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Abstract. In this paper, some interval valued programming problems are discussed. The solution concepts
are adopted from Wu [7] and Chalco-Cano et al. [34]. By considering generalized Hukuhara differentiability
and generalized convexity (viz. η-preinvexity, η-invexity etc.) of interval valued functions, the KKT
optimality conditions for obtaining (LS and LU) optimal solutions are elicited by introducing Lagrangian
multipliers. Our results generalize the results of Wu [7], Zhang et al. [11] and Chalco-Cano et al. [34]. To
illustrate our theorems suitable examples are also provided.

1. Introduction

Among many types of methodologies usually used to solve optimization models, the interval valued
optimization problems have been of much interest in recent past and thus explored the extent of optimal-
ity conditions and duality applicability in different areas. Consequently, the parameters of optimization
problems like differentiability, convexity have been generalized in different directions by many scientists in
order to widen the application domain of interval valued optimization problems. Various generalizations
of convex functions can be seen in Hanson [19], Vial [15], Hanson and Mond [20], Jeyakumar and Mond
[32], Hanson et al. [21], Liang et al. [35], Gulati et al. [29], Zalmai [5], Antczak [28], Mandal and Nahak
[23], Ahmad [9]. The extension of some of these to interval valued functions can be seen in Moore [24],
Ishibuchi and Tanaka [6], Wu [28], Bhurjee and Panda [1], Zhang et al. [11], Cahlco-Cano et al. [34], Li et
al. [16]. Also for various types of differentiability of interval valued functions one is referred to Hukuhara
[18], Banks and Jacobs [8], De Blasi [4], Aubin and Cellina [12], Aubin and Franskowska [13], [14], Ibrahim
[2], Cahlco-Cano et al. [33].

In particular for interval valued optimization problems, Wu [7] proposed the concept of LU, UC convexity
and LU, UC pseudoconvexity, Chalco-Cano et al. [34] have given the concept of LS-convexity, and has
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derived KKT optimality conditions using H-differentiability and 1H-differentiability respectively. Zhang
et al. [11] extended the concept of preinvexity, invexity, pseudo-invexity, quasi-invexity to interval valued
functions and has studied for KKT conditions under the assumption of H-differentiability. Moreover, the
relation between interval valued optimization and variational like inequalities have been explored there
in. Ahmad et al. [10] used the concept of (p, r)− ρ− (η, θ)-invexity to study sufficient optimality conditions
and duality theorems of Wolfe and Mond-Wier type duals of interval valued optimization problems. More
recently, Li et al. [16] defined interval valued univex function and studied the KKT conditions and duality
theorems under the assumption of 1H-differentiability of interval valued functions. In this paper, we are
interested in interval valued programming problems and we study KKT conditions under the assumptions
of η-preinvexity, η-invexity and 1H-differentiability. The paper is structured as:

In section 2, we provide some arithmetic of intervals and then give the concept of 1H-differentiability of
interval valued functions. Section 3 deals some solution concepts following from Wu [7] and Chalco-Cano
et al. [34]. Further in section 4, we propose the concept of invexity of interval valued functions in both LU
and LS sense and study its properties. Finally, in section 5, we derive KKT optimal conditions for invex
interval valued programming problems involving 1H-differentiability. Moreover by using the gradient
of interval valued functions the same KKT conditions are discussed. To illustrate our theorems suitable
examples are also provided. We conclude in section 6.

2. Preliminaries

2.1. Arithmetic of intervals
Let Ic denote the class of all closed and bounded intervals in R. i.e.,

Ic = {[a, b] : a, b ∈ R and a ≤ b}.

And b − a is the width of the interval [a, b] ∈ Ic. Then for A ∈ Ic we adopt the notation A = [aL, aU], where
aL and aU are respectively the lower and upper bounds of A. Let A = [aL, aU],B = [bL, bU] ∈ Ic and λ ∈ R.
Then we have the following operations.

(i)

A + B = {a + b : a ∈ A and b ∈ B} = [aL + bL, aU + bU]

(ii)

λA = λ[aL, aU] =

{
[λaL, λaU] i f λ ≥ 0,
[λaU, λaL] i f λ < 0.

In view of (i) and (ii) we see that

−B = −[bL, bU] = [−bU,−bL] and A − B = A + (−B) = [aL
− bL, aU

− bL].

Also the real number a ∈ R can be regarded as a closed interval Aa = [a, a], then we have for B ∈ Ic

a + B = Aa + B = [a + bL, a + bU].

Note that the spaceIc is not a linear space with respect to the operations (i) and (ii), since it does not contain
inverse elements (see, Assev [26], Aubin and Cellina [12]).

Further the generalized Hukuhara difference( 1H-difference) of intervals A and B introduced in Stefanini
and Bede [17] is defined as follows

A 	1 B = C⇔
{

(i)A = B + C,
or (ii)B = A + (−1)C.
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The advantage of this definition is that the 1H-difference of two intervals A = [a, b] and B = [c, d], always
exists and is equal to

A 	1 B = [min{a − c, b − d},max{a − c, b − d}].

Note that the 1H-difference of two intervals is generalization of their H-difference whenever it exists.

2.2. Differentiation of interval valued functions.
Let X be a nonempty subset of Rn. A function f : X → Ic is called an interval valued function. In this

case we have

f (x) = [ f L(x), f U(x)], (2.1)

such that

f L, f U : X→ R, (2.2)

satisfying f L(x) ≤ f U(x), for all x ∈ X.

Wu[7] introduced a straight forward concept of differentiability of interval valued functions as follows.

Definition 2.1. [7] (2.1) is said to be weekly continuously differentiable at x∗ ∈ X if (2.2) is continuously differentiable
at x∗ (in usual sense).

Further based on H-difference of two intervals, the H-derivative of interval valued functions was introduced
by Hukuhara [18]. This definition of differentiability was used by Wu [7] in order to investigate optimization
problems with interval valued objective functions. The same definition is further used by many other
authors. However both the above derivatives have some limitations. For example consider a simple
interval valued function f : R→ Ic defined by

f (x) = [−1, 1]|x|. (2.3)

Figure 1: f (x)

The behavior of f (x) can be seen in fig. 1. Since weakly continuously differentiability is established with
respect to the differentiation of end point functions, therefore (2.1) is not weakly continuously differentiable.
Also if f : (a, b)→ Ic defined by

f (x) = [−1, 1]x2.
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Figure 2: f (x)

The behavior of f (x) can be seen in fig. 2. Then it is easy to see that f is not H-differentiable at x = 0.
In fact in Bede and Gal [3], it has been shown that the function f (x) = Ph(x), x ∈ (a, b), where P ∈ Ic and
h : (a, b)→ R+ with h′(x∗) < 0 is not H-differentiable at x∗.

Definition 2.2. [17] Let x∗ ∈ (a, b). Then the 1H-derivative of an interval valued function f : (a, b)→ Ic is

f ′(x∗) = lim
h→0

f (x∗ + h) 	1 f (x∗)
h

,

provided f ′(x∗) exists in Ic.

Remark 2.3. We remark that the 1H-differentiability of interval valued functions has the advantage to overcome the
weakness of weak differentiability and H-differentiability. In particular

(a) The function (2.3) is continuously 1H-differentiable at x∗ = 0 and f ′(x∗) = [−1, 1] for all x ∈ (a, b).

(b) Since H-difference of A = [aL, aU] and B = [bL, bU] exists if aL
− bL

≤ aU
− bU [7], but 1H-difference of A and B

always exists and is generalization of H-difference provided it exists [17].

Therefore we can say that 1H-differentiability of interval valued functions is preferable over weak and
H-differentiability. Moreover the π-differentiability [33] and 1H-differentiability coincide.

Theorem 2.4. [33] Let f : (a, b)→ Ic such that f L and f U are differentiable at x∗ ∈ (a, b). Then f is 1H-differentiable
at x∗ and

f ′(x∗) =
[

min
{
( f L)′(x∗), ( f U)′(x∗)

}
,max

{
( f L)′(x∗), ( f U)′(x∗)

}]
.

The converse of above theorem is not true (see, Chalco-Cano et al. [33]). However we have the following result.

Theorem 2.5. [33] Let f : (a, b)→ Ic. Then f is 1H-differentiable at x∗ ∈ (a, b) iff one of the following cases holds.

(a) f L and f U are differentiable at x∗.

(b) The derivatives ( f L)′
−

(x∗), ( f L)′+(x∗), ( f U)′
−

(x∗) and ( f U)′+(x∗) exists and satisfy

( f L)′−(x∗) = ( f U)′+(x∗) and ( f L)′+(x∗) = ( f U)′−(x∗).
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Proposition 2.6. [34] Let f : (a, b)→ Ic be 1H-differentiable at x∗ ∈ (a, b). Then f L + f U is a differentiable function
at x∗.

Next Wu [7] proposed Hausdorff metric between two closed intervals A and B as follows

H(A,B) = max{|aL
− bL
|, |aU

− bU
|}.

It is clear that (Ic,H) is a metric space. Therefore an interval valued function f defined on X ⊆ Rn is
continuous at x∗ if for every ε > 0 there exists δ > 0 such that ‖x − x∗‖ > δ implies H( f (x), f (x∗)) < ε.

Proposition 2.7. [12] Let x∗ ∈ X. Then (2.1) is continuous at x∗ iff (2.2) are continuous at x∗.

Definition 2.8. [34] Let x∗ = (x∗1, x
∗

2, ..., x
∗
n) be fixed in X.

(1) We consider the interval valued function hi(xi) = f
(
x∗1, x

∗

2, ..., x
∗

i−1, x
∗

i , x
∗

i+1, ..., x
∗
n

)
. If hi is 1H-differentiable at x∗i ,

then we say that f has the ith partial 1H-derivative at x∗
(
denoted by

(
∂ f
∂xi

)
1

(x∗)
)

and
(
∂ f
∂xi

)
1

(x∗) = (hi)′(x∗i ).

(2) We say that (2.1) is continuously 1H-differentiable at x∗ if all the partial 1H-derivatives
(
∂ f
∂xi

)
(x∗), i = 1, 2, ...,n

exists on some neighborhood of x∗ and are continuous at x∗ (in the sense of interval valued function).

Proposition 2.9. [34] If (2.1) is continuously 1H-differentiable at x∗ ∈ X. Then f L + f U is continuously differentiable
at x∗.

3. Solution concept

Consider the following interval valued optimization problem:

(IVP1)

min f (x) = [ f L(x), f U(x)],

subject to x ∈ X ⊆ Rn.

Since f is closed interval in R i.e., f (x) ∈ Ic, x ∈ X, we follow the similar solution concept proposed in [7].
A partial ordering -LU was invoked between two closed intervals in [7] as follows.

Let A,B ∈ Ic. Then we say that A -LU B iff aL
≤ bL and aU

≤ bU, and A ≺LU B iff A -LU B and A , B, or
A ≺LU B iff one of the following conditions hold.

(a1) aL
≤ bL and aU < bU,

(a2) aL < bL and aU < bU,

(a3) aL < bL and aU
≤ bU.

Definition 3.1. [7] We say that x∗ ∈ X is an LU-solution of (IVP1) if there exists no x̂ ∈ X such that f (x̂) ≺LU f (x∗).

Next we follow another solution concept introduced in [34].

Let A ∈ Ic. Then the width (spread) of A is defined by w(A) = aS = aU
− aL. Let A,B ∈ Ic, Chalco-Cano et al.

[34] proposed the ordering relation between A and B by considering the minimization and maximization
problem separately.

(i) For maximization, we write. A %LS B iff aU
≥ bU and aS

≤ bS the width of interval can be regarded
as uncertainty (noise, risk or a type variance). Therefore, the interval with smaller width (i.e., the
uncertainty) and large upper bound is considered better).
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(ii) For minimization, we write A -LS B iff aL
≤ bL and aS

≤ bS. In this case, the interval with smaller
width (i.e., uncertainty) and smaller lower bound is considered better.

In this paper we shall consider only the minimization problem without loss of generality. In this sense, we
write A -LS B iff aL

≤ bL and aS
≤ bS , and A ≺LS B iff A -LS B and A , B, or A ≺LS B iff one of the following

conditions hold.

(b1) aL
≤ bL and aS < bS,

(b2) aL < bL and aS < bS,

(b3) aL < bL and aS
≤ bS.

Definition 3.2. [34] We say that x∗ ∈ X is an LS-solution of (IVP1) if there exists no x̂ ∈ X such that f (x̂) ≺LS f (x∗).

Proposition 3.3. [34] Let A,B be two intervals in Ic. If A -LS B, then A -LU B.

Note that the converse of Proposition 3.3 is not valid.

Theorem 3.4. [34] If x∗ ∈ X is a LU-solution of (IVP1), then x∗ is an LS-solution of (IVP1) but not conversely.

4. Concept of invexity of interval valued functions

Convexity plays key role in optimization theory (e.g., see, Bazaraa et al. [22]) and has been generalized in
several directions. Weir and Mond [30] and Weir and Jeyakumar [31] introduced an important generalization
of convex functions namely preinvex functions.

Definition 4.1. ([30], [31]) A set K ⊆ Rn is said to be invex if there exists a vector function η : Rn
× Rn

→ Rn such
that x, y ∈ K, λ ∈ [0, 1] implies y + λη(x, y) ∈ K. We also say that K is an η-invex set.

Next, consider the real valued function f , then for the definitions of preinvex, invex, pseudo-invex, quasi-
invex, one is referred to ([19], [25], [30], [31]). Also for (2.1), the definition of LU-convexity and LS-convexity
one is referred to [7] and [34] respectively. Further in the rest of this paper we shall denote by Ik the class
of interval valued functions defined on η-invex set K.

Now Zhang et al. [11] extended the concepts of preinvexity, invexity, pseudo-invexity and quasi-invexity
to interval valued functions in LU-sense as follows.

Definition 4.2. [11] Let f ∈ Ik. Then we say that f is

(i) LU-preinvex at x∗ with respect to η if f (x + λη(x∗, x)) -LU λ f (x∗) + (1 − λ) f (x), for every λ ∈ [0, 1] and each
x ∈ K. We also say that is f is LU − η-preinvex function at x∗.

(ii) invex (η-invex) at x∗ if the real valued functions f L and f U are η-invex at x∗. In this case we also say that f is
LU − η-invex function at x∗.

(iii) pseudo-invex at x∗ if the real valued functions f L, f U and λL f L + λU f U are η-pseudo-invex at x∗, where
0 < λL, λU

∈ R. In this case we also say that is f is LU − η-pseudo-invex function at x∗.
(iv) quasi-invex at x∗ if the real valued functions f L, f U and λL f L + λU f U are η-quasi-invex at x∗, where 0 <

λL, λU
∈ R. In this case we also say that is f is LU − η-quasi-invex function at x∗.

Further we extend the above concepts to interval valued functions in LS-sense as follows.

Definition 4.3. Let f ∈ Ik. Then we say that f is

(i) LS − η-preinvex at x∗ if f (x + λη(x∗, x)) -LS λ f (x∗) + (1 − λ) f (x), for every λ ∈ [0, 1] and each x ∈ K.
(ii) LS − η-invex at x∗ if the real valued functions f L and f S are η-invex at x∗.
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(iii) LS − η-pseudo-invex at x∗ if the real valued functions f L, f S and λL f L + λS f S are η-pseudo-invex at x∗, where
0 < λL, λS

∈ R.
(iv) LS − η-quasi-invex at x∗ if the real valued functions f L, f S and λL f L + λU f S are η-quasi-invex at x∗, where

0 < λL, λS
∈ R.

Proposition 4.4. Let f ∈ Ik be an interval valued function defined on convex set X ⊆ Rn and x∗ ∈ X. Then the
following statements hold true.

(i) f is LU − η-preinvex at x∗ iff f L and f U are η-preinvex at x∗ [11].
(ii) f is LS − η-preinvex at x∗ iff f L and f S are η-preinvex at x∗.

(iii) If f is LS − η-preinvex at x∗. Then f is LU − η-preinvex at x∗.

Proof. (ii) follows from Definition 4.3 immediately and (iii) is the consequence of Proposition 3.3.

Proposition 4.5. Let f ∈ Ik be LS − η-preinvex function. If x∗ is unique LS-minimizer of f . Then f is LS-convex
at x∗.

Proof. From Definition 4.3 and Definition 3.2 the result follows immediately.

Remark 4.6. (i) The class of LU-convex interval valued functions is strictly contained in the class of LU-preinvex
interval valued functions if η(x, y) = x − y, x, y ∈ X [11].

(ii) The class of LS-convex interval valued functions is strictly contained in the class of LS-preinvex interval valued
functions if η(x, y) = x − y, x, y ∈ X

The converse of Remark 4.6 is not true as shown in following example.

Example 4.7. For the converse of Remark 4.6 (i) Zhang et al. [11] have shown that the interval valued function
f (x) = −[1, 2]|x|, x ∈ R is not LU-convex. The behavior of f (x) can be seen in fig. 3.

Figure 3: f (x)

However f (x) is LU − η-preinvex, where η is given by

η(x, y) =

{
x − y i f x, y ≥ 0, or x, y ≤ 0,

y − x, otherwise.
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Now for the converse of Remark 4.6 (ii) we use the fact that if is LS-convex then f is LU-convex [34]. Since
f is not LU-convex therefore f is not LS-convex.

Now we show f is LS − η-preinvex. From above we have f L(x) = −2|x|, f U(x) = −|x|, therefore f S(x) = |x|,
x ∈ R. Let x, y ≥ 0 and λ ∈ [0, 1]. Then we have

f S(y + λη(x, y)) = |y + λη(x, y)| ≤ λx + (1 − λ)y = λ f S(x) + (1 − λ) f S(y).

For x, y ≤ 0 the result follows similarly. Now let x < 0, y > 0 and λ ∈ [0, 1]. Then we must have

f S(y + λη(x, y)) ≤ λ f S(x) + (1 − λ) f S(y).

For the case x > 0, y < 0 the similar argument holds. Therefore from Definition 4.3 (i), f is LS − η-preinvex.

Proposition 4.8. Let f , 1 ∈ Ik be

(i) LU − η-preinvex functions. Then k f , k > 0 and f + 1 are also LU − η-preinvex functions [11].

(ii) LS − η-preinvex functions. Then k f , k > 0 and f + 1 are also LS − η-preinvex functions.

Proof. (ii) Let f be LS − η-preinvex function. Then it is easy to see that k f , k > 0 is also LS − η-preinvex
function by Proposition 4.4 (ii). Now let f , 1 be LS − η-preinvex functions. Then by Definition 4.3 (i) we
have for x, y ∈ K and λ ∈ [0, 1].

f (y + λη(x, y)) �LS λ f (x) + (1 − λ) f (y),

and

1(y + λη(x, y)) �LS λ1(x) + (1 − λ)1(y).

Therefore we have

( f + 1)(y + λη(x, y)) �LS λ( f + 1)(x) + (1 − λ)( f + 1)(y).

Therefore by Definition 4.3 we see that ( f + 1) is LS − η-preinvex function.

Proposition 4.9. Let f , 1 ∈ Ik be

(i) weakly continuously differentiable and LU − η-preinvex function. Then f is LU − η-invex function but not
conversely [11].

(ii) weakly continuously differentiable and LS − η-preinvex function, Then f is LS − η-invex function but not
conversely.

(iii) continuously 1H-differentiable and LU − η-preinvex function, Then f L + f U is also η-invex function.

Proof. (ii) By using Proposition 4.4 and Definition 2.1 we see that f L and f S are η-preinvex and differen-
tiable functions and hence are η-invex (since a differentiable preinvex real valued function is invex
with respect to the same η [25]).

Further consider the interval valued function f (x) = [a, b]ex, a, b, x ∈ R, b < 0, then for η(x, y) = 1, it is
easy to see that f is LS − η-invex but not LS − η-preinvex.

(iii) Since f is LU − η-preinvex, then by Proposition 4.4 (i), f L and f U are η-preinvex. Therefore we have

f L(x + λη(x∗, x)) ≤ λ f L(x∗) + (1 − λ) f L(x),
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and

f U(x + λη(x∗, x)) ≤ λ f U(x∗) + (1 − λ) f U(x).

This gives

( f L + f U)(x + λη(x∗, x)) ≤ λ( f L + f U)(x∗) + (1 − λ)( f L + f U)(x).

This implies that f L + f U is also η-preinvex. Therefore f L + f U is η-preinvex and differentiable real
valued function hence f L + f U is η-invex function (since a differentiable preinvex real valued function
is invex with respect to the same η [25]).

Condition C. [27] Consider the vector valued function η : Rn
× Rn

→ Rn. Then the function η satisfy the
condition C for x, y ∈ Rn and λ ∈ [0, 1] if

η(y, y + λη(x, y)) = −λη(x, y),

η(x, y + λη(x, y)) = (1 − λ)η(x, y).

Proposition 4.10. Let f ∈ Ik be continuously 1H-differentiable and LU − η-invex function such that η satisfy
condition C. Then f is also LU − η-preinvex function.

Proof. Since K is η-invex set then for x, y ∈ K we have z = y + λη(x, y) ∈ K. Also since f is LU − η-invex, by
Definition 4.2 (ii) f L and f U are η-invex. Therefore we have for x, z

(a1) f L(x) − f L(z) ≥ ηT(x, z)∇ f L(z),

(b1) f U(x) − f U(z) ≥ ηT(x, z)∇ f U(z),

and for y, z

(a2) f L(y) − f L(z) ≥ ηT(y, z)∇ f L(z),

(b2) f U(y) − f U(z) ≥ ηT(y, z)∇ f U(z).

Therefore from (a1), (a2) and (b1), (b2), we have

λ f L(x) + (1 − λ) f L(y) − f L(z) ≥ (ληT(x, z) + (1 − λ)ηT(y, z))∇ f L(z),

and

λ f U(x) + (1 − λ) f U(y) − f U(z) ≥ (ληT(x, z) + (1 − λ)ηT(y, z))∇ f U(z).

Now by applying condition C we see that

ληT(x, z) + (1 − λ)ηT(y, z) = 0.

Therefore we have

f L(y + λη(x, y)) ≤ λ f L(x) + (1 − λ) f L(y),

and

f U(y + λη(x, y)) ≤ λ f U(x) + (1 − λ) f U(y).

This shows by definition that f L and f U are η-preinvex and hence by Proposition 4.4 (i) f is LU − η-
preinvex.
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5. Optimality conditions of type KKT

Consider the following optimization problem.

(P)

min f (x) = f (x1, x2, ..., xn),

subject to 1i(x) ≤ 0, i = 1, 2, ...,m,

where f and 1i, i = 1, 2, ...,m are real valued functions. In [19], the following result has been obtained for
problem (P).

Theorem 5.1. [19] Let K ⊆ Rn be η-invex set, x∗ ∈ K and one of the following conditions is satisfied:

(a) f (x) and 1i(x), i = 1, 2, ...,m are η-invex at x∗;

(b) f (x) is η-pseudo-invex at x∗ and 1i(x), i = 1, 2, ...,m are η-quasi-invex at x∗;

(c) f (x) is η-pseudo-invex at x∗ and (µ∗)T1(x) is η-quasi-invex at x∗;

(d) The Lagrangian function f (x) + (µ∗)T1i(x) is η-pseudo-invex at x∗ with respect to an arbitrary η (i.e., the
Lagrangian function f (x) + (µ∗)T1i(x) is η-invex at x∗).

If there exists 0 ≤ µ∗ ∈ Rm, such that (x∗, µ∗) satisfies the following conditions.

(i) ∇ f (x∗) +
∑m

i=1 µ
∗

i∇1i(x∗) = 0;
(ii) µ∗i∇1i(x∗) = 0, i = 1, 2, ...,m.

Then x∗ solves problem (P).

Next in this section, we present some KKT conditions for the problem (IVP1), which are obtained by
using 1H-differentiability of interval valued functions. For this we consider (IVP1) with the feasible set
X = {x ∈ Rn : 1i(x) ≤ 0, i = 1, 2, ...,m}. That is, we consider the following problem,

(IVP2)

min f (x) = [ f L(x), f U(x)],

subject to 1i(x) ≤ 0, i = 1, 2, ...,m.

Remark 5.2. For the problem (IVP2), the KKT conditions are obtained in

(i) [7], if objective function f is LU-convex and continuously weakly differentiable. Also the real valued constraint
functions 1i are assumed to be convex and continuously differentiable for i = 1, 2, ...,m.

(ii) [11], if objective function f is LU − η-preinvex and weakly continuously differentiable and the constraint
functions 1i, i = 1, 2, ...,m are η-invex.

(iii) [34], if objective function f is LU-convex and continuously 1H-differentiable and the constraint functions
1i, i = 1, 2, ...,m are convex and continuously differentiable.

Now we shall present KKT conditions for the case of generalized convexity and generalized Hukuhara
differentiability.

Theorem 5.3. Let f ∈ Ik be continuously 1H-differentiable, LU − η-preinvex and each 1i, i = 1, 2, ...,m is continu-
ously differentiable, η-invex functions at x∗ ∈ K. If there exist (Lagrangian) multipliers 0 < λ ∈ R and µ∗ ∈ Rm with
0 ≤ µ∗i ∈ R for i = 1, 2, ...,m, such that (x∗, µ∗) satisfy the following KKT conditions;

(i) λ∇( f L + f U)(x∗) +
∑m

i=1 µ
∗
∇1i(x∗) = 0;

(ii) µ∗i1i(x∗) = 0, i = 1, 2, ...,m.



I. Ahmad, D. Singh, B. Ahmad / Filomat 30:8 (2016), 2121–2138 2131

Then x∗ is an optimal LU-solution and an optimal LS-solution of problem (IVP2).

Proof. We define a real valued function for x ∈ K

F(x) = λ( f L + f U)(x).

Since f is continuously 1H-differentiable and LU−η-preinvex at x∗, then by Propositions 2.9 and 4.9 (iii) we
see that f L + f U is continuously differentiable and η-invex at x∗. Therefore we have

∇F(x∗) = λ∇( f L + f U)(x∗).

From above we have new conditions as follows:

(iii) ∇F(x∗) +
∑m

i=1 µ
∗
∇1i(x∗) = 0;

(iv) µ∗i1i(x∗) = 0, i = 1, 2, ...,m.

According to the Theorem 5.1 (a), x∗ is an optimal solution of the function F subject to the same constraints
of problem (IVP2). That is

F(x∗) ≤ F(x̂), x̂ ∈ X. (5.1)

If possible suppose x∗ is not optimal LU-solution of (IVP2). Then from Definition 3.1, there exists x̂(, x∗) ∈ X
such that f (x̂) ≺LU f (x∗). That is,

(a1) f L(x̂) < f L(x∗) and f U(x̂) ≤ f U(x∗) or

(a2) f L(x̂) ≤ f L(x∗) and f U(x̂) < f U(x∗) or

(a3) f L(x̂) < f L(x∗) and f U(x̂) < f U(x∗)

is satisfied. Since λ > 0, we have from above three conditions F(x̂) ≤ F(x∗), which contradicts (5.1). It shows
that x∗ is an optimal LU-solution of (IVP2). From Theorem 3.4, it can be shown that x∗ is also an optimal
LS-solution of (IVP2).

The following example shows the advantages of Theorem 5.3.

Example 5.4. Consider the following problem:

min f (x),
subject to
x − 1 ≤ 0,
− x − 1 ≤ 0.

(5.2)

Consider f (x) = [−1, 1]|x|, then f is not LU-convex function (see fig. 4), therefore Theorem 4.2 of [7] cannot
be employed (see [34]).

Now let us consider a function defined as

η(x, y) = x − y i f x, y ≥ 0 or x, y ≤ 0. (5.3)

Then f is LU − η-preinvex. However f is not weakly continuously differentiable at 0. Therefore Theorem
(4.4) of [11] cannot be employed. But f (x) is continuously 1H-differentiable at 0 and the conditions of
Theorem 5.3 are verified. Therefore we can say that solves problem (5.2).

Again consider f (x) = [|x|, |x|+1], then clearly f is not LU-convex (see fig. 5) and hence f L + f U is not convex.
Therefore Theorem 6 of [34] cannot be employed. But f is LU − η-preinvex, where η is given by (5.2).

Also f is continuously 1H-differentiable at 0 and the conditions of Theorem 5.3 are satisfied. Therefore 0 is
the required solution.
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Figure 4: f (x)

Figure 5: f (x)

Theorem 5.5. Let f ∈ Ik be weakly continuously differentiable, LS − η-preinvex and each 1i, i = 1, 2, ...,m is
continuously differentiable, η-invex functions at x∗ ∈ K. If there exist (Lagrangian) multipliers 0 < λL, λS

∈ R and
µ∗ = (µ∗1, ..., µ

∗
m)T; 0 ≤ µ∗i ∈ Ri, i = 1, 2, ...,m, such that (x∗, µ∗) satisfy the following KKT conditions;

(i) λL
∇ f L(x∗) + λS

∇ f S(x∗) +
∑m

i=1 µi∇1i(x∗) = 0;
(ii) µ∗i∇1i(x∗) = 0, i = 1, 2, ...,m.

Then x∗ is an optimal LS-solution of problem (IVP2).

Proof. We define a real valued function for x ∈ Rn

F(x) = λL f L(x) + λS f S(x).

Since f is weakly continuously differentiable at x∗, by Definition 2.1 , f L and f S are continuously differentiable
at x∗. Also since f is LS-preinvex at x∗, then by Proposition 4.4 (ii) f L and f S are η-preinvex at x∗. Therefore
f L and f U are η-preinvex and continuously differentiable at x∗. Therefore f L and f U are η-invex at x∗. We
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have

∇F(x∗) = λL
∇ f L(x∗) + λS

∇ f S(x∗).

From above we have,

(i) ∇F(x∗) +
∑m

i=1 µi∇1i(x∗) = 0;
(ii) µi1i(x∗) = 0, i = 1, 2, ...,m.

By Theorem 5.1 (a) we conclude that x∗ is an optimal solution of real valued objective function F(x) subject
to the same constraints of (IVP2). Now by using similar arguments of the Theorem 5.3 we can show that x∗

is an optimal LS-solution of problem (IVP2).

Theorem 5.6. Let f ∈ Ik, x∗ ∈ K, η : K × K→ Rn and one of the following conditions is satisfied:

(a) f is LU − η-invex at x∗ and 1i(x), i = 1, 2, ...,m are η-invex at x∗;

(b) f is LU − η-pseudo-invex at x∗ and 1i(x), i = 1, 2, ...,m are η-quasi-invex at x∗;

(c) f is LU − η-pseudo-invex at x∗ and (µ∗)T1(x) is η-quasi-invex at x∗;

(d) The Lagrangian function f (x) + (µ∗)T1(x) is LU − η-pseudo-invex at x∗ (that is the interval valued function
f (x) + (µ∗)T1i(x) is LU − η-invex at x∗).

If there exist (Lagrangian) multipliers 0 < λ ∈ R, µ∗ = (µ∗1, ..., µ
∗
m)T; 0 ≤ µ∗i ∈ R, i = 1, 2, ...,m for continuously 1H-

differentiable function f and continuously differentiable functions 1i, i = 1, 2, ...,m such that the following conditions
hold true;

(i) λ∇( f L + f U)(x∗) +
∑m

i=1 µ
∗

i∇1i(x∗) = 0;
(ii) µ∗i1i(x∗) = 0, i = 1, 2, ...,m.

Then x∗ is an optimal LU-solution and an LS-solution of problem (IVP2).

Proof. We define a real valued function

F(x) = λ( f L + f U)(x).

Since f is continuously 1H-differentiable at x∗, then by Propositions 2.9 f L + f U is continuously differentiable
at x∗. Therefore we have,

∇F(x∗) = λ∇( f L + f U)(x∗). (5.4)

(a) Since f is LU−η-invex at x∗ then from Proposition 4.9 (iii) f L + f U is η-invex at x∗. Therefore for 0 < λ ∈ R,
we see that the real valued function F is η-invex. Also 1i, i = 1, 2, ...,m are η-invex. From (i), (ii) and (5.4),
we have

(i) ∇F(x∗) +
∑m

i=1 µ
∗

i∇1i(x∗) = 0;
(ii) µ∗i1i(x∗) = 0, i = 1, 2, ...,m.

By using Theorem 5.1 (a), we can say that x∗ is optimal solution of F subject to the same constraints of
(IVP2). Therefore proceeding similar to Theorem 5.3 we can say that x∗ is an optimal LU-solution and an
optimal LS-solution of problem (IVP2).

(b) Since f is LU−η-Pseudo-invex , then from Definition 4.2, F is η-Pseudo-invex for λL = λ = λU > 0. From
(i), (ii), (5.4) and Theorem 5.1 (b), the result follows on similar lines as that of (a).

(c) and (d) follows similar to that of (a) and (b).
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Example 5.7. Consider the following problem

min f (x1, x2) = [x2
1 + x2

2 − 6x1 − 4x2 + 12, x2
1 + x2

2 − 6x1 − 4x2 + 14],
subject to

11(x1, x2) = x2
1 + x2

2 − 5 ≤ 0;
12(x1, x2) = x1 + 2x2 − 4 ≤ 0;
13(x1, x2) = −x1 ≤ 0;
14(x1, x2) = −x2 ≤ 0.

(5.5)

Figure 6: f (x1, x2)

It is easy to see that the interval valued objective function f is LU − η-invex and constraint functions 1i,
i = 1, 2, 3, 4are η-invex, where for xT = (x1, x2) and yT = (y1, y2), η is given by

ηT(x, y) = (x1 − y1, x2 − y2).

It is easy to see that the problem (5.5) satisfies the conditions of Theorem 5.6 (a). Then we have

λ(4x1 − 12, 4x2 − 8)T + µ∗1(2x1, 2x2)T + µ∗2(1, 2)T + µ∗3(−1, 0)T + µ∗4(0,−1)T = (0, 0)T.

After some algebraic calculations, we obtain

(x∗)T = (2, 1), for (µ∗)T =
(

2
3 ,

4
3 , 0, 0

)
and λ = 1.

Since 11(x∗) = 0 and 12(x∗) = 0, the conditions of Theorem 5.6 are satisfied. Therefore (x∗)T is an optimal LU-solution
and an optimal LS-solution of problem (5.5).

Remark 5.8. Note that η also satisfies condition C, then by using Proposition 4.10 we can say that Problem 5.5 is
also solved by Theorem 5.3.

Theorem 5.9. Let f ∈ Ik, x∗ ∈ K, η : K × K→ Rn and one of the following conditions is satisfied:

(a) f is LS − η-invex at x∗ and 1i(x), i = 1, 2, ...,m are η-invex at x∗;
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(b) f is LS − η-pseudo-invex at x∗ and 1i(x), i = 1, 2, ...,m are η-quasi-invex at x∗;

(c) f is LS − η-pseudo-invex at x∗ and (µ∗)T1(x) is η-quasi-invex at x∗;

(d) The Lagrangian function f (x) + (µ∗)T1(x) is LS − η-pseudo-invex at x∗ (that is the interval valued function
f (x) + (µ∗)T1i(x) is LS − η-invex at x∗).

If there exist (Lagrangian) multipliers 0 < λL, λS
∈ R, µ∗ = (µ∗1, ..., µ

∗
m)T; 0 ≤ µ∗i ∈ R, i = 1, 2, ...,m for weakly

continuously differentiable function f and continuously differentiable functions 1i, i = 1, 2, ...,m such that the
following conditions hold true;

(i) (λL
∇ f L + λS

∇ f S)(x∗) +
∑m

i=1 µ
∗

i∇1i(x∗) = 0;
(ii) µ∗i1i(x∗) = 0, i = 1, 2, ...,m.

Then x∗ is an optimal LS-solution (IVP2).

Proof. The proof is same as that of Theorem 5.6.

Next we present KKT conditions for (IVP2) by using gradient of interval valued objective function f via
1H-derivative. For this, let f ∈ Ik. Then the gradient of f at x∗ is defined as follows:

∇1 f (x∗) =

( ∂ f
∂x1

)
1

(x∗), ...,
(
∂ f
∂xn

)
1

(x∗)

 ,
where

(
∂ f
∂x j

)
1

(x∗) is the jth partial 1H-derivative of f at x∗ (see, Definition 2.8). We see from Theorem 2.4 that,

if f L and f U are differentiable functions then f is 1H-differentiable and we have(
∂ f
∂x j

)
1

(x∗) =

[
min

{
∂ f L

∂x j
(x∗),

∂ f U

∂x j
(x∗)

}
,max

{
∂ f L

∂x j
(x∗),

∂ f U

∂x j
(x∗)

}]
,

which is a closed interval.

Now consider the following equation

∇1 f (x) +

m∑
i=1

µi∇1i(x) = 0, (5.6)

where 0 ≤ µi ∈ R, i = 1, 2, ...,m are real valued functions given in (IVP2) and f is interval valued 1H-
differentiable at x. Since

∑m
i=1 µi

(
∂1i

∂x j

)
(x) ∈ R, then

(
∂F
∂x j

)
1
(x) ∈ R. Consequently, from Theorem 2.5, f L and f U

are continuously differentiable at x . Therefore 5.6 is equivalent to

∂ f L

∂x j
(x) +

m∑
i=1

µi
∂1i

∂x j
(x) = 0 =

∂ f U

∂x j
(x) +

m∑
i=1

µi
∂1i

∂x j
(x), f or j = 1, 2, ...,n,

which can be written as

∇ f L(x) +

m∑
i=1

µi∇1i(x) = 0 = ∇ f U(x) +

m∑
i=1

µi∇1i(x).

Which is equivalent to

∇ f L(x) + ∇ f U(x) +

m∑
i=1

µ̄i∇1i(x) = 0, (5.7)

where µ̄i = 2µi, i = 1, 2, ...,m.
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Theorem 5.10. Let f ∈ Ik be continuously 1H-differentiable, LU − η-preinvex and each 1i, i = 1, 2, ...,m is
continuously differentiable, η-invex functions at x∗ ∈ K. If there exist (Lagrangian) multipliers µ∗ = (µ∗1, ..., µ

∗
m)T; 0 ≤

µ∗i ∈ R, i = 1, 2, ...,m, such that (x∗, µ∗) satisfy the following KKT conditions;

(i) ∇1 f (x∗) +
∑m

i=1 µ
∗

i∇1i(x∗) = 0;
(ii) µ∗i1i(x∗) = 0, i = 1, 2, ...,m.

Then x∗ is an optimal LU-solution and an optimal LS-solution of (IPV2).

Proof. Since condition (i) of the Theorem is equation (5.6) for x = x∗. Which is equivalent to (5.7). Therefore
we obtain,

∇ f L(x∗) + ∇ f U(x∗) +

m∑
i=1

µ̄i
∗
∇1i(x∗) = 0,

where µ̄i
∗ = 2µ∗i , i = 1, 2, ...,m. Then from Theorem 5.3, the result follows.

Theorem 5.11. Let f ∈ Ik be continuously 1H-differentiable, LS − η-preinvex and each 1i, i = 1, 2, ...m is continu-
ously differentiable, η-invex functions at x∗ ∈ K. If there exist (Lagrangian) multipliersµ∗ = (µ∗1, ..., µ

∗
m)T; 0 ≤ µ∗i ∈ R,

i = 1, 2, ...,m such that (x∗, µ∗) satisfy the following KKT conditions;

(i) ∇1 f (x∗) +
∑m

i=1 µ
∗

i∇1i(x∗) = 0;
(ii) µ∗i1i(x∗) = 0, i = 1, 2, ...,m.

Then x∗ is an optimal LS-solution of (IPV2).

Proof. The condition (i) of the Theorem is equation (5.6) for x = x∗. Therefore we obtain from (5.7)

∇ f L(x∗) + ∇ f S(x∗) +

m∑
i=1

µ̄i
∗
∇1i(x∗) = 0.

Then from Theorem 5.5, we see that x∗ is optimal LS-solution of (IVP2).

Remark 5.12. We remark that for weakly continuously differentiable interval valued function f , we can not define
gradient as we can not define partial derivatives of f . Moreover gradient of f (x, y) = [2x2 + 3y2, x2 + y2 + 1] using
H-derivative (Wu [7]) does not exist as the partial derivative

(
∂ f
∂x

)
H

(0, 1) does not exist. The behaviour of f (x, y) is
shown in fig. ??.

Figure 7: f (x, y)

However by applying Theorem 2.4, we obtain

∇1 f (x, y) =
(
[min(4x, 2x),max(4x, 2x)],min(6y, 2y),max(6y, 2y)]

)
.
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Therefore we have

∇1 f (x, y) =


(
[2x, 4x], [2y, 4y]

)
: x, y ≥ 0,(

[4x, 2x], [6y, 2y]
)

: x, y < 0.

Therefore the gradient of f using 1H-derivative is more general and more robust for optimization.

Example 5.13. Consider the problem

min f (x, y) = [x2, x2 + y2],
subject to
11(x, y) = x + y − 1 ≤ 0,
12(x, y) = −x ≤ 0.

(5.8)

Figure 8: f (x, y)

Let η(x, y) = x − y. Then f is LU − η-preinvex and 1i, i = 1, 2 are η-invex at (0, 0). The interval valued function f
is continuously 1H-differentiable on R2. Also the conditions of Theorem 5.10 are satisfied at (0, 0). Therefore (0, 0) is
optimal LU-solution and optimal LS-solution of problem (5.8).

6. Conclusions

The KKT optimality conditions for interval valued nonlinear programming problems under the con-
dition of invexity, preinvexity, pseudo-invexity, quasi-invexity and generalized Hukuhara differentiability
are represented in this paper. Our results generalize the results of Wu [7], Zhang et al. [11], Chalco-Cano
et al. [28]. In fact Theorem 5.6 generalizes the similar result of Zhang et al. [11] and Hanson [19]. Also the
results for the case of LS order relation are novel.

Although the equality constraints are not considered in this paper we can use similar methodology pro-
posed in this paper to handle equality constraints. The constraint functions in this paper are still real valued,
in future research, one may extend to consider the constraint functions as the interval valued functions.
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