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Abstract. Motivated by de Haan’s pioneering work, this paper gives some general sufficient and necessary
conditions that functions are regularly varying and I'°-varying, respectively. Specially, these criteria can be

employed to determine whether a given distribution belongs to one of the max-domains of attractions of
extreme value distributions.

1. Introduction

For a distribution function (df) F, if there exists some constants a, > 0 and b,, such that

lim F" (a,x + b,) = G(x)

n—oo

for all continuity points x of G, where G is a non-degenerate df, then we say that F belongs to the max-

domain of attraction of G, abbreviated as F € D(G). It is well-known that G must belong to one of the
following three classes

Typel Gumbel: A(x)= exp(— exp(—x)), x€R;
0, x<0,
Typell Fréchet: @,(x) = exp(—x‘“) >0 fora > 0;
Type Il Weibull: W, (x) = { TXP(_ (=) )’ X <S’ for a > 0.
/ Xz

Standard monographs of extreme value theory are de Haan [1], Leadbetter et al. [7], Resnick [10],
Reiss [9], Embrechts et al. [3], Kotz and Nadarajah [6], de Haan and Ferreira [2], Falk et al. [4]. Other
complementing references dealing with conditions for F € D(G) are Geluk [5] and Peng et al. [8]. An
interesting necessary and sufficient condition for F € D(G) is the following one refered to as de Haan MDA
condition, [cf. de Haan [1], pages 100-103, Theorem 2.6.1, Theorem 2.6.2 and its remark], namely
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Theorem 1.1. (de Haan MDA criteria) For df F, define F(x) = 1 — F(x) the survival function, and let x, := sup/{x :
F(x) < 1} represent the upper endpoint of F. Then,

(1) F € D(A) if and only if for some p € R,
WE) [ [T E(t)dtdy
lim — =1
T ([ pEedt)

and all the integrals in the preceding expression are finite.

(2) F € D(®,) if and only if for a —p > 2,

FE@) [T [T #Fdidy p—1
lim y_ 5 =
T ([T eFat) a=p=2

and all the integrals in the preceding expression are finite.
(3) F e D(V,) if and only if xy < oo and for any constant p € R
WE) [ [CeEndtdy
lim y_ 3 = >
X—Xo (on l’pF(t)di’) a+

Motivated by the de Haan MDA criteria (Theorem 1.1), in this paper we present some necessary and
sufficient conditions for F € D(G), which are in the spirit of de Haan [1]. Note that F € D(A) iff F € I'class
and F € D(®,) iff F € RV_,, see [1] and [10]. Proposition 1.13 in [10] also shows that F € D(\W,,) iff xy < oo
and F(xg — x') € RV_,. The new criteria in this paper are formulated for general function H while we get

the corresponding results to MDA as H = F. The paper is organized as follows: In Section 2 we discuss
I'°(f)-class, a variation of I'-class given by [1] and [10]. Section 3 is for RV.

2. The Class I'°(f)

An ultimate positive and measurable function H defined on an interval (x;, x¢] is in the class I'°(f) if it
satisfies lim,_,, H(x) = 0 and

lim 2@+ yf@) _ -,

R.
m H(v) , Ve

The function f is an auxiliary function and f satisfies f(x)/x — 0and f(x + yf(x))/f(x) — 1,Vy. Obviously,
H eI°(f)iff 1/H € T defined by de Haan [1]. Note that H € I'"*(f) if and only if for some (all) &« € R, > 0,
we have x*HP(x) € I'°(g), and then g(x) = f(x)/B. The following result is a result of de Haan.

Proposition 2.1.  a) The following are equivalent

(i) HeT°(f).

(ii) There exist functions a, b, c such that

H(x) = c(x) exp (— fj %dz), x>a°,

and c(x) = ¢ > 0,a(x) = 1and b'(x) = 0as x — xo.
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(iii) We have

H() [ fy"‘) H(z)dzdy
lim = =
=0 ([ H(z)dz)?

b) If H € T°(f), @ € R, then fxxo z%H(z)dz ~ x*H(x)f(x) € T°(f). Conversely, if H is nonincreasing and if
[ z*H(z)dz € T°(f), then H € T°(f).
Remark 2.2. If H € I'°(f), the result implies that f(x) ~ b(x) ~ fxxo H(z)dz/H(x).
From Proposition 2.1, we can obtain the following corollary.
Corollary 2.3. Suppose that H € I'°(f). Then
(i) foralla >0,

HE) [ ( [ H(z)dz)a dy

lim T =—.
o ( fx “H (z)dz) a

(ii) foralla > B, p € R,

xPPHP (x) f 0 2P HO(2)dz B
lim = ==

X=X xpa Ha(x) fx “ 2PBHP (2)dz o

Proof. (i) From Proposition 2.1 b), it follows that
X0
| e~ fwHe e
and then
(f H(z)dz) ~ fY(x)H*(x) e T°(f /).
X
It follows that

fx "’ ( fy ’ H(z)dz)a dy ~ ( fr ’ H(z)dz)a f(x)/a.

Now result (i) follows.
(ii) From Proposition 2.1 b), we have

fxo ZP*H*(z)dz ~ xP“H" (x) f(x)/ ot
and
[ 2w ~ e s,

then the result follows. [
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Remark 2.4. Note that in Corollary 2.3 (ii), for all a > 0, we have fxxo ZP*H*(z)dz € T°(f /o).

The converse result is also true.

Theorem 2.5. Each of the following statements implies that H € T°(f):

(i) For some o > 0,

HE) [ ( [ H(z)dz)a dy

lim =

) (on H(Z)dz)l"'“ B E

(ii) Forsome a > B,p € R,

xPPHP (x) f 2P e (2)dz B
lim = ==

X% P HA(x) fx  2PBHB(2)dz Ca

(ii1) If H is nonincreasing and for some p € R, fx " #PH(z)dz € T°( 1)
Proof. (i) Define A(x) and R(x) as follows:
X0
Alx) = f H(z)dz,
A1+a(x)
[ Ay

In the case of (i), we have that R(x)/H(x) — «a. Taking the derivative of R(x), we have

R(x)

R = —(1+ a)A*(x)H(x) on Aa(y)dy'FAlJra(X)Aa(x)
([ ac(ay)
[ Aa(y)dy H))

Note that —R’(x) is positive for large values of x. Now we have

R'(x) __@( H(x) )z_@

R - A\ YR T T o

where a(x) = a((1 + ®)H(x)/R(x) — 1) and b(x) = a¢A(x)/R(x). Note that a(x) — 1 and that

2 Ay

Y= 0T

It is easy to see that

—A%(x) + @A (O H() [ A% (y)dy
A2 (X)

_ HE\
= a(—1+ocR(x)) 0.

Y (x)

o

2210
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Taking integrals, we have

R(x) = Cexp (— ‘fj %dz)

and we have (cf. Proposition 2.1, (ii)) that R € I'°(b). Since H(x) ~ R(x)/«a, we also get that H € I"°(b).
(ii) To prove (ii) we define function r(x) and R(x) as follows:

APPHP(x) fx 2P HO (2)dz

V(X) - X
xP*He (x) fx " 2PBHP(2)dz
and
fx 0 Zpa e (z)dz
R(x) = .
fx zPPHP(z)dz

By assumption we have r(x) — f/a and R(x) ~ (8/a)x"*PH@P(x). Taking the derivative of R(x), we
find

- (fxxo ZPﬁHﬁ(Z)dZ) X xP(XHa(x) + (fxx[) ZmH“(Z)dz) % xpﬂHﬁ(x)

R(x) = s s
( fx ’ zPﬁHﬁ(z)dz)
xPYH*(x)
_ -1).
fx " 2PBHP (2)dz (=) =1)
It follows that
R'(x) o xPYH*(x) _ _@
R~ T s
where
paya
0(8) = (1 = o) g

and
X0 X0
b(x) = R—a/(a—ﬁ)(x)f ZP*H(z)dz = R‘/g/(“_ﬂ)(x)f zpﬁH'B(Z)dZ.

First consider a(x). Using r(x) — B/a and R(x) ~ (B/a)x"*PH@F)(x), we obtain that

—a/(a=p)
w-o=(1-E)(5] 7 s
al\a

For b(x) we find

X0
aiﬁ R™@=B(x)R’ (x) f 2PPHP(2)dz + R7P/@F) (x)x"P HP (x)
- x

I+1I

—b'(%)

First consider I. Using the expression for R’(x) and then using R(x) ~ (8/a)x"*PH@(x), we have

I = iR‘c‘/(“‘ﬁ)(x)x”"‘H“(x)(r(x)—1)

a-p

i E —af(a—p) E_l _ E —p/(a=p)
a-p\a ! e '

-
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For II we find

—B/(a—P)
I - (E) .
o

It follows that b’(x) — 0. Taking integrals, we get that

R(x) = Cexp (— fx %dz)

and using Proposition 2.1 (ii), we find that R € I'°(b/6). From here it follows that ¥’H(x) € I'°, and hence
also that H € T°.
(iii) This is Proposition 2.1 b). [

3. The Class RV_,

An ultimate positive and measurable function H is in the class RV_,,y > 0, if it satisfies

m 26
S Hy 7

see, de Haan [1] and Resnick [10].
If y > 1, Karamata’s Theorem shows that H € RV_, implies

o xH(x
f H(y)dy ~ ” _( 1) € RVy,.

Conversely, if fx “H (y)dy € RVy_,, and if H is nonincreasing, then H € RV _,,.
Similar to Corollary 2.3, we have the following result.

Corollary 3.1. Suppose that H € RV_,,. Then

(i) Suppose that y > 1 and a so that a(y — 1) > 1. We have

- H £ (7 ) dy )1
m = .
e (fxoo H(z)dz)lm aly-1)-1

(ii) Suppose a, q are so that gy > 1, a(yq — 1) > 1. We have

. Hq(x)fx (fy H‘?(z)dz) dy _ - 1 |
X—00 (L"O Hq(Z)dZ)1+a a(q)/ - 1) -1

(iii) Foralla >B>0,a(y —-p)> L B(y—-p)>1peR,

xPPHP foo FHY2)dz By -p)-1
lim e = .
X=00 ypa e (x) fx PPHP(z)dz  aly —p)—1
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Proof. (i) This is a simple consequence of Karamata’s Theorem.
(ii) This follows from (i) since H7 € RV_,,.
(iii) If H € RV_,, we have x**H®(x) € RV_4(,—) and

0o pa+lypja
f PO )z ~ S )
x a(V - P) -1

In a similar way we have

f ZPHP(2)dz ~
X

The result follows. O
We also have the converse results. In the next result we assume that H(x) = F(x), the tail distribution.

xPB1HP (x)
By -p -1

Theorem 3.2. (i) Suppose that all integrals exist and that

H(x) fxoo (f;o H(z)dz)a dy L

7

lim T
X—00 00 +a
( ﬁ H(z)dz)
where ad > 1. Then H € RV_,, where y = 6/(a6 —1) + 1.
(ii) Suppose that all integrals exist and that for some a > > 0, p € R we have
i xPPHP (x) fxm ZP*H(2)dz
im — =6,
x—00 xF’“H“(x)fx ZPPHP(z)dz

where 6 < B/a. Then H € RV_,, wherey = p + (1 -06)/(f — 6a).
Proof. (i) Define A(x) and R(x), h(x) as follows:

7 A%y

_ H®R®)
Ax(x)

Ax) = f H(z)dz, R(x)= h(x) = A®)

In the case of (i), we have that /i(x) — 0. Taking the derivative of R(x), we have

—A2 () + o ([ A%(y)dy) AN () H(x)

R'(x) =

A2a(x)
= =1+ ah(x).
Since h(x) — 6, we have R’(x) —» —1 + ad and then we obtain that R(x)/x — ad — 1. It follows that
X 1
— ﬁ —
R(x) ad-1
and then
xH(x) 0
- .
A(x) ad—1

Karamata’s theorem shows that H € RV_,, with y = 6/(a6 — 1) + 1. Note that 6 = (y — 1)/(a(y — 1) - 1).
(if) We proceed as in the proof of Theorem 2.5. Define functions r(x) and R(x) as follows:

2PPHP(x) fx * 2P HO(2)dz
- XPH®(x) ﬂ * ZPPHP(z)dz

r(x)
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and
fx * ZpaHa (z)dz

fxw ZPPHP(2)dz

By assumption we have r(x) — 6 and R(x) ~ 6xP@F)H¥F(x). As in Theorem 2.5, we find

R(x) =

xP*H(x)

R(@) = ——————(r(x) - 1
(€9 ) dz(r(x) )

and

R’(x) xP*H%(x) a(x)
= (1= 1) — = =
R~ T T e
where
pa pya
0(8) = (1 = o) g
and

b(x) = R*ﬁ/(a—ﬁ)(x) foo Z"PHP (2)dz.

First consider a(x). Using r(x) — 6 and R(x) ~ 6x*@ P H*F(x), we obtain that

a(x) = (1 - 6)6*@h),

For b(x) we find

aiﬁR—a/(a—ﬁ)(x)R'(x) f 2ZPPHP(2)dz + R7P/@F) (x)x"P HP (x)
- x
I+11

First consider I. Using the expression for R’(x) and then using R(x) ~ 6x**"PH*F(x), we have

—b'(x)

_ aﬁ%ﬁ R@B) ()P H (x) (r(x) — 1)
i —a/(a=B) (s _
e 5 B —1).

—

For II we find
T — 57P/@h),

It follows that

-b'(x) - aié*a/(a*ﬁ)(é -1+ 5Pla=p) — 4.

Using a/(a@ — B) — B/(a — B) = 1, we have
i@-a/(a—ﬂ)(é -1)+ 55/ (@=p)

d = P
_ —a/(a— ﬁ
= 5ol 5)(5_(1_5)0[__[3)
s-/iap 0%~ B

a-p°

2214
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It follows that

_bW) | sasa-p 02 B
x a-p

and as a consequence also that

R xalx) (1-0)(a—-p)

R(x) ~ b da — B
It follows that R € RV_,, where

_(A-5)@-p)
e

Since R(x) ~ 6x*@PHF(x), we obtain that H € RV_,, where

y:p—i_ﬁ_éa'

Note that the last expression implies that

_Byr-p-1
aly-p -1

The proof is complete. [

2215

Remark 3.3. As we mentioned that H € D(W,,) iff xo < 00 and H(xo — x™) € RV_,. By Corollary 3.1 and Theorem

3.2, we can derive corresponding results for H € D(W,,).
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