) and A1(x) = B(x). Thus the infinitesimal generator of
{T1(t)}t≥0 is an extension of A1. This proves 1.
2 is evident.

For D = −I, the equation (1) reduces to

S(s + t)C − S(s)S(t) = (T(s) − S(s))(S(t) − T(t)) (s, t > 0). (3)

or equivalently

S(s + t)C − T(s + t)C = T(s)S(t) − S(s)T(t) (s, t > 0).

Also in this case, with A0 and A as above we have the following theorem which characterize solutions
of (3).
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Theorem 2.5. Let {S(t)}t≥0 be a strongly continuous commuting family satisfying (3). Then
1. For any x ∈ D(A)∩D(A0), CS(t)x is a differentiable function of t and d

dt CS(t)x = C[A0S(t)x + (A−A0)T(t)x].
2. For any x ∈ D(A) ∩D(A0), S(t)x = T(t)x + t(A − A0)T(t)x.

Proof. For x ∈ D(A) ∩D(A0), applying Lemma 2.3 we have

d
dt

S(t)Cx = lim
h→0

S(h + t)Cx − S(t)Cx
h

= lim
h→0

S(h)S(t)x + (T(h) − S(h))(S(t) − T(t))x − S(t)Cx
h

= lim
h→0

T(h)S(t)x − CS(t)x
h

+ lim
h→0

S(h)T(t)x − CT(t)x
h

− lim
h→0

T(h)T(t)x − CT(t)x
h

= C[A0S(t)x + AT(t)x − A0T(t)x].

This complete the proof of 1.
For establishing 2, let x ∈ D(A) ∩D(A0). By the part 1 we have

C(S(t)x − T(t)x) =

∫ t

0

d
dτ

CT(t − τ)S(τ)dτ

=

∫ t

0
(−CT(t − τ)A0S(τ)x)

+ (C[A0S(τ)T(t − τ)x + (A − A0)T(τ)T(t − τ)x])dτ

=

∫ t

0
(A − A0)T(t)Cxdτ

= t(A − A0)T(t)Cx = tC(A − A0)T(t)x.

Now injectivity of C completes the proof of 2.

Theorem 2.5 show that for D = −I if {S(t)}t≥0 is the mixed semigroup with the generator A and {T(t)}t≥0 is
the C-semigroup generated by A0 then u(t) = S(t)x is a solution of the following inhomogeneous ACP{

du(t)
dt = A0u(t) + (A − A0) f (t), t ∈ R+,

u(0) = Cx, x0 ∈ D(A) ∩D(A0),

with f (t) = T(t)x.
In the following theorem it will be proved that multiplication of a H-C-semigroup and a C-semigroup

is a H-C-semigroup if these two families commute.

Theorem 2.6. Let {V(t)}t≥0 be a C-semigroup with the infinitesimal generator B which commute with D ∈ B(H) and
{S(t)}t≥0 be a commuting strongly continuous H-C-semigroup with the C-semigroup {T(t)}t≥0 which also commute
with {V(t)}t≥0. Then W(t) := V(t)S(t) is a H-C2-semigroup with the infinitesimal generator A + B where A and A0
are the infinitesimal generators of {S(t)}t≥0 and {T(t)}t≥0, respectively.

Proof. Trivially T(0) = C2. Also for any s, t ≥ 0,

W(s + t)C2 = V(s + t)CS(s + t)C
= V(s)V(t)[S(s)S(t) + D(S(s) − T(s))(S(t) − T(t))]
= W(s)W(t) + D(W(s) − V(s)T(s))(W(t) − V(t)T(t)).

Thus {W(t)}t≥0 is a H-C2-semigroup which is obviously strongly continuous. Also for any x ∈ D(A) ∩D(B),

lim
t→0

W(t)x − C2x
h

= lim
t→0

V(t)S(t)x − CS(t)x
t

+
CS(t)x − C2x

t
C2Bx + C2Ax.
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Thus

C−2 lim
t→0

W(t)x − C2x
h

= (B + A)x.

3. Mixed C-Cosine Family

Let X be a Banach space and C be an injective operator in B(X). A family {S(t)}t∈R ⊆ B(X) is said to satisfy
a H-C-cosine Cauchy equation if

[S(s + t) + S(s − t)]C = H(S(s),S(t)), (4)

where H : B(X) × B(X) → B(X) is a function. If H(S(s),S(t)) = 2S(s)S(t), then {S(t)}t∈R satisfy in the first
condition of C-cosine family of operators.

In this section we consider a special case when

H(S(s),S(t)) = 2S(s)S(t) + 2D(S(s) − T(s))(S(t) − T(t)) (s, t ∈ R), (5)

where {T(t)}t∈R is a C-cosine family of operators and D ∈ B(X). Trivially D = 0 is a the C-cosine condition.
Now consider the equation (4) with H as in (5). Let A : D(A) ⊆ X → X be defined as A(x) =

C−1 limh→0
2
h2 [S(h)x − Cx], where D(A) = {x ∈ X : limh→0

2
h2 [S(s)x − Cx] exists in the range of C}. We shall

think of A as the infinitesimal generator of {S(t)}t∈R.

Lemma 3.1. Let {S(t)}t∈R ⊆ B(X) be a strongly continuous family, with S(0) = C and it satisfies (4) with H as (5).
Then

1. S(s) = S(−s) and S(s)C = CS(s) for all s.
2. If I + D is injective and for any s, t, T(s)S(t) = S(t)T(s), then S(s)S(t) = S(t)S(s) for all s, t.
3. If D is injective and S(s)S(t) = S(t)S(s) for all s, t, then for any s, t, T(s)S(t) = S(t)T(s).
4. If {S(t)}t∈R is a commuting family and x ∈ D(A) then for any t, S(t)x ∈ D(A) and AS(t)x = S(t)Ax.

Proof. Letting s = 0 in (4) we get

[S(t) + S(−t)]C = 2CS(t) + 2D(0) = 2CS(t) (t ∈ R) (6)

so

S(t)C + S(−t)C = 2CS(t) and S(−t)C + S(t)C = 2CS(−t) (t ∈ R).

Subtracting these equalities and using injectivity of C we find

S(t) = S(−t) (t ∈ R).

So by (6) we obtain 2S(t)C = 2CS(t) or S(t)C = CS(t) for all t ∈ R. This prove 1.
For proving 2, let I + D be injective and for any s, t, T(s)S(t) = S(t)T(s) . From part 1 we have

2S(s)S(t) + 2D(S(s) − T(s))(S(t) − T(t)) = [S(s + t) + S(s − t)]C
= [S(t + s) + S(t − s)]C (7)
= 2S(t)S(s) + 2D(S(t) − T(t))(S(s) − T(s)),

On the other hand T(s)T(t) = T(t)T(s) (see [8]) and by hypothesis S(t)T(s) = T(s)S(t). Thus (7) implies that

(I + D)(S(s)S(t) − S(t)S(s)) = 0, (s, t ∈ R).
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Now injectivity of I + D implies 2.
Suppose that D is injective and for any s, t, S(s)S(t) = S(t)S(s). Applying this condition on (7) we get

D(S(t)T(s) − T(s)S(t) + T(t)S(s) − S(s)T(t)) = 0 (s, t ∈ R).

which implies 3.
For proving 4, let x ∈ D(A). So y := limh→0

2
h2 [S(h)x−Cx] exists in the range of C. Put y = Cz for some z ∈ X.

Now for a given t by part 2 we have

2
h2 [S(h)S(t)x − CS(t)x] = S(t)

2
h2 [S(h)x − Cx] (t ∈ R).

Thus

lim
h→0

2
h2 [S(h)S(t)x − CS(t)x] = S(t)y = S(t)Cz = CS(t)z (t ∈ R).

This implies that limh→0
2
h2 [S(h)S(t)x − CS(t)x] is in the range of C and also

AS(t)x = C−1 lim
h→0

2
h2 [S(h)S(t)x − CS(t)x]

= C−1S(t)y = S(t)C−1y = S(t)Ax.

Theorem 3.2. Suppose that {S(t)}t∈R ⊆ B(X) is a commuting strongly continuous family with S(0) = C and it
satisfies (4) with H as (5). Let T1(t)x := (1+D)S(t)x−DT(t)x, x ∈ X, then {T1(t)}t∈R is a C-cosine family. Furthermore
if A0 is the infinitesimal generator of the C-cosine family {T(t)}t∈R, then an extension of A1 := (1 + D)A−DA0 is the
generator of {T1(t)}t∈R.

Proof. Applying (5) and Lemma 3.1 we get

[T1(t + s) + T1(t − s)]Cx = [((1 + D)S(t + s) −DT(t + s)) + ((1 + D)S(t − s) −DT(t − s))]Cx
= [(1 + D)(S(t + s) + S(t − s)) −D(T(t + s) + T(t − s))]Cx
= [(1 + D)(2S(t)S(s) + 2D(S(t) − T(t))(S(s) − T(s))) −D(2T(t)T(s))]x
= 2[(1 + D)S(t)S(s) + D(1 + D)S(t)S(s) −D(1 + D)S(t)T(s)
− D(1 + D)T(t)S(s) + D(1 + D)T(t)T(s) −DT(t)T(s)]x
= 2[(1 + D)2S(t)S(s) −D(1 + D)S(t)T(s)
− D(1 + D)T(t)S(s) + D2T(t)T(s)]x
= 2[(1 + D)S(t) −DT(t)][(1 + D)S(s) −DT(s)]x
= 2T1(t)T1(s)x.

Moreover T1(0)x = (1 + D)S(0)x −DT(0)x = (1 + D)Cx −DCx = Cx. These establish the C-cosine properties
of {T1(t)}t∈R.
We are going to show that an extension of A1 = (1 + D)A −DA0 is the infinitesimal generator of {T1(t)}. Let
B be the infinitesimal generator of {T1(t)}t∈R. For a given x ∈ D(A1) = D(A) ∩ D(A0), by definition of D(A)
and D(A0), limh→0

2
h2 [T(h)x − Cx] and limh→0

2
h2 [S(h)x − Cx] are in the range of C. Thus

lim
h→0

2
h2 [T1(h)x − Cx] = lim

h→0

2
h2 [(1 + D)S(h)x −DT(h)x − Cx]

= (I + D) lim
h→0

2
h2 [S(h)x − Cx] + D lim

h→0

2
h2 [T(h)x − Cx]

exists in the range of C. This implies that x ∈ D(B) and A1(x) = B(x) and the proof is complete.
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The previous theorem implies that if (I + D) is invertible then the solution S(t) of (4) with H as (5) is of the
form

S(t)x = D(D + I)−1T(t)x + (1 + D)−1T1(t)x, (x ∈ X).

4. Mixed Integrated Semigroups

In this section we consider the following equation for C-integrated case

V(s)V(t) −
∫ s

0
(V(t + τ) − V(τ))Cdτ = D(V(s) −W(s))(W(t) − V(t)) (s, t > 0) (8)

where {W(t)}t≥0 is a integrated C-semigroup and D ∈ B(X). This equation is called a mixed integrated
C-semigroup.

Proposition 4.1. Let {V(t)}t≥0 be a mixed integrated C-semigroup.

1. If I + D is injective and for any s, t ≥ 0, V(s)W(t) = W(t)V(s), then V(s)V(t) = V(t)V(s) for all s, t ≥ 0.
2. If D is injective and V(s)V(t) = V(t)V(s) for all s, t ≥ 0, then for any s, t ≥ 0, V(s)W(t) = W(t)V(s).

Proof. For any s, t ≥ 0, we have∫ s

0
(V(t + τ) − V(τ))Cdτ =

∫ t

0
(V(s + τ) − V(τ))Cdτ, (9)

since ∫ s

0
(V(t + τ) − V(τ))Cdτ =

∫ s

0
V(t + τ)Cdτ −

∫ s

0
V(τ)Cdτ

=

∫ s+t

t
V(τ)Cdτ −

∫ s

0
V(τ)Cdτ

=

∫ s+t

0
V(τ)Cdτ −

∫ t

0
V(τ)Cdτ −

∫ s

0
V(τ)Cdτ

=

∫ s

0
V(τ)Cdτ +

∫ s+t

s
V(τ)Cdτ −

∫ t

0
V(τ)Cdτ −

∫ s

0
V(τ)Cdτ

=

∫ t

0
(V(s + τ) − V(τ))Cdτ

First suppose that V(s)W(t) = W(t)V(s) for any s, t ≥ 0. It follows from the definition of {V(t)}t≥0 that

V(s)V(t) =

∫ s

0
(V(t + τ) − V(τ))Cdτ + D(V(s) −W(s))(W(t) − V(t))

=

∫ s

0
(V(t + τ) − V(τ))Cdτ + D(V(s)W(t) − V(s)V(t) −W(s)W(t) + W(s)V(t)).

On the other hand

V(t)V(s) =

∫ t

0
(V(s + τ) − V(τ))Cdτ + D(V(t) −W(t))(W(s) − V(s))

=

∫ t

0
(V(s + τ) − V(τ))Cdτ

+ D(V(t)W(s) − V(t)V(s) −W(t)W(s) + W(t)V(s)).
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Hence by (9) we have

I + D(V(s)V(t)) = I + D(V(t)V(s)).

Now injectivity of I + D implies that V(s)V(t) = V(t)V(s).
The proof of (2) is similar and so we omit it.

Now suppose that A0 is the infinitesimal generator of the integrated C-semigroup {W(t)}t≥0. With A1 =
(1 + D)A −DA0, we have the following result.

Theorem 4.2. Suppose that {V(t)}t≥0 ⊆ B(X) is a family with V(0) = 0 and it satisfies (8).

1. Let T1(t)(x) = (1 + D)V(t)x −DW(t)x, x ∈ X. Then {T1(t)}t≥0 is a integrated C-semigroup of operators whose
infinitesimal generator is an extension of A1.

2. If D + I is invertible then the solution of (8) in the strong operator topology is of the form

V(t)x = D(D + I)−1W(t)x + (1 + D)−1T1(t)x, x ∈ X.

Proof. Trivially T1(0) = 0, since W(0) = 0 = V(0). Also for s, t ≥ 0, using (8), and a simple calculation one
may observe that T1(t)C = CT1(t) as well as

∫ s

0
(T1(t + τ) − T1(τ))Cdτ =

∫ s

0
((1 + D)V(t + τ) −DW(t + τ) − (1 + D)V(τ) + DW(τ))Cdτ

= (1 + D)
∫ s

0
(V(t + τ) − V(τ))Cdτ −D

∫ s

0
(W(t + τ) −W(τ))Cdτ

= (1 + D)[V(s)V(t) −D(V(s) −W(s))(W(t) − V(t))] −D[W(s)W(t)]
= (1 + D)2V(s)V(t) − (1 + D)DV(s)W(t) − (1 + D)DW(s)V(t) + D2W(s)W(t)
= [(1 + D)V(s) −DW(s)][(1 + D)V(t) −DW(t)]
= T1(s)T1(t)x.

Now we are going to show that an extension of A1 = (1+D)A−DA0 is the infinitesimal generator of {T1(t)}t≥0.
Let B be the infinitesimal generator of {T1(t)}t≥0. For a given x ∈ D(A1) = D(A)∩D(A0), by definition of D(A)
and D(A0),

∫ t

0 V(s)yds = V(t)x − Cx⇔ Ax = y and
∫ t

0 W(s)yds = W(t)x − Cx⇔ A0x = y. Thus∫ t

0
T1(s)yds =

∫ t

0
[(1 + D)V(s) −DW(s)]yds

= (1 + D)(V(t)x − Cx) −D(W(t)x − Cx) = T1(t)x − Cx

if and only if A1x = y. This implies that x ∈ D(B) and A1(x) = B(x). Thus the infinitesimal generator of
{T1(t)}t≥0 is an extension of A1. This proves (1).
(2) is trivial.
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