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Abstract. The aim of this paper is to establish new inequalities which are more generalized than the
inequalities of Dragomir, Wang and Cerone. The current article also obtains bounds for the deviation of a
function from a combination of integral means over the end intervals covering the entire interval. A variety
of earlier results are recaptured as special cases of the inequalities obtained. Some new perturbed results
and application for cumulative distribution function are also discussed.

1. Introduction

In the last few decades, the field of mathematical inequalities has proved to be an extensively applicable
field. Integral inequalities play an important role in several branches of mathematics and statistics with
reference to its applications. The elementary inequalities are proved to be helpful in the development of
many other branches of mathematics. Ostrowski [9] proved his famous inequality in 1938 which, because
of its applications in numerical analysis, attracted a lot of researchers in the past few years [3]-[7] . For
recent results and generalizations concerning Ostrowski’s inequality see [13]-[16].

The first generalization of Ostrowski’s inequality was given by Milovanovié¢ and Pecari¢ in [8]. Further
generalizations of Ostrowski’s inequality were given by Qayyum and Hussain in [17] and Qayyum et.al
in [18]. Cheng gave a sharp version of the inequality derived in [2]. Cerone [1], and Dragomir and Wang
[3]-[7] generalized the Ostrowski’s inequality for L;, L, and Lo norms. In this work, we define a new
mapping which help refine the results of Cerone [1], and Dragomir and Wang [3]-[7] and also provide new
results with wide ranging applications. We also derive some perturbed results by using Griiss and Cebysev
inequalities.

The obtained inequalities are of supreme importance because they have immediate applications in
numerical integration, probability theory, information theory and integral operator theory etc. In the last,
we will apply our inequalities to cumulative distribution functions.
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2. Preliminaries

Let the functional S(f;a,b) represent the deviation of f (x) from its integral mean over [4,b] and be
defined by

S(f;a,b) = f (x) - M(f;a,b) (1)
and
1 b
Mot = [ f@dx %)

Ostrowski [9] proved the following interesting integral inequality:

Theorem 2.1. Let f:[a,b] = R be continuous on [a, b] and differentiable on (a, b) , whose derivative f’ : (a,b) - R
is bounded on (a,b), i.e. ||f'|| = sup;cpp |f (t)| < oo then

S(Fia,b)| < [(b;‘l)z [x- #)] M ®)

forall x € [a, b].

In this paper, we will use the usual L, norms defined for a function k as follows:

Ikl := ess sup [k ()]
tefa,b]

b ;
Ikl = [ f Ik(t)lpdt] 1<p<w.

Dragomir and Wang [3]-[6] proved (3) and other variants for f’ € L, [a,b] for p > 1 and the Lebesgue norms
making use of a peano kernel approach and Montgomery’s identity [12].
Montgomery’s identity states that for an absolutely continuous mappings f : [4,0] = R

and

b b
ﬂmzy%gjf@m+yégjf@ﬁfﬁMn (4)

where the kernel p: [a,b]> — R is given by
t—a if a<t<x<b
H%D_{t—b if a<x<t<hb.
f f
Dragomir and Wang [3]-[6] obtained the following inequality by using P(x, t) and an integration by parts
argument.

ess
® tefa,b]

1 (t)| then M in (3) may be replaced by

If we assume that f’ € L, [a,b] and

o0 "

|S (f;a,b)| (5)
jr [(%)2 +(x- %)2]1

1
B R e G e
b-a q+1

', f"€Llela,b]

N

IN

T =1

p,f’eLp[a,b],p>1,%+

a5+ -]

Fll, f€Lilabl,
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where f : [a,b] — R is absolutely continuous on [g, b] .
Cerone [1], proved the following inequality:

Theorem 2.2. Let f:[a,b] = R be an absolutely continuous mapping. Define

7(x;a, ) ::f(x)—a_ll_ﬁ[aM(f;a,x)+ﬁM(f;x,b)] (6)

then
|z (v, B)| (7)

gl -a) +pO-01|f|, f* €Lelab]

— L2t (x—a)+ BT (b— 0]
(a+p)(g+1)7 )
f EL ﬂb],p>1,;}+a=1

|a—p]
(1+ Mﬁ)

Qayyum et. al [13] also proved Ostrowski’s type integral inequalities.

IN

o f €lilab].

Lemma 2.3. Denote by P (x,.) : [a,b] — R the kernel is given by

m(t_a)zf a<t<x
P(x,t) := )
m“-bﬂ x<t<bh.
Then,
|T (x'a ‘B)| )

= G +ﬁ)[a(x a)=Bl-x)]f" (%) - f(x)

[aM (f;a,x) + BM(f;x,b)]

[ —aP +p - x)]”fﬂ;; £ € Lo [a, b]

(2q+1 [aq (x = )lﬁl + ﬁq (- x)lﬁl]

IN

f”eL,,[a,b],p>1,;—]+%=1

(oz(x—a)+ﬁ(b—x)+)a(x—a)_‘[g(b_x))) £,
,f” €Lila,b].

Motivated by the result of Cerone [1] and Dragomir [3]-[6], we will present new inequalities which will
be the extended and generalized form of Cerone [1] and Dragomir and Wang [3]-[6].
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3. Main Results
Before stating the main result, we need to establish the following lemma.
Lemma 3.1. Let f: [a,b] = R be an absolutely continuous mapping. Let P(x,.) : [a,b] — R, the peano type

kernel is given by

P(x, t) = (10)

b o
[ rens = — £ a1

L (b‘“)( @+ f(b))

+
a+p

a+ﬁ o uff(t)dt+—ff(t)dt]

holds.

Proof. From (10), we have

b x
fP(x,t)f’(t)dt - aiﬁxiaf(t—(mhb%))f’(t)dt

it 2o

Using integration by parts, we get

b

f P(x, t)f ' (t)dt

b- b— R
aiﬁxia [(x—(a+hTa))f(x)+hTaf(a)—ff(t)dt}

+aﬁﬁbixlhb;af(b)‘( (b hb—))f(x) fbf(t)dt‘.

Combining like terms and using algebraic manipulation, we get the required identity given in (11). O

We now state and prove our main result.
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Theorem 3.2. Let f:[a,b] = R be absolutely continuous mapping. Using (11), we define

b

cwap) = [ Pwoson (12)
bt b
e o
T2 p [aM (f;a,x) + BM(f; x,b)],

where M (f;a, b) is the integral mean defined in (2), then

|T(x;a,[3)| (13)
o [(arn) - o]
] . el frelalabl
w450 (- ntg) - 2T

1
q

it (= (o mse))"™ - ()™}

1 ’

— 1, . ,
i ANV a—p\dt1 (q+1)‘7 (a+ﬁ) b
< | et {lo-oonm) - o))
f eL,labl,p> 1,}7+%: 1
—a [ a(b—x)+p(x—a)
(a+B) ~ 5t [ ,
I(If ||1)
_a [ Blx—a)—a(b—x) 2(a+p)’
+(— ) + g2 | At
f’eliab].
forall x € [a + b, b~ h%"] and h € [0,1].
Proof. Taking the modulus of (12) and using (2), we obtain
b b
|t (x;a,p)| = f P(x, t)f(t)dt| < f IP(x, ) |f/(t)] dt. (14)
a a

By using the definition of L, norm, we get

b

N f P(x, £)| dt.

a

[c(sap)|<|lf
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Now

b
f IP(x, t)) dt

x b
_ a 1 b—a B 1
- a+ﬁx—aft_(a+h 2 )dt+a+ﬁb—xf

a X

dt.

b—a
=

Again using integration by parts and some algebraic manipulation, we get

7 aiﬂfﬁ{zl;(x_a)2+[(a+hl%“)— %]2}
flp(x,t)|dt =
’ +ai+mi—x{%<b—x)2+[(b—hb%u)_ xTw]Z}.

Hence the first inequality

s {be-ar s [wentz) -]} )

2} a+p

£

|7:(x;a,ﬁ)| <

o)

+b%{}1(b—x)2+ [(b - ni52) - x5t]

is obtained.
Now using Holder’s integral inequality and definition of L, norm, from (14) we get

b i
p[ f IP(x, )| dt] .

[e(sap)|<|lf

Now

1
q

1

b
(a+ﬁ)[flp(x,t)lth]
- | fxt—(+hb;”)th+ F fb(t—(b—hb_”))thq
| (x-a) g 2 (b—x)1 2 '

Using integration by parts and some algebraic manipulation, we get

, :
(a +ﬁ)[ [ e dt]




A. Qayyum et al. / Filomat 30:6 (2016), 1441-1456 1447

The second inequality

|t (x;a,B)|
1 i (= ()™ = ()™}

D e

(b—x)"

1

’

p

is obtained.
Finally, using definition of L; norm and P(x,t) , we have from (14)

|t (x;, )| < sup IPx, DI ||£]),
tela,b]

where

b—a [ ab—x)+p(x—a)
(a+p) - hi? [t

(a + ) sup IP(x, B) = %

tefa,b] b [ f—a)-a(b—x)
- +|@=p)+h5" [ o

This completes the proof of the theorem. [

Remark 3.3. Ifwe put h =0, in (13), we get (7). If we put a = f and h = 0, in (13), we get (5). This shows that the
results of Cerone and Dragomir are our special cases.

Remark 3.4. By substitutingh =1 and o« = B in (12) and (13), we get

b
‘(f(mf(b))‘ﬁff(t)dt
S (e o]
i {5 e [ - 2T
il ]
M=o {(% - x)q+1 - (%)qﬂ} 2e+1)"

1| _-ap b-a [ @=a)-@-0) 1|\ Il
(2 -3 [(x—a)(b—x)] + 15 e ] ) 7

1
2

f/

o)

IA

£

p/




Remark 3.5. Ifwe substitute h = 1, a = pand x = % in (12) and (13), we get another result:

IA
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b
YW+ @+ 0)- G [ fO
(=)
(GO G A B

N {( b4;ﬂ )q+l 3 ( I%b)qﬂ} (b—a)(q+1)%

(o)

I

1

|

p

L1,

Similarly, for different values of h, we can obtain a variety of results.

Remark 3.6. It should be noted that from (12) and (1)

(@a+B)t(x;a,B) =aS(f;a,x)+BS(f;x,b).

From (13), we obtain

IA

(a+p)|r(x;a,B)

ﬁ {(x;ﬂ) 4 [<a+hb2a)_ M—Txr} f/ o]
+L {(b—4x>2 +[(o-ntst) - xTw]Z} Pl
1
G-m {(x ~(a+ hb%ﬂ))qﬂ - (h%)qﬂ}q ﬁ Pl o

1
i {(b - (x +hbzi))q+l - (h%b)w}q (q+11)% Pl

+ L [(p - nt5) -«

Llax] ~ b-x

fl

pan [x B (“ + h%)] f 1kl

1448

(15)

(16)
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That is,
(@+B)|t(xap) (17)
{05 4 [(a m5e) - ')
a—l
< | w {l ents)T - () .
R il
(3% [x = (e +n22)] + E [(b - ni52) - 2]) | 7
Remark 3.7. We may write
aM (f;a,x) + BM(f;x,b)
= aM(f;a,x)+bf;x[]‘f(u)du—]f(u)du]
= aM(fax)——ff(u)du+—ff (1) du
= (a+p- ﬁO(X))M(f a, x)+l30(x)M(f a,b),
where
Z:Zzo(x). (18)
Thus, from (12), we get
(% a,p) (19)

- Sl o b

() 5@+ o

—[(1—0(’3 o(x))M(f;a,x)+

Y a(x)M(f;a,b)]

p
a+p

so that for fixed [a,b], M (f;a,b) is also fixed.
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Corollary 3.8. Ifwe take a = f and x = 2 in (12) and (13), we get

b
a+b h 1
(1—h>f( . )+§(f<a>+f<b>)—mff<t>dt (20)
(b-a)® —a\ _ 3a+b]?
{4 [(a+nse) - 22
Hr
i {42 (o - ntg2) - 2]}
< +1 +1 %
- T {(b%a a-m)" - (nz) }
1 ’
a g+1 o \0+1 2(q+1)% P
| @ {(}]T(l_h)) - (h22t) }
A=1) || £+
I
4. Some Perturbed Results
In 1882, Cebysev [10] gave the following inequality:
1 2 ’ ’
IT(f,9) < — - ||F|| ]17]l... (21)

12

where f,g: [a,b] = R are absolutely continuous bounded functions

T(f.9) (22)

b b b
1 1 1
b__aff(x)g(x)dx—[mff(x)de[mfg(x)dx]

M(f,g;a,b) — M(f;a,b) M(g;a,b).

In 1935, Griiss [11] proved the following inequality:

b b

b
e [Fwowar- = [rwig— [g@a

a

< @-@)T-y), 23)

a

provided that f and g are two integrable functions on [4, b] and satisfy the condition
< fx) <P andy <g(x)<Tforallx € [a,b]. (24)

The constant 1 is the best possible. We will obtain the perturbed version of the results of Theorem 3.2, by
using Griiss type results involving the Cebysev functional.

T(f,9) =M(f,g;a,b) - M(f;a,b) M(g;a,b), (25)

where M is the integral mean defined in (2).
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Theorem 4.1. Let f: [a,b] = R be an absolutely continuous mapping and o > 0, 3 > 0, (o + ) # O, then

R
2(a+p)

1
b—a

T-y)
2

where, T (x; a, B) is as given by (11), A = ® — ¢ and
2 2
R = x(ja[(x—(a+hb;a)) —(hb;”)] 27)
B b—a) b—a\\
+m[(h7) (e-(e-t57) ]

f(b) - f(a)
b—a '

= 52]; (26)

s‘ < (b—a)N(x)[

(¥ o, B) - £

IA

(b-a) A

SRRSTEE) () = o)) 15 »

TP [ - - -]

R 2
_(2(a+/3)(b—a)) ‘
Proof. Associating f (f) with P(x, ) and g () with f’(t), and using (25), we obtain the following

T(P(x,.),f'(.);a,b)=MPx,.),f'();ab)—MP((x,.);a,b)M(f'();aDb).

Now using identity (11), we obtain
b-a)T(P(x,.), f'()ab)=1t(x;apB)—b-a)M(P(x,.);a,b)S. (29)

Now from (11) and (22), we get
b

b-ayM(P(x,.);ab) = fP(x, )dt (30)

a

X

o 1 b-a
- a+[3x—af(t_(a+h7))dt

a

b
B 1 b—a
+a+ﬁb_xf(t—(b—h _ ))dt

ks ) (- (-5
1
RZ(a+ﬁ)'
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By combining (30) with (28), the left hand side of (26) can easily be obtained.

Let f: [a,0] = R and fg: [a,b] — R be integrable on [a, b], then [1]

IT(h9)| < T2(FNT(9.9)  (f,g€Lalabl)
< @T%(f,f) (y <g(x) <T, t €[a,b])
< J@-9)T-)) (P<fR<P telab]).
Note that

[SIE

0 < Ti(f'(sab f'()ab)=[M(f'()%ab)-M(f'()ab)

b

b 2
1 RPN 1 ,
= mff ) dt—[mff (t)dt]

a

1 !
bV
T-y)

2
Now, for the bounds on (29), we have to determine

2

2
, =5

< , wherey < f' () <T, t € [a,b].

Tz ((P(x,.);a,b),(P(x,.);a,b) and ¢ <P(x,.) <.
Using the definition of P(x,t) and from (10), we have
T((P(x,);a,b),(P(x,.);a,b) = M(P*(x,.) ;a,b) - M* (P (x,.) ;a,])..
From (30), we obtain

~ R
T 2@+p)b-a)

e o5
(e T [ o5
T L ]
P ) - (e (- |

Thus, substituting the above results into (33), we obtain

M(P(x,.);a,b)

and

M (P2 (x,.);a, b)

0<N@) =T:((P(x,.);ab)(P(x,.);ab),

1452

(31)

(32)

(33)

(34)

where N (x) is given explicitly by (28). Combining (29), (32) and (33) gives the first inequality in (31), and
the first inequality in (26). Now utilizing inequality (32) produces the second result in (26). Further it can

be seen from the definition of P (x, t) in (10), that for a, 8 > 0

@ =supP(x,t) and ¢ = inf P(x,1),
tE[ﬂ,b] tela,b]
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where

_ 1 a b-a B . b-a
e e i B | ety

and

. 1 a b-a B b—a
(P_tel[r;,g]a+ﬁ(x—ah 2 'b—x[x_(b_h 2 )])

5. An Application to the Cumulative Distribution Function

1453

Let X be a random variable taking values in the finite interval [4,b] with Cumulative Distributive

Function
FW=P(X <= [fwa,

where f is the probability density function. In particular,

b

ff(u)du =1

a

The following theorem holds.
Theorem 5.1. Let X and F be as above, then
a6 =20 {x = (a+1252)} - px—a) {x = (b - hE52)}] £ ()
+h(%52) o (b = x) f (@) + B (x — a) £ ()}
—[a(-x)-Bx-a)]F(x)-p(x—a)]

2 {65 (o e nz) - 2]}
(b-x)(x—a) 171

= (b-x)(x—a) )
B b—a \7+1 b \\1*1 g+1)7
Gy {(hT) + (b (r-nt)) }
@ep ez Bt )
LI
b-x)(x—a) St

b—a [ B(x—a)+a(b—x)
+’(a—/3)—h7“ |

(35)
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Proof. From (12), we have

o =gyl ot
+aﬁﬁ(b2”)(bfxf< )—ﬁf(a))
5 MU0+ M(f D)
[x el ey e O I
( )(b_xf(b)— —f@)-1
where

= - [aM (f;a,x) + BM (f;x,b)]

: ) ,

- 1 (@ P

= avp mff“>d”mff<f>4
i . . i ,

= o %ff(t)d”bf;x{ff“)df—ff(t)dt+ff(t)dtH
i . . i

- 1 (@ P

= 7 mff(t)dum{ff(t)dt—ff(t)dt} :

By using the definition of Cumulative Distributive Function and Probability Density Function, we get

P [“ F)— F(x)+i].

a+pf|x—a b—x b-x

+
=

Thus, 7 (x; @, ) becomes

|T(x;a,ﬁ)| =

s () - o {54 e

+ h (b;ﬂ)(xc_kaf(a)-f- bfxf(b))

a+p

1 [ F()—iF(x) ﬁx”'

a+f|lx—a

Using (13) and value of 7 (x; @, f) from the above equation, we get required result (35). O

Putting @ = B = 1 in Theorem 5.1 gives the following result.
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Corollary 5.2. Let X be a random variable, F (x) Cumulative Distributive Function and f is a Probability Density
Function, then

1[0 == (a+hE52)) - = o) {x = (b - n52))] 1 £ )
H(ENE-af O + 6= f@) >
—(‘%b —x)F(x)— lx-a)l

S (o ntz) - 2T I
(b—-x)(x—a) 5=,

e {5+ [ - niz) - 5]

e (= o)) (52

- (x—a) 1 ﬁ
e {() (- (o)) |

—a [ _2x-a- 1
(b= ) (- )1+ g2 [ 2508 ] + 4 i) k.
Remark 5.3. The above result allow the approximation of F (x) in terms of f (x). The approximation of
R(x)=1-F(x)

could also be obtained by a simple substitution. R (x) is of importance in reliability theory where f (x) is the Probability
Density Function of failure.

IA
i

p/

(b—a)?
(x—a)(b—x)

=

We put g = 0 in (35), assuming that a # 0 to obtain

| [a b-x) {x - (a + hl%”)}]f(x)
(37)
+h(52) a6 - f @)} - ab-x)F )]

(b x)(x—a)( {(x o +[<a+hl%)—“+7"]2})

b-x) (x—u)((x o {[x _ (a +h%)]q+l ~ (hl%a)q”})’; 1

f/
o0’

7

< (q+1)ﬁ p
b—a [ (x—a)—a(b—x)
a+hZ=e [ (x—a)(b—x) ||f’||
(b - X) (x - u) h (x—a)+a(b—x) Tl
—a C
+~“ ni [

6. Conclusion

Cerone [1], obtained bounds for the deviation of a function from a combination of integral means over
the end intervals covering the entire interval and applied these results to approximate the cumulative
distribution function in terms of the probability density function. On similar lines, we establish new
inequalities, which are more generalized as compared to the inequalities developed in [1], [3]-[6]. The
approach that we used not only generalized the results of [1] and [3]-[6] but also gave some other interesting
inequalities as special cases. Approximation of the cumulative distribution function is also provided.
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