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Abstract. The paper deals with certain families {Aα} (α > α0) of summability methods. Strong and
statistical convergences in Cesàro- and Euler–Knopp-type families {Aα} are investigated. Convergence of a
sequence x = (xn) with respect to the different strong summability methods [Aα+1]t (with positive exponents
t = (tn)) in a family {Aα} is compared, and characterized with the help of statistical convergence. A convexity
theorem for comparison of three strong summability methods [Aγ+1]t, [Aδ+1]t and [Aβ+1]t (β > δ > γ > α0)
in a Cesàro-type family {Aα} is proved. This theorem can be seen as a generalization of some convexity
theorems known earlier. Interrelations between strong convergence and certain statistical convergence are
also studied and described with the help of theorems proved here. All the results can be applied to the
families of generalized Nörlund methods (N, pαn , qn).

1. Preliminaries and Introduction

1.1 We start with some basics of summability theory (see [1], [7]). Let us consider sequences x = (xn)
with xn ∈ IC for every n ∈ IN0 = {0, 1, 2, ...}. If a sequence x is bounded, we write xn = O(1). If limn xn = s
or limn xn = 0, we write also xn → s or xn = o(1), respectively. Let A be a transformation which transforms
a sequence x into the sequence y = (yn) = Ax = (Anx). If the limit limn yn = s exists, then we say that x is
convergent with respect to the summability method A (in short, A-convergent) to s and write xn → s(A). If
yn = O(1), we say that x is bounded with respect to the method A and write xn = O(A). The most common
summability method is a matrix method A defined with the help of the matrix A = (an,k), where an,k ∈ IC
(n, k ∈ IN0) and which transforms x into y with

yn =

∞∑
k=0

an,kxk (n ∈ IN0). (1)

If xn → s =⇒ xn → s(A) for any x ∈ c, then we say that the matrix method A = (an,k) is regular.
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It is well-known that the method A = (an,k) is regular if and only if the following conditions are satisfied:

lim
n

an,k = 0 (k ∈ IN0), lim
n

∞∑
k=0

an,k = 1,
∞∑

k=0

|an,k| = O(1).

1.2 The notion of a A-statistically convergent sequence x (see [8], [4]) also belongs to the basics of this
paper. We denote

Kε = {k : |xk − s| ≥ ε} , (2)

where s and ε > 0 are some numbers.

Definition 1. Let A be a non-negative regular matrix method defined by transformation (1). We say that a sequence
x = (xn) is A-statistically convergent to s and write xn → s(stA), if for any ε > 0

lim
n→∞

∑
Kε

an,k = 0,

whereKε is the set defined by (2).

In particular, if A = (C, 1) then A-statistical convergence of x turns into statistical convergence defined in
[6], and we write xn → s(st). This notion was generalized also in [11] where statistical (C, 1)-convergence was
defined. About further developments of the notion of statistical convergence and appropriate references
can be read, e.g., in [5], [9] and [2].

Let us have another summability method B, besides the non-negative matrix method A.Generalizing the
notions of statistical (C, 1)-convergence and A-statistical convergence we define A-statistical B-convergence
of x as A-statistical convergence of Bx.

Definition 2. Let A be a non-negative regular matrix method and B be a summability method. We say that a sequence
x = (xn) is A-statistically B-convergent to s if Bnx → s(stA). In particular, if A = (C, 1), i.e., if Bnx → s(st), we say
that x is statistically B-convergent to s.

In case of A = B = (C, 1) Definition 2 defines the statistical (C, 1)-convergence (see [11]). In case of B = I
Definition 2 coincides with Definition 1.

We need also the following definition (see [10]).

Definition 3. We say that a matrix method B is A-statistically regular if

xn = O(1), xn → s(stA) =⇒ Bnx = O(1), Bnx→ s(stA).

In particular, if A = (C, 1) then we say that a matrix method B is statistically regular if

xn = O(1), xn → s(st) =⇒ Bnx = O(1), Bnx→ s(st).

1.3 The main object of discussions in this paper is a family {Aα} of summability methods Aα, which
transform sequences x into sequences yα = (yαn) = Aαx, and where α is a continuous parameter with values
α > α0 (α0 is some fixed real number). Denote by ωAα the set of all x where yα = Aαx exists and suppose
that ωAγ ⊂ ωAβ for any β > γ > α0.

The following definition is given in [15].

Definition 4. A family {Aα} (α > α0) is said to be A) a Cesàro- or B) an Euler–Knopp-type family, if for every
β > γ > α0 the transformed sequences yγ = (yγn) and yβ = (yβn) of x ∈ ωAγ are related by the connection formula

yβn =
1

rβn

n∑
k=0

cβ−γn−k rγk yγk (n ∈ IN0), (3)
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where (rαn) (α > α0) are some positive sequences being related by

rβn =

n∑
k=0

cβ−γn−k rγk (n ∈ IN0), (4)

and

cαn = Aα−1
n =

(
n + α − 1

n

)
(n ∈ IN0) (5)

in caseA) and

cαn =
αn

n!
(n ∈ IN0) (6)

in case B).

Relations (3) and (4) give us the connection formula

Aβ = Dγ,β ◦ Aγ (β > γ > α0)

where Dγ,β = (dγ,βn,k ) with

dγ,βn,k =

{
cβ−γn−k rγk /r

β
n if 0 ≤ k ≤ n,

0 if k > n.
(7)

The connection methods Dγ,β are regular (see [15], Lemma 1). The methods Dγ,β can be seen as gener-
alizations of Cesàro methods in case A) and Euler-Knopp methods in case B), that is why {Aα} is called a
Cesàro-type family in caseA) and an Euler–Knopp-type family in case B).

As examples of Cesàro-type (caseA)) and Euler–Knopp-type families (case B)) can be seen the families
of generalized Nörlund methods (see [15])

Aα = Nα = (N, pαn , qn) (α > α0),

where

yαn =
1
rαn

n∑
k=0

pαn−kqkxk,

rαn =
∑n

k=0 pαn−kqk, pαn =
∑n

k=0 cαn−kpk and cαn is defined by (5) in case A) and by (6) in case B), and (pn) and
(qn) are two non-negative sequences with p0, q0 > 0. The number α0 ∈ IR is chosen such that rαn > 0 for all
n ∈ IN0 and α > α0. Note that for β > γ > α0 the methods are related through (3). The particular cases of
the methods (N, pαn , qn) are the Cesàro methods (C, α) (α > −1) in case A) and the Euler-Knopp methods
E1/(α+1) (α > 0) in case B). More particular cases can be found in [15].

The inclusion relations in a family {Aα} are given by the following proposition (see Proposition 1 in [15]).

Proposition 1. Let {Aα} (α > α0) be a Cesàro- or an Euler–Knopp-type family. Then for sequences x = (xn), and
numbers s and β > γ > α0 we have:

i) xn = O(Aγ) =⇒ xn = O(Aβ),

ii) xn → s(Aγ) =⇒ xn → s(Aβ).

The following convexity theorem is true (see Theorem 2.1 in [14]).
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Proposition 2. Let {Aα} (α > α0) be a Cesàro-type family satisfying for any β > γ > α0 the condition 1)

K1nβ−γ ≤
rβn
rγn
≤ K2nβ−γ (n ∈ IN) (8)

with suitable positive constants K1 and K2. Then for sequences x = (xn), and numbers s and β > δ > γ > α0 we have:

xn = O(Aγ), xn → s(Aβ) =⇒ xn → s(Aδ).

In case of Cesàro-type methods Aα = (N, pαn , qn) condition (8) holds for any α > 0 if, for example, the
conditions

npn = O

 n∑
k=0

pk

 (9)

and

nqn = O

 n∑
k=0

qk


are satisfied (see [14], Lemma 2.1). Any nonincreasing sequence (pn) satisfies (9). Also, (9) is satisfied if
(pn) = nδL(n), where δ > −1 and L(n) is a slowly varying function (see [14], p.45). In particular, if Aα = (C, α),
then (8) is satisfied for any α > −1.

One of the main topics in our paper is the notion of strong convergence defined with the help of a given
positive sequence t = (tn) (see [13]).

Definition 5. Let {Aα} (α > α0) be a Cesàro- or an Euler–Knopp-type family and t = (tn) be a positive sequence. We
say that a sequence x = (xn) is strongly convergent with respect to the method Aα+1 with index t = (tn) (in short,
[Aα+1]t-convergent) to s and write xn → s[Aα+1]t if

µα+1
n (t) =

1
rα+1

n

n∑
k=0

c1
n−krαk

∣∣∣yαk − s
∣∣∣tk

= o(1). (10)

We say that x is strongly bounded with respect to the method Aα+1 with index t = (tn) (in short, [Aα+1]t-bounded)
and write xn = O([Aα+1]t) if

1
rα+1

n

n∑
k=0

c1
n−krαk

∣∣∣yαk ∣∣∣tk
= O(1).

Recall that c1
n−k = 1 or c1

n−k = 1/(n − k)! by (5) or (6), respectively. In particular case of constant exponent
tn ≡ t the last definition was given in [16].

Next proposition gives the inclusion relations (see Theorem 4 in [13]).

Proposition 3. Let {Aα} (α > α0) be a Cesàro- or an Euler–Knopp-type family. Then for sequences x = (xn), and
numbers s and β > γ > α0 we have:

i) xn → s[Aγ+1]t ⇒ xn → s[Aβ+1]t and xn = O([Aγ+1]t) ⇒ xn = O([Aβ+1]t), provided that t = (tn) is nonin-
creasing and tn ≥ 1;

1)Constants K1 and K2 in (8) may depend on γ and β. Throughout our paper the coefficients in O(1)- and o(1)-conditions related to
the family {Aα} may depend on values of the parameter α. Let us agree not to show this dependence explicitly with indices without
special need.
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ii) xn → s(Aγ)⇒ xn → s[Aγ+1]t and xn = O(Aγ)⇒ xn = O([Aγ+1]t), provided that infn tn = m > 0;

iii) xn → s[Aγ+1]t ⇒ xn → s[Aγ+1]t′ and xn = O([Aγ+1]t)⇒ xn = O([Aγ+1]t′ ), provided that (tn) and (t′n) satisfy
the conditions 0 < t′n ≤ tn ≤ Kt′n where K is some positive constant;

iv) xn → s[Aγ+1]t ⇒ xn → s(Aγ+1) and xn = O([Aγ+1]t)⇒ xn = O(Aγ+1), provided that 1 ≤ tn ≤M < ∞.

1.4 The idea of the present paper is to continue the comparison of different strong summability methods
[Aα+1]t in Cesàro- and Euler–Knopp-type families started in [13]. A convexity theorem for comparison of
three different strong summability methods [Aγ+1]t, [Aδ+1]t and [Aβ+1]t (β > δ > γ > α0) in a Cesàro-type
family is proved. This convexity theorem can be seen as a generalization of convexity theorems published
earlier in [16], [3] and [12] in case of constant exponent tn ≡ t. Interrelations between [Aα+1]t-convergence
and certain A-statistical Aα-convergence of x = (xn), i.e., A-statistical convergence of Aαx = (yαn) for different
values of the parameter α are also investigated and described with the help of theorems. All these results
can be transferred to particular cases of the family {Aα}, e.g., to the families of generalized Nörlund methods
(N, pαn , qn).

2. A Convexity Theorem

We prove the following convexity theorem.

Theorem 1. Let {Aα} (α > α0) be a Cesàro-type family. Suppose that t = (tn) is nonincreasing and tn ≥ 1. Then the
following statement is true for sequences x = (xn), and numbers s and β > δ > γ > α0:

xn = O([Aγ+1]t), xn → s[Aβ+1]t =⇒ xn → s[Aδ+1]t, (11)

provided that (8) is satisfied for any β > γ > α0.

For the proof of this theorem the next auxiliary result is needed.

Lemma 1. Let rα = (rαn) (α > α0) be positive sequences satisfying (4) for any β > γ > α0. If (8) is satisfied for any
β > γ > α0, then for non-negative sequences x = (xn) and numbers γ > α0 we have:

i) 1
rγ+2

n

n∑
k=0

rγ+1
k xk = o(1) =⇒ 1

n

n∑
k=0

xk = o(1),

ii) 1
n

n∑
k=0

xk = o(1) =⇒ 1
rγ+1

n

n∑
k=0

rγk xk = o(1).

Proof. Statement i) is true due to Theorem 14 in [7].
ii) Fix γ and choose γ′, such that α0 < γ′ < γ. We denote δ = γ − γ′ and get with the help of (8)

1

rγ+1
n

n∑
k=0

rγ
′+δ

k xk = O(1)
1

rγ+1
n

n∑
k=0

rγ
′+1

k kδ−1xk = O(1)
rγ
′+1

n

rγ+1
n

n∑
k=0

kδ−1xk = O(1)
1
nδ

n∑
k=0

kδ−1xk

= O(1)
1

Aδ
n

n∑
k=0

Aδ−1
k xk.

If 1
n
∑n

k=0 xk = o(1), then 1
Aδ

n

∑n
k=0 Aδ−1

k xk = o(1) due to Theorem 14 in [7], and thus ii) holds. �

Proof of Theorem 1. Without loss of generality we may take s = 0 and by Proposition 3 i) also β = γ + 1.
Suppose that x is strongly bounded with respect to the method Aγ+1 and x is strongly convergent to 0 with
respect to the method Aγ+2, and show that x is strongly convergent to 0 with respect to the method Aδ+1 for
any γ < δ < γ + 1.

In other words, suppose that µγ+1
n (t) = O(1) and µγ+2

n (t) = o(1), and show that µγ+ρ+1
n (t) = o(1) for any

ρ = δ − γ such that 0 < ρ < 1.
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Choose some θ ∈ (0; 1
2 ) and divide yγ+ρ

n rγ+ρ
n into two parts:

yγ+ρ
n rγ+ρ

n =

n∑
k=0

Aρ−1
n−krγk yγk =

n−[θn]∑
k=0

Aρ−1
n−krγk yγk +

n∑
k=n−[θn]+1

Aρ−1
n−krγk yγk .

Using Abel transformation for the first sum of the right side of the last equation and substituting v = n−k
for the second sum we get the equality

yγ+ρ
n rγ+ρ

n = Aρ−1
[θn]r

γ+1
n−[θn]y

γ+1
n−[θn] +

n−[θn]−1∑
k=0

Aρ−2
n−krγ+1

k yγ+1
k +

[θn]−1∑
v=0

Aρ−1
v rγn−vyγn−v = Un + Vn + Wn.

Therefore, yγ+ρ
n = (Un + Vn + Wn)/rγ+ρ

n .
Now, using the inequality

|a + b + c|r ≤ |a|r + |b|r + |c|r (r ≤ 1)

with r = tn
M , where M = supn tn, we have

∣∣∣yγ+ρ
k

∣∣∣ tk
M
≤

∣∣∣∣∣∣∣ Uk

rγ+ρ
k

∣∣∣∣∣∣∣
tk
M

+

∣∣∣∣∣∣∣ Vk

rγ+ρ
k

∣∣∣∣∣∣∣
tk
M

+

∣∣∣∣∣∣∣ Wk

rγ+ρ
k

∣∣∣∣∣∣∣
tk
M

.

Further we get with the help of the Minkowski inequality:

[
µ
γ+ρ+1
n (t) rγ+ρ+1

n

] 1
M

=

 n∑
k=0

rγ+ρ
k

(∣∣∣yγ+ρ
k

∣∣∣ tk
M

)M


1
M

≤


n∑

k=0

rγ+ρ
k


∣∣∣∣∣∣∣ Uk

rγ+ρ
k

∣∣∣∣∣∣∣
tk
M

+

∣∣∣∣∣∣∣ Vk

rγ+ρ
k

∣∣∣∣∣∣∣
tk
M

+

∣∣∣∣∣∣∣ Wk

rγ+ρ
k

∣∣∣∣∣∣∣
tk
M


M

1
M

≤


n∑

k=0

|Uk|
tk(

rγ+ρ
k

)tk−1


1
M

+


n∑

k=0

|Vk|
tk(

rγ+ρ
k

)tk−1


1
M

+


n∑

k=0

|Wk|
tk(

rγ+ρ
k

)tk−1


1
M

=
(
U′n

) 1
M +

(
V′n

) 1
M +

(
W′

n
) 1

M .

It follows immediately from the last inequality that

[
µ
γ+ρ+1
n (t)

] 1
M
≤

 U′n
rγ+ρ+1

n


1
M

+

 V′n
rγ+ρ+1

n


1
M

+

 W′
n

rγ+ρ+1
n


1
M

. (12)

Next we evaluate the sums U′n, V′n and W′
n separately, starting from W′

n.
Using Hölder inequality and the definition of a Cesàro-type family, we have

|Wn|
tn =

∣∣∣∣∣∣∣
[θn]−1∑

k=0

Aρ−1
k rγn−kyγn−k

∣∣∣∣∣∣∣
tn

≤

[θn]∑
k=0

Aρ−1
k rγn−k

∣∣∣yγn−k

∣∣∣
tn

≤

[θn]∑
k=0

Aρ−1
k rγn−k


tn−1 [θn]∑

k=0

Aρ−1
k rγn−k

∣∣∣yγn−k

∣∣∣tn

≤

(
rγ+ρ

n

)tn−1
[θn]∑
k=0

Aρ−1
k rγn−k

∣∣∣yγn−k

∣∣∣tn
.

Further we get

W′

n =

n∑
k=0

|Wk|
tk(

rγ+ρ
k

)tk−1 ≤

n∑
k=0

(
rγ+ρ

k

)tk−1 ∑[θk]
v=0 Aρ−1

v rγk−v

∣∣∣yγk−v

∣∣∣tk(
rγ+ρ

k

)tk−1 =

n∑
k=0

[θk]∑
v=0

Aρ−1
v rγk−v

∣∣∣yγk−v

∣∣∣tk

≤

[θn]∑
v=0

Aρ−1
v

n∑
k=[v/θ]

rγk−v

∣∣∣yγk−v

∣∣∣tk
.
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So we have the inequality

W′

n ≤

[θn]∑
v=0

Aρ−1
v

n−v∑
k=0

rγk
∣∣∣yγk ∣∣∣tk+v

. (13)

Let us denote

uγk,v =


∣∣∣yγk ∣∣∣tk+v if

∣∣∣yγk ∣∣∣ ≥ 1,

0 if
∣∣∣yγk ∣∣∣ < 1

and

wγ
k,v =


∣∣∣yγk ∣∣∣tk+v if

∣∣∣yγk ∣∣∣ < 1,

0 if
∣∣∣yγk ∣∣∣ ≥ 1 .

Thus we have the relations:∣∣∣yγk ∣∣∣tk+v
= uγk,v + wγ

k,v, uγk,v ≤
∣∣∣yγk ∣∣∣tk

, wγ
k,v ≤

∣∣∣yγk ∣∣∣ .
Now we can develop inequality (13), denoting 1 = (1, 1, ...):

W′

n ≤

[θn]∑
v=0

Aρ−1
v

n−v∑
k=0

rγk
∣∣∣yγk ∣∣∣tk+v

=

[θn]∑
v=0

Aρ−1
v

n−v∑
k=0

rγk uγk,v +

[θn]∑
v=0

Aρ−1
v

n−v∑
k=0

rγk wγ
k,v

≤

[θn]∑
v=0

Aρ−1
v

n−v∑
k=0

rγk
∣∣∣yγk ∣∣∣tk

+

[θn]∑
v=0

Aρ−1
v

n−v∑
k=0

rγk
∣∣∣yγk ∣∣∣ =

[θn]∑
v=0

Aρ−1
v rγ+1

n−vµ
γ+1
n−v(t) +

[θn]∑
v=0

Aρ−1
v rγ+1

n−vµ
γ+1
n−v(1)

≤

[θn]∑
v=0

Aρ−1
v rγ+1

n µγ+1
n (t) +

[θn]∑
v=0

Aρ−1
v rγ+1

n µγ+1
n (1) = O(rγ+1

n (θn)ρ),

because µγ+1
n (t) = O(1) =⇒ µγ+1

n (1) = O(1) by Proposition 3 iii). Further we get with the help of (8) that

W′

n =

n∑
k=0

|Wk|
tk(

rγ+ρ
k

)tk−1 = O(1)
(
rγ+ρ+1

n θρ
)
. (14)

Next we evaluate the sum U′n.
Using characteristics of Cesàro numbers (see [1], [7]) and relation (8) we get:

|Uk|

rγ+ρ
k

=
Aρ−1

[θk]r
γ+1
k−[θk]

∣∣∣∣yγ+1
k−[θk]

∣∣∣∣
rγ+ρ

k

≤

M([θk] + 1)ρ−1rγ+1
k

∣∣∣∣yγ+1
k−[θk]

∣∣∣∣
rγ+ρ

k

≤M(θk)ρ−1k1−ρ
∣∣∣∣yγ+1

k−[θk]

∣∣∣∣ ≤ Hθ

∣∣∣∣yγ+1
k−[θk]

∣∣∣∣ .
Thus we have

n∑
k=0

|Uk|
tk(

rγ+ρ
k

)tk
= Oθ(1)

n∑
k=0

∣∣∣∣yγ+1
k−[θk]

∣∣∣∣tk
= Oθ(1)

n−[θn]∑
k=0

∣∣∣∣yγ+1
k

∣∣∣∣t[k/(1−θ)]

= Oθ(1)
n∑

k=0

∣∣∣∣yγ+1
k

∣∣∣∣t[k/(1−θ)]

. (15)

Denoting

uγ+1
k,θ =


∣∣∣∣yγ+1

k

∣∣∣∣t[k/(1−θ)]

if
∣∣∣∣yγ+1

k

∣∣∣∣ ≥ 1,

0 if
∣∣∣∣yγ+1

k

∣∣∣∣ < 1
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and

wγ+1
k,θ =


∣∣∣∣yγ+1

k

∣∣∣∣t[k/(1−θ)]

if
∣∣∣∣yγ+1

k

∣∣∣∣ < 1,

0 if
∣∣∣∣yγ+1

k

∣∣∣∣ ≥ 1 ,

we get the relations:∣∣∣∣yγ+1
k

∣∣∣∣t[k/(1−θ)]

= uγ+1
k,θ + wγ+1

k,θ , uγ+1
k,θ ≤

∣∣∣∣yγ+1
k

∣∣∣∣tk
, wγ+1

k,θ ≤

∣∣∣∣yγ+1
k

∣∣∣∣ .
Developing relations (15) we get

n∑
k=0

|Uk|
tk(

rγ+ρ
k

)tk
= Oθ(1)

n∑
k=0

∣∣∣∣yγ+1
k

∣∣∣∣t[k/(1−θ)]

= Oθ(1)
n∑

k=0

(uγ+1
k,θ + wγ+1

k,θ ) = Oθ(1)

 n∑
k=0

∣∣∣∣yγ+1
k

∣∣∣∣tk
+

n∑
k=0

∣∣∣∣yγ+1
k

∣∣∣∣ .
As µγ+2

n (t) = o(1), then µγ+2
n (1) = o(1) and therefore

n∑
k=0

∣∣∣∣yγ+1
k

∣∣∣∣tk
+

n∑
k=0

∣∣∣∣yγ+1
k

∣∣∣∣ = o(n)

by Lemma 1 i). That is why

n∑
k=0

|Uk|
tk(

rγ+ρ
k

)tk
= oθ(n).

Further we get with the help of Lemma 1 ii) that

U′n =

n∑
k=0

|Uk|
tk rγ+ρ

k(
rγ+ρ

k

)tk
= oθ(rγ+ρ+1

n ). (16)

Finally we evaluate the sum V′n.
As µγ+2

n (t) = o(1), then µγ+2
n (1) = o(1) and therefore

|Vk| =

∣∣∣∣∣∣∣
k−[θk]∑

v=0

Aρ−2
k−v rγ+1

v yγ+1
v

∣∣∣∣∣∣∣ ≤
k−[θk]∑

v=0

∣∣∣∣Aρ−2
k−v

∣∣∣∣ rγ+1
v

∣∣∣∣yγ+1
v

∣∣∣∣ ≤ H
k−[θk]∑

v=0

(k − v + 1)ρ−2rγ+1
v

∣∣∣∣yγ+1
v

∣∣∣∣
≤ H(θk)ρ−2

k∑
v=0

rγ+1
v

∣∣∣∣yγ+1
v

∣∣∣∣ = o
(
(θk)ρ−2rγ+2

k

)
.

With the help of condition (8) we get

|Vk| = o

 rγ+ρ
k k2−ρ

θ2−ρk2−ρ

 = oθ(rγ+ρ
k ).

As the method Dγ+ρ,γ+ρ+1 is regular we have

n∑
k=0

|Vk|
tk(

rγ+ρ
k

)tk−1 =

n∑
k=0

|Vk|
tk rγ+ρ

k(
rγ+ρ

k

)tk
= oθ(rγ+ρ+1

n ),

and thus

V′n = oθ(rγ+ρ+1
n ). (17)
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Now we are able to complete our proof.

Let ε > 0 be a given number. Due to (14) we can choose θε ∈ (0; 1/2), so that
[
W′

n/r
γ+ρ+1
n

] 1
M < ε/3 for

any n. Due to (16) and (17) we can choose now n0, so that
[
U′n/r

γ+ρ+1
n

] 1
M < ε/3 and

[
V′n/r

γ+ρ+1
n

] 1
M < ε/3 for

all n > n0.
It follows now from (12) that

[
µ
γ+ρ+1
n (t)

] 1
M

=

 1

rγ+ρ+1
n

n∑
k=0

rγ+ρ
k

∣∣∣yγ+ρ
v

∣∣∣tk


1
M

<
ε
3

+
ε
3

+
ε
3

= ε

for all n > n0.
Thus we have shown that µγ+ρ+1

n (t) = µδ+1
n (t) = o(1), and therefore implication (11) holds for any

β > δ > γ > α0. �

In particular case of constant exponent tn ≡ t Theorem 1 turns into theorem which was formulated
without proof as Theorem 3 in [16]. Moreover, for methods Aα = (N, pαn , qn) an analogous theorem was
proved in [12] and, in particular, for Aα = (N, pαn , 1) in [3].

The following remark bases on Lemma 1.

Remark 1. Let {Aα} (α > α0) be a Cesàro-type family. If (8) is satisfied for any β > α > α0, then
[Aα+1]t-convergence of x = (xn) to s can be defined as

1
n

n∑
k=0

∣∣∣yαk − s
∣∣∣tk

= o(1) (18)

for any α > α0 + 1 due to Lemma 1. In particular, if Aα = (C, α), then (18) defines [Aα+1]t-convergence for
any α > −1 due to Theorem 14 in [7].

3. Comparison of Aα- and [Aα+1]t-convergences with Some Statistical Convergence

We compare Aα- and [Aα+1]t-convergences of x with its A-statistical Aα-convergence (and, in particular,
with its statistical Aα-convergence) for different values of parameter α, where A = Dα,α+1 is the matrix
method defined by (7).

Denote (Aα
nx) = (yαn) = Aαx, and recall that x is Dα,α+1-statistically Aα-convergent by Definition 2 if

Aα
nx → s(stDα,α+1 ), and x is statistically Aα-convergent if Aα

nx → s(st). Recall also that t = (tn) is a positive
sequence.

The following auxiliary result will be used.

Lemma 2. Let A be a regular non-negative matrix method defined by transformation (1). Suppose that supn tn =
M < ∞. Then the following statements are true for sequences x = (xn) and numbers s:

i) if

∞∑
k=0

an,k |xk − s|tk = o(1), (19)

then xn → s (stA),

ii) if xn = O(1) and xn → s(stA), then (19) is satisfied, provided that infn tn = m > 0.

Proof. Choose an arbitrary ε > 0 and consider the setKε defined by (2).
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i) We have the inequalities

∞∑
k=0

an,k |xk − s|tk ≥

∑
Kε

an,k |xk − s|tk ≥ h(ε)
∑
Kε

an,k,

where h(ε) = min{1, εM
}. If (19) holds, also the sum in the right side of the last inequalities tends to zero,

i.e., xn → s(stA). That proves i).
ii) DenotingK ∗ε = {k : |xk − s| < ε}, we get:

∞∑
k=0

an,k |xk − s|tk =
∑
Kε

an,k |xk − s|tk +
∑
K ∗ε

an,k |xk − s|tk ≤ (L + |s|)M
∑
Kε

an,k + H(ε)
∞∑

k=0

an,k,

where |xn| ≤ L and H(ε) = max{εm, εM
}. Further, if xn → s(stA), i.e., if limn→∞

∑
Kε

an,k = 0, then

lim sup
n

∞∑
k=0

an,k |xk − s|tk ≤ H(ε)

because limn
∑
∞

k=0 an,k = 1 by regularity of A. As ε > 0 is arbitrarily chosen, the last inequality implies (19).
�

We note that statements i) and ii) of Lemma 2 can be proved also as direct applications of Corollaries 3.3
and 3.4 in [9], respectively. References on developments of these statements can be also found in [9].

Theorem 2. Let {Aα} (α > α0) be a Cesàro- or an Euler–Knopp-type family. Then for sequences x = (xn), and
numbers s and β ≥ γ > α0 we have:

i) xn → s(Aγ) =⇒ Aβ
nx→ s(stDβ,β+1 ),

ii) xn = O(Aγ), Aγ
nx→ s(stDγ,γ+1 ) =⇒ xn → s(Aβ+1).

Proof. The implications

xn → s(Aγ) =⇒ yγn → s[Aγ+1]1 =⇒ yγn → (stDγ,γ+1 ) (20)

are true by Proposition 3 ii) and Lemma 2 i), if we apply Lemma 2 i) to A = Dγ,γ+1 and (yγn) (instead of (xn))
and remember that Aγ+1 = Dγ,γ+1 ◦ Aγ. The implications

yγn = O(1), yγn → s(stDγ,γ+1 ) =⇒ yγn → s[Aγ+1]1 =⇒ xn → s(Aγ+1) (21)

are true due to Lemma 2 ii) (with A = Dγ,γ+1) and Proposition 3 iv). Statements i) and ii) follow from (20)
and (21), respectively, because xn → s(Aγ) =⇒ xn → s(Aβ) by Proposition 1 ii). �

Theorem 3. Let {Aα} (α > α0) be a Cesàro- or an Euler–Knopp-type family. Suppose that supn tn = M < ∞. Then
we have for any β ≥ γ > α0 :

i) xn → s[Aγ+1]t =⇒ Aγ
nx→ s(stDγ,γ+1 );

ii) xn = O(Aγ), Aγ
nx→ s(stDγ,γ+1 ) =⇒ xn → s[Aγ+1]t, provided that infn tn = m > 0;

iii) xn = O(Aγ), xn → s[Aγ+1]t =⇒ xn → s(Aβ+1).

Moreover, if t = (tn) is nonincreasing and infn tn = m ≥ 1, then:

iv) xn → s[Aγ+1]t =⇒ Aβ
nx→ s(stDβ,β+1 );

v) xn = O(Aγ), Aγ
nx→ s(stDγ,γ+1 ) =⇒ xn → s[Aβ+1]t.

Proof. i) and ii) are true by Lemma 2, if we take A = Dγ,γ+1 in it.
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iii) follows immediately from statement i) and Theorem 2 ii).
iv) and v) follow from statements i) and ii), respectively, because xn → s[Aγ+1]t =⇒ xn → s[Aβ+1]t by

Proposition 3 i). �

Remark 2. i) Theorem 3 i) and Theorem 3 ii) imply the statement: if xn = O(Aγ) then [Aγ+1]t- and
[Aγ+1]1- convergences of x and Dγ,γ+1-statistical convergence of Aγx to s are equivalent, provided that
supn tn = M < ∞ and infn tn = m > 0 (compare with Proposition 3 iii)).

ii) If tn ≥ 1 then the condition xn = O(Aγ) can be dropped in Theorem 3 iii) (compare with Proposition 3
iv) and Proposition 1 i)).

Further we consider only Cesàro-type families.

Theorem 4. Let {Aα} (α > α0) be a Cesàro-type family. Suppose that supn tn = M < ∞ and (8) is satisfied for any
β > γ > α0. Then we have:

i) xn → s[Aγ+1]t =⇒ Aγ
nx→ s(st) for any γ > α0 + 1;

ii) xn = O(Aγ), Aγ
nx→ s(st) =⇒ xn → s[Aγ+1]t for any γ > α0, provided that infn tn = m > 0;

iii) xn = O(Aγ), Aγ
nx→ s(st) =⇒ Aβ

nx→ s(st) for any γ > α0 and β > max{γ, α0 + 1}.

Moreover, if t = (tn) is nonincreasing and infn tn = m ≥ 1, then we have:

iv) xn → s[Aγ+1]t =⇒ Aβ
nx→ s(st) for any γ > α0 and β > max{γ, α0 + 1};

v) xn = O(Aγ), Aγ
nx→ s(st) =⇒ xn → s[Aβ+1]t for any β ≥ γ > α0.

Proof. i) If xn → s[Aγ+1]t for some γ > α0 +1 then (18) holds by Lemma 1 i); (18), in its turn, implies yγn → s(st)
by Lemma 2 i) (take A = (C, 1) in it).

ii) If yγn = O(1) and yγn → s(st), then (18) holds by Lemma 2 ii), and xn → s[Aγ+1]t for any γ > α0 by
Lemma 1 ii).

iii) If yγn = O(1) and yγn → s(st), then xn → s[Aγ+1]1 by ii) and xn → s[Aβ+1]1 by Proposition 3 i), and
therefore yβn → s(st) by i).

iv) and v) follow from i) and ii) with the help of Proposition 3 i). �

Theorem 5. Let {Aα} (α > α0) be a Cesàro-type family. Suppose that (8) holds for any β > γ > α0 and t is a
nonincreasing sequence with tn ≥ 1. If xn = O([Aγ+1]t) and xn → s[Aβ+1]t for some β > γ > α0, then Aδ

nx → s(st)
for any δ > max{γ, α0 + 1}.

Proof. Due to Theorem 1 the conditions xn = O([Aγ+1]t) and xn → s[Aβ+1]t imply xn → s[Aδ+1]t for any
β > δ > γ. Also, xn → s[Aβ+1]t implies xn → s[Aδ+1]t for any δ > β due to Proposition 3 i) which, in its turn,
implies Aδ

nx→ s(st) for any δ > max{γ, α0 + 1} due to Theorem 4 i). �

Theorem 6. Let {Aα} (α > α0) be a Cesàro-type family. Suppose that (8) is satisfied for any β > γ > α0. If
xn = O(Aγ) and Aβ

nx→ s(st) for some β > γ > α0, then Aδ
nx→ s(st) for any δ > max{γ, α0 + 1}.

Proof. If Aγ
nx = O(1) then Aβ

nx = O(1) and xn = O([Aγ+1]1) due to Proposition 1 i) and Proposition 3 ii),
respectively. By Theorem 4 ii) we have

Aβ
nx = O(1), Aβ

nx→ s(st) =⇒ xn → s[Aβ+1]1.

Now we can use Theorem 5 to finish our proof. �

Remark 3. Theorem 4 iii) remains valid if we replace yγ = (Aγ
nx) with any sequence y = (yn) in it. Thus the

implication

yn = O(1), yn → s(st) =⇒ zβn = O(1), zβn → s(st),
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where (zβn) = Dγ,βy, is true for any γ > α0 and β > max{γ, α0 + 1}, which shows that Dγ,β is statistically
regular.

Theorem 7. Let {Aα} (α > α0) be a Cesàro-type family satisfying (8) for any β > γ > α0. Then the matrix methods
Dγ,β defined by this family are statistically regular for any γ > α0 and β > max{γ, α0 + 1}.

Remark 4. In particular, if Aα = (C, α) (α > −1), the inequalities γ > α0 + 1 and β > max{γ, α0 + 1} can be
replaced by γ > −1 and β > γ > −1, respectively, everywhere in Theorems 4 and 7. Also, the inequality
δ > max{γ, α0 + 1} can be replaced by δ > γ > −1 everywhere in Theorems 5 and 6.
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