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Fractional in Time Diffusion-Wave Equation
and its Numerical Approximation

Aleksandra Delié?

*University of Belgrade, Faculty of Mathematics

Abstract. In this paper an initial-boundary value problem for fractional in time diffusion-wave equation
is considered. A priori estimates in Sobolev spaces are derived. A fully discrete difference scheme approx-
imating the problem is proposed and its stability and convergence are investigated. A numerical example
demonstrates the theoretical results.

1. Introduction

Fractional partial differential equations have attracted considerable attetion in recent years due to their
various applications in many fields of science and engineering [5, 9, 10]. In many cases fractional-order
models are more adequate than integer-order models, because fractional derivatives and integrals enable
the description of the memory properties of various materials and processes. The analytical solutions of
most fractional differential equations cannot be obtained, and as consequence, approximate and numerical
techniques are playing important role in identifying the solutions behavior of such fractional equations.

This article is concerned with a numerical solution of a fractional in time diffusion-wave equation
subjected to homogeneous field. Fractional in time diffusion-wave equation is obtained from the classical
diffusion equation, by replacing first-order time derivative by fractional derivative of order o € (1,2). It
has been investigated by many authors. For example, Schneider and Wyss [14] considered time fractional
diffusion-wave equation. Mainardy [8] solved a fractional diffusion-wave equation using the Laplace
transform in a one-dimensional bounded domain. Fujita [3] discussed an integrodifferential equation which
interpolates the heat equation and the wave equation in an unbounded domain. A number of numerical
techniques were developed and their stability and convergence were investigated. For example, Tadjeran
[16] present a second-order approximation for the fractional diffusion equation with RiemmanLiouville
derivative in spatial direction based on Crank-Nicolson method. Sun and Wu [15] derived a fully discrete
difference scheme for the time fractional diffusion-wave equation. They have proved convergence order
O(13% + h?) for solutions u € C*3(Q).

In this article, we consider an initial-boundary value problem for fractional in time diffusion-wave
equation. Its well posedness in the corresponding Sobolev spaces is proved. We prove that the proposed
finite difference scheme is unconditionally stable in L> norm and that the order of convergence is same as
in [15] for even less smooth solutions.
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2. Fractional Derivatives and Fractional Derivative Spaces

Let u be defined on the interval I = (0, T) and a > 0. Then the left and right fractional integral of order
a is defined to be, respectively, (see [10, 11])

“u(t) = @ f u(s)(t —s)*ds, >0,

artu(t) = T(a )f us)(s—t)*tds, t<T

where I'(-) denotes Gamma function. For a = 0 one sets B&u = 8T0_u =u.
The left and right Riemman-Liouville fractional derivative of order « are defined as

1 ar

144 dn a—n
o u(t) := ﬁQOJr u(t) = To—adr

f u(s)(t—s)y"*ds, t>0
( 1)}’! dﬂ
dtn ( -a) dan
respectively, where n —1 < a < n, n € N. The left Riemann-Liouville fractional derivative of order « acts as
a left inverse of the left fractional integral of order a:

% _u(t) == (- 1)” a;*_" u(t) = f us)(s — )" ds, t<T,

94, Igtult) = u(t), (95 Iu(t) = u(t)),

while
1 —k

T30 3% u(t) = u(t)—Za u(t)’ TETETT

where n — 1 < @ < n. Riemann-Liouville fractional derivatives satisfies semigroup property:

99,00 u=3.95,u=3a,"u

0+ 0+ — Yo+

under assumptions that u has sufficient number of continuous derivatives and

%(0) 0, j=0,1,..max([al,[f]), [l <a<[a]+1,[Bl<B<I[Bl+1 (see[l0]).

The Caputo definitions of fractional derivatives one obtains by commuting dt,, and d57"(d87"), n—1<

a < n:
n

d
- dtnu(t) D u(t) = (1" Zou(o).

The left Caputo fractional derivative of order « acts as a left inverse of the left fractional integral of order
a:

9% u(t) = 9%,

0%, I u(t) = u(t),

but

n-1
du(t);
—a Cha = — _
do3 Do u(t) = u(t) 2: dte le=ok!”

k=0

n-1<a<n.

By a direct calculation, one can obtain the following a relation between Riemann-Liouville and Caputo
fractional derivatives )
n- k—a k
t d*u(0)
%, u(t) = 9%, u(t) -
o+ 1t) = Jo.u(h) kZO‘ Thk-a+1) di
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Thus, for the zero initial conditions Riemann-Liouville and Caputo fractional derivatives coincide.

As usual, we denote by C*(0, T) and C¥[0, T] the space of k-fold differentiable functions. By Cy (O, T) we
denote the space of infinitely differentiable functions with compact support in (0, T). The inner product
and norm in the space of measurable functions whose square is integrable in (0, T'), denoted by LZ(O, T), are
defined by

1/2
(M, U) 12(0,T) = L Mvdt, ||u”L2(0,T) = (M, u)Lé(O,T)'

We also use H*(0, T) and H{j(0,T) to denote the usual Sobolev spaces [? ], whose norms are denoted by

22l 0,1
For a > 0 let us define semi-norms

[ulgeon) = 195, ullizon,  ulaeon) = 1907 _ulli2,n),
and norms
2 2 1/2
lellizzom = (14l 2oz + 1 #a0m)

We then define the spaces H$(0, T) and Hf , (0, T) as the closure of C*[0, T] and C7’(0, T) , respectively, with
respect to the norm || ||y #,1). From Corollary 2 of Theorem 2.4 in [11] it follows:

Lemma 2.1. Let0<a <1, u € H{(0,T), ve H*(0,T) and u(0) = v(0) = 0. Then

(8%+ u, U)LZ(O,T) - (u, aaT—v)LZ(O,T) '

Lemma 2.2. [2] Let a > 0, u € C*®(R) and suppu C (0, T]. Then

o v _ 13 2
(&0+u,8T_u)L2(O/T) = cos Tl ||80+u||L2(0,m).

Fora>0,a#n+ %, n € IN we define semi-norm and norm

1/2 1/2
lriomy = (01,05 ) |+ Wtllziomy o= (I, + o)

12(0,7)

and the space Hfj (0, T) as the closure of Cy (0, T) with respect to the norm || - [|x(o,1)-

Lemma2.3. [2, 6] For a > 0,a # n+ %, n € N, the spaces Hg, (0,T), Hi_(0,T), H; (0, T) and Hg(0,T) are
equivalent and their seminorms as well as norms are equivalent.

For the functions of many variables partial derivatives of fractional order are defined in analogous
manner, for example:

fomu(x,t) nl D 8t”f( s lu(x,s)ds, >0,

u(x, t) =

x0+

F(m B) o f(x—s)” Flu(s, ds, x>0,

wheren-1<a<n,m—-1<p<mandn, meN.
For a, p > 0and Q = (0,1) x (0, T), we introduce anisotropic Sobolev type spaces:

H*F(Q) = L*((0, T), H*(0, 1)) N HF((0, T), L*(0, 1))
and

HLP(Q) = L3(0, T), H*(0,1)) N HL(O, T), L0, 1)).
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Notice that for 0 < p < 1/2: H*(Q) = H**(Q) = H*#(Q).
Finally, we introduce the Banach spaces

C(0,T], U) and C¥([0,T], U), a>0
of vector valued functions u : [0, T] — U equipped, respectively, with the norm

||u||C([0,T],w=£}()a]>§||u(f)||w and ullcaqo,r, ) = maXllatoJ,M(f)llfu.

3. Diffusion-Wave Equation

Let Q= (0,1) and I = (0, T) be the space and time domain respectively and Q = Q x I. We consider the
following diffusion-wave equation for 1 < a < 2:

2

d
- 25 = fwh, (mheQ (1)

attl,o+“
subject to the following boundary and initial conditions:

u0,t)=0, u(l,t)=0, Vtel, )

u(x,0) =0, g—?(x, 0)=0, VxeQ. 3)

Theorem 3.1. Let a € (1,2) and f € L*(Q). Then the solution of initial-boundary value problem (1)-(3) satisfies a
priori estimate

2

trr[lax ||(9t 0+u||LZ(Q) + ‘

o < ClIfllz(g)- (4)

985

Proof. Let B = a — 1. Taking the L?(Q2) inner product of (1) with 285 u and using property 9% 59, 0. U

we obtain

t, 0+¥ =
poou) _op o
Nl +2( 5000 5) =2
((e)
Integrating last inequality between 0 and t and using Lemmas 2.1, 2.2 and estimating the right-hand side
by Cauchy-Schwarz inequality we obtain

B || 512 Iu du

19] R

(1P + 205 - <10 1, Ol ) + 2z o, iz

Lox L2((0,00),L2(Q))

< 2VT max |1} o, u(, llz@llflliz) 5)
s€[0,T] .
where Q; = (0,1) X (0, #). Ommiting the second positive term on the left-hand side we obtain

ullr2q) <2 \/T”fHLZ(Q)- (6)

max 97,

Similarly, omitting the first positive term on the left-hand side of inequality (5), taking t = T and using (6)
we obtain

|2

The result (4) follows from (6) and (7). O

2T

/2 81/1
f - (7)
0OS >

t,0+£

Q)
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Theorem 3.2. Let a € (1,2) and f € L*(Q). Then the solution of initial-boundary value problem (1)-(3) satisfies a
priori estimate

2

2
=1 du du
- + <C . 8
0+ Of 2Q) g[lo%(] o 2@ “f”LZ(Q) (8)
Proof. Let p = a— 1. Taking the inner product of (1) with 22 5, using property dy 1 = gtaf 0¥ = 85 . ‘;’: and
estimating the right-hand side by Cauchy-Schwarz inequality we obtain
du du d || dull oul®
p) [ s + == <2 ‘ = )
(at L0+ OF )LZ(Q) 9t 7% |2y = 719 2 ”f I
Integrating last inequality between 0 and t and using Lemmas 2.1, 2.2
m du |’ ou(-, | u(-,0)|1 u|?
2cos 2L |92 24 (IO g (CLICA] STy ©)
2 + Bt 12((0,00),L2(Q2)) ox L2(Q) ox L2(Q) ot L2(Qy) Q)
where Q; = (0,1) X (0,t). From Lemma 2.6 in [2] follows that
] [P BT Y (R o P71 Y B PR
ot 12(Q)) L0+ 710+ gt 12(Q)) N F(ﬁ/z + 1) L0+ ot 12(Q)) - F(ﬁ/z + 1) L0+ ot 12(Q)) '
Taking ¢ = M cos 712’3 we obtain
2
— <C , 10
tfer[l(%%(] Ox rQ ||f||L2(Q) (10)

where C = (2¢)71/2,
Similarly, omitting the second positive term on the left-hand side of inequality (9) and taking t = T, we

obtain

2¢TP

12((0,00),L12(Q2)) rz(ﬁ/2 +1)

np

2cos—

ﬂ B/2 (91/[ 2

P2 ou ou ||’ ou
t, 0+ 81. 12(Q

/2 au
t,0+ at aﬁ

<2co t0+at

1
52 Iflle2g)-
o 7l

T2(/2+1)

S CoS = 2 it follows that

For e =

g2 Ju 2
t, 0+ 9t 12(Q

S Cllflle2), (11)

where C = (28 cos 2 ) . The result (8) follows from (10) and (11). O

Let us also consider equation

. Pu_ gt
Fou=55=", (wheQ, (12

subject to the boundary and initial conditions defined by (2) and (3).
Using Cauchy-Schwarz inequality and Lemmas 2.1-2.3 one obtains the following results

Theorem 3.3. Let a € (1,2) and g € L*(Q). Then the solution of initial-boundary value problem (12), (2), (3)
satisfies a priori estimate

max llullizo) < Cllgllizg)-
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4. Finite Differences

Let @, = {x; = ihli =0,1...,N} be a uniform mesh in [0, 1] with the step-size h = 1/N, N > 1. We denote
wy = ap,N(0,1), w), =y U {0}. Also, we define a uniform mesh @. = {t; = jt[j = 0,1,... M} in [0, T] with
the step size t = T/M, M > 1 and set w; := @; N (0, T), wf = w, U {T}. We will consider a grid function v
defined on @y, X @,. We introduce the following notations [13]

_ o(x +h,t)—ox,t) _ o(x, t+ 1) —0v(x, 1)

Oy - vf(x + h/ t)/ Ut = 'Uf(x, t+ T)r
h T
vi+our u(x,t+1)—o(x,t—1) Uy — Vg U — Uf
vta = 2 = 2T 7 Oxx = h 7 O = T/
) -oo(x, t) Fo(x, i
b ooty ol < AT
2
For 0 < B < 1 fractional derivative operator &f 0+ We approximate by [15]
-B j-1
R j k_ .0 _
At,0+v] = 1_'(2——‘8) [aﬂ]] - ;‘(aj_kﬂ - ﬂ]'_k)?) - ﬂ]U ;] = 1, 2, M,

where aj = j'F — (j - 1)'"f > 0. For j = 0 we formally take Af 0. 2" =0.

We define the Steklov averaging operators [4, 12] as follows

t+1/2
Tio(x, t) := ;f / v(x,s)ds = T o(x, t —1/2) = T;o(x, t + T/2),
t—1/2

h

Notice that these operators commute and maps the derivatives of sufficiently smooth function u into finite
differences, for example

1 x+h 1 X+h x—5
Tio(x,t) := i f o(s, t)ds = Tyo(x + b, 1), T?o(x,t) := i f (1 - | |)v(s, t)ds,
x x—h

u , U

T?—E = Uy, Txﬁ

= Ugzy. (13)

We approximate the fractional derivative of order 1 < & < 2 in the following manner [15]

R 1 & Pul,s) e
8t,0+u(x,tj) = méﬁ T(tj—S) ds

1 = ou(x, ty) fiert 1ea
~r(Z—oz)kZ::;( ot )ft = o)

1
27 & dulx, b)
_ 0k
t

T3 -a) L\ ot
~ - du(x, t;) _ = au(x,tk)( ' a4 du(x, to)
= r(3 — a) ay &t L 8t a]—k+l a]—k ﬂ] _at ’

in which
4k = (= P = (= k=1 > 0,
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Using the initial condition (3) and substituting &« = f + 1 we obtain

1—(1 j-1
(9?0+u]—1/2 G- a) Z Ajk+1 — aj— ) k] T2 ‘3)( Z(a] k+1 — aj- k)u t0+u7 (14)

=1

Let us define discrete inner products and associated norms

1/2
(1,0 = (1, 0)p2(0 = 1 Y 4O, Mol = Iollizy = (@,0)}7,

XEwy,

(1,01 = (1,0l = B Y w(o(®), Mol = ol = (@017,

)(Ea);r
1

[, 00 = [, )2y = 1 ), u()o(), ol = ol = [0,0),,

XEmh

1/2
2
[0l = 10all  Mollinayy = (100 + 1012)

1/2 1/2
||v||Lz<Qm>:[Tznv(-,t)ni] : |[v||Lz<Q,,T>:[TZMU(-»)ni] :

tew} tew?

5. Finite Difference Scheme

The initial—boundary problem (1)-(3) we approximate with the following finite difference scheme

Ao+ Al =g, j=1,2,.,M, xeay, (15)
v(0,H)=0,0(1,1) =0, t€dy, (16)
v(x,0) =0, xe€ @y, (17)

where (plA T,T2 f(xi, (tj+1t1)/2), Ahv = —Ug, B = a — 1. Approximation of second initial condition in (3) is

already included in definition of AP That approximation is equivalent with At 0. 2" =0.

0+
Theorem 5.1. (see [1, 15]) Let 0 < B < 1. For every function v(t) defined on the mesh w, which satisfies v(0) = 0
the following inequality is valid

M

1) VA j—r(l B) Z(v])2 (18

j=1

Lemma 5.2. The finite difference scheme (15)-(17) is absolutely stable and its solution satisfies a priori estimate:

o2, < CIAL 2 @lliz - (19)

Proof. Taking the inner product of (15) with 24, "v; and using Cauchy-Schwarz inequality we obtain

21 (8] o, A7 0], 47 20]) + o] = o) < 2eell Ay 2l + Ay 2ol

Summing for j =1,2,...,k, 1 <k <M, using (18) and taking ¢ = ¢ = (kT)fT(1 - B)/2 we obtain

kt)~F
r((l 5" 2 1A, 2ol + IFIP < T(1 - B) (k)P Zf 14, 2@/IP < T = HTAIA, PRl g, -
j
Omitting the positive sum on the left side and summing again fork = 1,2, ..., M we obtain a priori estimate

(19) with C = /el O
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6. Convergence of the Finite Difference Scheme

Let u be the solution of the initial-boundary value problem (1)-(3) and v the solution of of the difference
problem (15)-(17). The error z = u — v satisfies

Aoz A AE =YL+ Al j=1,2,.,M, xeay (20)

20,6 =0,2(1,) =0, tea., 1)

z(x,0) =0, xe€ay, (22)
where

v = At0+ Tﬁ&fw and u=ua-T/u

Lemma 6.1. The finite difference scheme

B
At 0+

AP =y, j=12,.,M xecaw, (23)
z(0,£) =0,z(1,t)=0, tea,,
z(x,00=0 i=0,1,...,N,

satisfies the a priori estimate

1212,y < CllYllzz(q,)- (24)

Proof. Taking the inner product of (23) with 27A;! (Af 02— ), using relation

20 (A 0,2 = 91 A 0,2 = 9) = 1A, A o, 2 = 9P = 114,12 2 = P,
and Cauchy-Schwarz inequality we obtain

. T _. T
A 2] 0,2 = WOIP = IATVA(AL o, 27 = $IDIP + 20, A7, 7)) = 20, ) < 261 + - 121

Summing for j = 1,2, ..., M and using (18) we obtain

27+
I'1-p)

Omitting the positive term on the left side and taking ¢ = TFT(1 — f)/2 we obtain a priori estimate (24) with
C=TT(1-p). O

1A, A o, 2M = gMIP +

1/2 0y(12 LT 112
" 11 < Iy 200 0 2 = O + 2601 + o

Theorem 6.2. The finite difference scheme (20)-(22) satisfies a priori estimate

Il < C (W lhzu + palliznn) - (25)
Proof. Results follow directly from Lemmas 5.2, 6.1 and inequality |[7]|;2(q,.) < IVlli2(q,) O

Lemma 6.3. [15] Suppose that v € C?[0,t], t € w, and 0 < B < 1. Then

EA

1 (1- ﬁ
B 2-p _ -B 17
L0~ A v <T ( 2 ﬁ 1+2 )) grslsa; [v" (s)].

t0+ 1-— ﬁ
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Theorem 6.4. Let u € C*([0,T],C[0,1]) N H*((0, T), H'(0,1)) N H*1((0, T), H*(0, 1)). Then the solution v of finite
difference scheme (15)-(17) converges to the solution u of initial-boundary-value problem (1)-(3) and the following
convergence rate estimates holds:

IZll2(0,) < C(T>™ + H?). (26)

Proof. In order to estimate the rate of convergence of the difference scheme (15)-(17), it is sufficiently to
estimate the right hand sides of the inequality (25) decomposed in the following manner

220y < C(”Af,m” =9} gl + ||35,0+ (= T3u) + |[Hx||L2<Q,,T>)-

L2(Qwr)

Using (13) we directly obtain the following integral representations:

X+h
&31/!(.7( t”/) 7T N
N T e
X+h
x —Xl a U . . 77 7
Tou=1 f ff ) )a2 B dx”dxdy,

Summing over the the nodes of the mesh w, X w7 and w;, X w7, respectively, we get

3
[z, < CT° ||s=5 < Crllullgo,m),H10,1)), (27)
oxot?|| ,
L2(Q)

2 2 2

(AN CEYE ” v = I [0, o S Ml @ o) (28)
Using Lemma 6.3 we obtain
2, ,
—

||At o+ t0+u”L2(Qh ) < Ct*F max max | = < C™ Ml ullezo,11,cro,11)- (29)

The result (26) follows from (27),(28) and (29). O

7. Numerical Example

To check the stability and convergence properties of the numerical method we solved the problem (1)-(3)
for

, teI'(7/2)

- 5/2 _ 2

f(x,t) = sin(rx)t (F(7/2 —) s )

The exact solution of the above problem is u(x, f) = sin(rx)t>/2.
Table 1 lists the computational results with different time step sizes 7 when space step size is fixed as
h = 2713, From the table, we can draw the conclusion that the order of convergence in time direction is 3 —a.
Table 2 gives numerical results for small and fixed T = 27!* with different h. The reason why we have
used a very small step size 7 is to make sure that the dominated error is from space discretization. From
the table, we can see that the order of convergence in space direction is 2.



A. Delié / Filomat 30:5 (2016), 1375-1385

=T, iz, 2
a v Eleg, 10, ﬁ a v g, 1o, ﬁ
19 25 2.6306e—3 1.04 17 25 1.0894c—3 121
26 12779 —3 1.07 26 47081c — 4 1.24
27 60833e-4 109 27 19895¢-4 126
2-8  28670e —4 1.09 28 83116e-5 1.27
279 1.3445¢ -4 1.10 279 34521e-5 1.27
2710 6.2888¢ — 5 no data 2710 1.4296e — 5 no data
14 275 24162¢—4 1.52 115 275 1.3848¢—4 1.99
276 8.4098¢ — 5 1.51 276 3.4916e -5 1.97
277 29434¢ -5 1.52 277 8.8963¢—6 1.95
28 1.0279¢ -5 1.52 278 22982 -6 1.93
29 35727¢-6 1.53 279 6.0330e -7 1.91
2710 12359 -6 no data 2710 1.6063¢ — 7 no data

Table 1: The experimental error results and convergence order in time direction (the last column) with h = 2713

[l 2 iz, 2
a h lzllz () log, ||z|\L2(§;h;>> a h lzllz ) log, ||z||L2<;th:)
19 273 22355¢-3 2.00 1.7 273 25977¢ -3 2.00
274 55954¢ — 4 2.00 274 6.4905¢ — 4 2.00
275 1.4019¢ -4 1.98 275 1.6220e — 4 2.00
276 35414e -5 1.89 276 4.0509 — 5 2.00
277 9.5436e — 6 no data 277 1.0093e — 5 no data
14 273 29787¢-3 2.00 1.15 273 3.1844¢-3 2.00
24 7.4297¢ -4 2.00 24 7.9355¢—4 2.00
275 1.8563¢ —4 2.00 275 1.9823¢ -4 2.00
276 4.6400e — 5 2.00 276 49547¢ -5 2.00
277 1.1598e — 5 no data 277 1.2386¢ -5 no data

Table 2: The experimental error results and convergence order in space direction (the last column) with 7 =
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