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Abstract. In this work, we determine the fine spectrum of the matrix operator
(
∆2

uvw
)t which is defined

generalized upper triangular triple band matrix on l1 . Also, we give the approximate point spectrum,
defect spectrum and compression spectrum of the matrix operator

(
∆2

uvw
)t on l1.

1. Introduction

In functional analysis, the spectrum of an operator generalizes the notion of eigenvalues for matrices.
The spectrum of an operator over a Banach space is partitioned into three parts, which are point spectrum,
the continuous spectrum and residual spectrum. The calculation of these three parts of the spectrum of an
operator is called calculating the fine spectrum of the operator.

Several authors studied the spectrum and fine spectrum of linear operators defined by some triangle
matrices over some sequence spaces. We introduce knowledge in the existing literature concerning the
spectrum and the fine spectrum. The fine spectrum of the Cesàro operator on the sequence space lp for(
1 < p < ∞

)
was studied by Gonzalez [8]. Reade [15] studied the spectrum of the Cesàro operator over the

sequence space c0 . The fine spectrum of the difference operator ∆ over the sequence spaces co and c has
been studied by Altay and Başar [1]. The same authors have studied the fine spectrum of the generalized
difference operator B(r, s) over co and c, in [2]. The fine spectra of ∆ over l1 and bv have been studied by
Kayaduman and Furkan [12]. The fine spectrum of generalized difference operator B(r, s) over the sequence
spaces l1 and bv has been studied by Furkan, Bilgiç and Kayaduman [5]. Recently, the fine spectrum of
B(r, s, t) over the sequence spaces co and c has been studied by Furkan et al. [6]. Vatan Karakaya and
Muhammed Altun have studied U(r, s) which is upper triangular double-band matrices over the sequences
co and c [11]. In 2012, Srivastava and Kumar have studied fine spectrum of generalized difference operator
∆v on l1 [16]. Fine spectrum of the generalized difference operator ∆uv on sequence space l1 has been
studied by Srivastava and Kumar [17]. Ali Karaisa has studied fine spectrum of upper triangular double-
band matrices over sequence space lp, (1 < p < ∞) [9]. Fathi and Lashkaripour have studied on the fine
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S. Altundağ, M. Abay / Filomat 30:5 (2016), 1363–1373 1364

spectrum of generalized upper double-band matrices ∆uv which is transpose of the ∆uv over the sequence
space on l1 [4]. Quite recently, Karaisa studied fine spectra of upper triangular triple-band matrices over
the sequence space lp, (0 < p < ∞) [10]. Panigrahi and Srivastava have studied spectrum and fine spectrum
of generalized second order forward difference operator ∆2

uvw on sequence space l1 [14].

In this paper, we study the fine spectrum of the transpose of matrix operator ∆2
uvw on the sequence space

l1. Additionally, we give the approximate point spectrum, defect spectrum and compression spectrum of

the matrix operator
(
∆2

uvw

)t
on l1.

2. Preliminaries and Notations

Let X and Y be the Banach spaces and T : X→ Y also be a bounded linear operator. By R (T), we denote
the range of T , i.e.,

R (T) =
{
y ∈ Y : y = Tx, x ∈ X

}
.

By B (X), we also denote the set of all bounded linear operators on X into itself. If X is any Banach
space and T ∈ B (X) , then the adjoint T∗ of T is a bounded linear operator on the dual X∗ of X defined by(
T∗ϕ

)
(x) = ϕ (Tx) for all ϕ ∈ X∗ and x ∈ X with ‖T‖ = ‖T∗‖.

Let X , {θ} be a complex normed space and T : D (T)→ X be a linear operator with domain D (T) ⊂ X. By
T , associate the operator

Tα = T − αI,

where α is a complex number and I is the identity operator on D (T) . If Tα has an inverse, which is linear,
we denote it by Tα−1 , that is

Tα−1 = (T − αI)−1,

and it is called to be the resolvent operator of T. The name is appropriate, since Tα−1 helps to solve the
equation Tαx = y . Thus, x = Tα−1y provided Tα−1 exist. More important, the investigation of properties of
Tα−1 will be basic for an understanding of the operator T itself. Naturally, many properties of Tα and Tα−1

depend on α, and spectral theory is concerned with those properties. For instance, we shall be interested in
the set of all α in the complex plane such that Tα−1 exist. Boundedness of Tα−1 is another property that will
be essential. We shall also ask for what α ’s the domain of Tα−1 is dense in X , to name just a few aspects.
For our investigaton of T , Tα and Tα−1 , we need some basic concepts in spectral theory which are given as
follows (see[10 pp. 370-371]).

Definition 2.1. Let X , {θ} be a complex normed space and T : D (T) → X also be a linear operator with domain
D (T) ⊂ X. A reguler value of α of T is a complex number such that
(R1) Tα−1 exist
(R2) Tα−1 is bounded
(R3) Tα−1 is defined on a set which is dense in X .

The resolvent set ρ (T) of T is the set of all reguler values α of T . Its complement σ (T) = C\ρ (T) in the
complex plane C is called the spectrum of T. Furthermore, the spectrum σ (T) is partitioned into three
disjoint sets as follows:
The point spectrum σp (T) is the set such that Tα−1 does not exist. A α ∈ σp (T) is called an eigenvalue of T .
The continuous spectrum σc (T) is the set such that Tα−1 exist and satisfies (R3) but not (R2).
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The residual spectrum σr (T) is the set such that Tα−1 exist (and may be bounded or not) but not satisfy (R3).
Therefore, these three subspectras from disjoint subdivisions

σ(T,X) = σp(T,X) ∪ σc(T,X) ∪ σr(T,X). (1)

In this section, following Appell et al. [3], we call the three more subdivisions of the spectrum called
the approximate point spectrum, defect spectrum, and compression spectrum.
Given a bounded linear operator T in a Banach space X , we call a sequence (xk) in X as a Wely sequence
for T if ‖xk‖ = 1 and ‖Txk‖ → 0 , as k→∞.
In what follows, we call the set

σap (T,X) :=
{
α ∈ C : there exists a Wely sequence for αI − T

}
(2)

the approximate point spectrum of T . Moreover, the subspectrum

σδ (T,X) :=
{
α ∈ C : αI − T is not surjective

}
(3)

is called defect spectrum of T .
The two subspectra given by (2) and (3) from a (not necessarily disjoint) subdivisions

σ (T,X) = σap (T,X) ∪ σδ (T,X)

of the spectrum. There is another subspectrum,

σco (T,X) :=
{
α ∈: R(αI − T) , X

}
which is often called compression spectrum in the literature. The compression spectrum gives rise to
another (not necessarily disjoint) decomposition

σ (T,X) = σap (T,X) ∪ σco (T,X)

of spectrum. Clearly, σp (T,X) ⊆ σap (T,X) and σco (T,X) ⊆ σδ (T,X) . Moreover, comparing these subspectra
with those in (1) we note that

σr (T,X) = σco (T,X) /σp (T,X)
σc (T,X) = σ (T,X) /

[
σp (T,X) ∪ σco (T,X)

]
.

Proposition 2.2. Spectra and subspectra of an operator T ∈ B(X) and its adjoint T∗ ∈ B(X∗) are related by following
relations:
(a)σ(T∗,X∗) = σ(T,X)
(b)σc(T∗,X∗) ⊆ σap(T,X)
(c)σap(T∗,X∗) = σδ(T,X)
(d)σδ(T∗,X∗) = σap(T,X)
(e)σp(T∗,X∗) = σco(T,X)
(f)σco(T∗,X∗) ⊇ σp(T,X)
(g)σ(T,X) = σap(T,X) ∪ σp(T∗,X∗) = σp(T,X) ∪ σap(T∗,X∗).
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Relation (c)-(f) show that the approximate point spectrum is in a certain sense dual to the defect spectrum,
and the point spectrum dual to compression spectrum.

The equality (g) implies, in particular, that σ(T,X) = σap(T,X) if T is a Hilbert space and T is normal.
Roughly speaking, this shows that normal (in particular, self-adjoint) operator on Hilbert space are most
similar to matrices in finite dimensional spaces (see [3]).

From Goldberg [7], If T ∈ B(X) , X a Banach space, then there are three possibilities for R(T) , the range of T
(A)R(T) = X ,
(B)R(T) , R(T) = X ,
(C)R(T) , X ,
and
(1)T−1 exists an is continuous,
(2) T−1 exists but is discontinuous,
(3)T−1 does not exist.

If these possibilities are combined in all ways, nine different states are created. These are labelled by:
A1, A2 , A3 , B1 , B2 ,B3 ,C1 ,C2 ,C3 . If an operator is in state C2 , for example, then R(T) , X and T−1 exists
but is discontinuous (see [7]).

Let X and Y be two sequence spaces and A = (ank) be an infinite matrix of real or complex numbers
ank , where n, k ∈ N = {1, 2, 3, . . .} . Then, we say that A defines a matrix mapping from X into Y , and
we denote it by writing A : X → Y, if for every sequence x = (xk) ∈ X the sequence Ax =

{
(Ax)n

}
n∈N, the

A-transform of x , is in Y , where

(Ax)n =
∑

k

ankxk (n ∈N) (4)

By (X : Y) , we denote the class of all matrices A such that A : X → Y . Thus, A ∈ (X : Y) if and only if the
series on the right side of (4) converges for each n ∈ N and every x ∈ X , and we have Ax =

{
(Ax)n

}
n∈N ∈ Y

for all x ∈ X.

Lemma 2.3. The adjoint operator T∗ of T is onto if and only if T has a bounded inverse.

Lemma 2.4. T has a dense range if and only if T∗ is one to one.

Lemma 2.5. The matrix A = (ank) gives rise to a bounded linear operator T ∈ B (l1) from l1 to itself if and only if the
supremum of l1 norms of the columns of A is bounded.

Corollary 2.6. σr(T,X) ⊆ σp(T∗,X∗) ⊆ σr(T,X) ∪ σp(T,X).

3. Main Results

In this section, we prove that operator
(
∆2

uvw

)t
: l1 → l1 is bounded linear operator and we compute

spectrum, point spectrum, continuous spectrum, residual spectrum, approximate point spectrum, defect

spectrum and compression spectrum of the operator
(
∆2

uvw

)t
over space l1 .

Let u = (uk) is either a constant sequence or sequence of distinct positive real numbers with U = lim
k→∞

uk so

that uk , 0 for each k ∈N0 , v = (vk) is a sequence of positive real numbers such that vk , 0 for each k ∈N0
with V = lim

k→∞
vk and w = (wk) is a sequence of positive real numbers such that wk , 0 for each k ∈ 0 with
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W = lim
k→∞

wk and sup
k

uk < U + V . We define the operator
(
∆2

uvw

)t
on sequence space l1 as(

∆2
uvw

)t
x = (ukxk + vkxk+1 + wkxk+2)∞k=0 with x−1 = 0 , x−2 = 0 where x = (xn) ∈ l1 .

It is easy to verify that the operator
(
∆2

uvw

)t
can be represented by the matrix

(
∆2

uvw

)t
=


u0 v0 w0 0 0 · · ·

0 u1 v1 w1 0 · · ·

0 0 u2 v2 w2 · · ·

...
...

...
...

...
. . .


If we take u = (r) , v = (s) , w = (t) , then the operator

(
∆2

uvw

)t
reduces to A (r, s, t) which is determined

in [10]. Thus, the results of this paper is generalized condition results of many operator whose matrix
respresentation is a upper trianguler triple-band matrix.

In this work, if z is a complex number than by
√

z we always mean the square root of z with non-negative
real part. If Re

(√
z
)

= 0 then
√

z represents the square root of z with Im
(√

z
)
≥ 0 . The same results are

obtained if
√

z represents the other square root.

Theorem 3.1. The operator
(
∆2

uvw

)t
: l1 → l1 is a bounded linear operator and∥∥∥∥(∆2

uvw

)t∥∥∥∥
(l1,l1)

= sup
k

(|wk| + |vk+1| + |uk+2|) .

Proof. Proof is simple. Hence we omit.

Theorem 3.2. σp

(((
∆2

uvw

)t
)∗
, l∗1

)
= ∅.

Proof. Let
((

∆2
uvw

)t
)∗

f = α f for θ , f ∈ l∞ . Then, by solving system of linear equation

u0 f0 = α f0
v0 f0 + u1 f1 = α f1
w0 f0 + v1 f1 + u2 f2 = α f2
w1 f1 + v2 f2 + u3 f3 = α f3
...
wk−2 fk−2 + vk−1 fk−1 + uk fk = α fk.
...

(5)

Part 1. Suppose (uk) is a constant sequence, say uk = U for each k ∈N0 . We consider that (5). Let fm be the
first non-zero entry of the sequence

(
fn
)

. So we get fm = 0 , which is a contradiction to our assumption. For
this reason,

σp

(((
∆2

uvw

)t
)∗
, l∗1

)
= ∅.

Part 2.Assume that (uk) is a sequence of distinct positive real numbers. Consider
((

∆2
uvw

)t
)∗

f = α f , for

θ , f ∈ l∞ , which gives (5) system of equations.
For all α < {u0,u1,u2, . . .} , we have fk = 0 for all k ∈N0 , which is a contradiction.
Assume that α = um for some m . Then f0 = f1 = . . . = fm−1 = 0.



S. Altundağ, M. Abay / Filomat 30:5 (2016), 1363–1373 1368

wm−1 fm−1 + vm fm + (um+1 − α) fm+1 = 0
...

If fm = 0 , then fk = 0 for all k ∈N, which is a contradiction.

If fm , 0 , then

fk+1 =
−vk

uk+1 − um
fk, f or all k ≥ m,

and so

lim
k→∞

∣∣∣∣∣ fk+1

fk

∣∣∣∣∣ =

∣∣∣∣∣ V
um −U

∣∣∣∣∣ > 1 f or all k ≥ m.

Because um < V + U . So, f < l1∗ . Consequently

σp

(((
∆2

uvw

)t
)∗
, l∗1

)
= ∅.

Theorem 3.3. σr

(((
∆2

uvw

)t
)∗
, l1∗

)
=

{
α ∈ C :

∣∣∣∣∣ 2(U−α)

−V+
√

V2−4W(U−α)

∣∣∣∣∣ < 1
}

= S1 , where
((

∆2
uvw

)t
)∗

= ∆2
uvw .

Proof. ∆2
uvw − αI is one to one, by Theorem 3.2.

Suppose
(
∆2

uvw

)∗
y = αy , for θ , y ∈ l1 . This gives

uoy0 + voy1 + w0y2 = αy0
u1y1 + v1y2 + w1y3 = αy1
...

(6)

If y0 = y1 = 0 , then yk = 0 for all k ∈N0. So, y0 , 0, y1 , 0 and solving the system of linear equations (6) in
terms of y0 and y1 , we get

yk =
(
bk−1,0y1 − bk−1,1y0

) (u0−α)(u1−α)(u2−α)···(uk−1−α)
w0w1···wk−2

,

where bk−1,0 and bk−1,1 are defined as in [14].

Let y0 = 1 and y1 = 1
r1

.

lim
k→∞

∣∣∣∣ yk+1

yk

∣∣∣∣ = lim
k→∞

∣∣∣ uk−α
wk−1

∣∣∣ ∣∣∣∣ bk,0 y1−bk,1 y0

bk−1,0 y1−bk−1,1 y0

∣∣∣∣ = 1
|r1 |
< 1

provided
∣∣∣∣∣−V+
√

V2−4W(U−α)
2(U−α)

∣∣∣∣∣ = |r1| > 1.

So, if |r1| > 1 , then y =
(
yk

)
∈ l1 , which shows that

(
∆2

uvw

)∗
− αI is not one to one. Lemma 2.4 gives

that ∆2
uvw − αI has not dense range.

Theorem 3.4. σp

((
∆2

uvw

)t
, l1

)
=

{
α ∈ C :

∣∣∣∣∣ 2(U−α)

−V+
√

V2−4W(U−α)

∣∣∣∣∣ < 1
}

= S1.

Proof. This proof is elementary by Corollary 2.6.

Remark 3.5. σp

((
∆2

uvw

)t
, l1

)
=

{
α ∈ C :

∣∣∣∣∣ 2(U−α)

−V−
√

V2−4W(U−α)

∣∣∣∣∣ < 1
}

= S2.
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Proof. This proof is made similarly to Theorem 3.4.

Theorem 3.6. σr

((
∆2

uvw

)t
, l1

)
= ∅.

Proof.
((

∆2
uvw

)t
)∗
− αI is one to one for all α , by Theorem 3.2. Hence

(
∆2

uvw

)t
− αI is a dense range for all α ,

by Lemma 2.4. Accordingly σr

((
∆2

uvw

)t
, l1

)
= ∅.

Theorem 3.7. Assume
√

V2 = −V and define set S3 by
{
α ∈ C :

∣∣∣∣∣ 2(U−α)

−V+
√

V2−4W(U−α)

∣∣∣∣∣ ≤ 1
}

= S3. Thenσ
((

∆2
uvw

)t
, l1

)
=

S3.

Proof. Let α < S3 and y =
(
yk

)
∈ l∞. Then, by solving the equation

[((
∆2

uvw

)t
)∗
− αI

]
x = y. We obtain

(u0 − α) x0 = y0
v0x0 + (u1 − α) x1 = y1
w0x0 + v1x1 + (u2 − α) x2 = y2
...
wkxk + vk+1xk+1 + (uk+2 − α) xk+2 = yk+2
...

and in this way we can get,

x0 =
y0

u0−α
,

x1 = 1
u1−α

y1 + −v0
(u1−α)(u0−α) y0 ,

x2 = 1
u2−α

y2 + −v1
(u1−α)(u2−α) y1 +

(
v0v1

(u0−α)(u1−α)(u2−α) −
w0

(u2−α)(u0−α)

)
y0

...

α , uk for all k ∈N0 and α , U , by α < S3 . Thus
(((

∆2
uvw

)t
)∗
− αI

)−1
= (bnk) exist and

bnk =


1

u0−α
0 0 · · ·

−v0
(u0−α)(u1−α)

1
u1−α

0 · · ·
v0v1

(u0−α)(u1−α)(u2−α) −
w0

(u0−α)(u2−α)
−v1

(u1−α)(u2−α)
1

u2−α
· · ·

...
...

...
. . .

.
Let bk,k = 1

uk−α
, bk+1,k = −vk

(uk−α)(uk+1−α) , . . . for all k ∈N0. We can see

xn = bn,0yn + bn,1yn−1 + · · · + bn,ny0 =
n∑

k=0
bn,n−kyk.

We can observe,

lim
k→∞

1
uk−α

= 1
U−α = a1, , lim

x→∞
−vk

(uk−α)(uk+1−α) = −V
(U−α)

2 = a2 ,... .

Clearly, an =
(r1)n
−(r2)n

√
V2−4W(U−α)

for n = 1, 2, 3, . . . where r1 =
−V+
√

V2−4W(U−α)
2(U−α) and r2 =

−V−
√

V2−4W(U−α)
2(U−α) .

We may suppose that V2 , 4W(U − α) . Since α < S3 , |r1| < 1 and thus we have∣∣∣∣∣1 +

√
1 − 4W(U−α)

V2

∣∣∣∣∣ < ∣∣∣ 2(U−α)
−V

∣∣∣.
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Since
∣∣∣1 − √z

∣∣∣ ≤ ∣∣∣1 +
√

z
∣∣∣ for any z ∈ C , we must have∣∣∣∣∣1 − √

1 − 4W(U−α)
V2

∣∣∣∣∣ < ∣∣∣ 2(U−α)
−V

∣∣∣
which leads us to the fact that |r2| < 1 and |r2| < |r1|.
We can see that

|xn| ≤

n∑
k=0

∣∣∣bn,n−k

∣∣∣ ∣∣∣yk

∣∣∣ (7)

for all n ∈N0 . Taking limit on the inequality (7) as n→∞ , we get

‖x‖∞ ≤
∥∥∥y

∥∥∥
∞

∞∑
k=0

∣∣∣bn,n−k

∣∣∣.
We can see that

lim
k→∞

∣∣∣∣ b2k+1,k

b2k,k

∣∣∣∣ = lim
x→∞

∣∣∣ ak+2
ak+1

∣∣∣ = lim
x→∞

∣∣∣∣ (r1)k+2
−(r2)k+2

(r1)k+1
−(r2)k+1

∣∣∣∣ = |r1| < 1.

This shows that
(((

∆2
uvw

)t
)∗
− αI

)
is onto for |r1| < 1 and

((
∆2

uvw

)t
− αI

)
has a bounded inverse by Lemma 2.4.

If V2 = 4W(U − α), then an =
(

2n
−V

) (
−V

2(U−α)

)n
, for all n ≥ 1. Similarly

|xn| ≤
n∑

k=0

∣∣∣bn,n−k

∣∣∣ ∣∣∣yk

∣∣∣ for all n ∈N0 and taking limit on the inequality (7) as n→∞ , we get

‖x‖∞ ≤
∥∥∥y

∥∥∥
∞

∞∑
k=0

∣∣∣bn,n−k

∣∣∣
and

lim
k→∞

∣∣∣∣ b2k+1,k

b2k,k

∣∣∣∣ = lim
x→∞

∣∣∣ ak+2
ak+1

∣∣∣ =
∣∣∣∣ −V

2(U−α)

∣∣∣∣ < 1.

This means that
(((

∆2
uvw

)t
)∗
− αI

)
is onto for |r1| < 1 and

((
∆2

uvw

)t
− αI

)
has a bounded inverse by Lemma 2.4.

Thus α < σc

((
∆2

uvw

)t
, l1

)
. In that case

σc

((
∆2

uvw

)t
, l1

)
⊆ σ

α ∈ C :

∣∣∣∣∣∣∣ 2 (U − α)

−V +
√

V2 − 4W (U − α)

∣∣∣∣∣∣∣ ≤ 1

 = S3. (8)

By Theorem 3.4, we get

σp

((
∆2

uvw

)t
, l1

)
=

α ∈ C :

∣∣∣∣∣∣∣ 2 (U − α)

−V +
√

V2 − 4W (U − α)

∣∣∣∣∣∣∣ < 1

 ⊆ σ ((
∆2

uvw

)t
, l1

)
. (9)

Since the spectrum of any bounded operator is closed, we have

α ∈ C :

∣∣∣∣∣∣∣ 2 (U − α)

−V +
√

V2 − 4W (U − α)

∣∣∣∣∣∣∣ ≤ 1

 ⊆ σ ((
∆2

uvw

)t
, l1

)
. (10)



S. Altundağ, M. Abay / Filomat 30:5 (2016), 1363–1373 1371

and from Theorem 3.4, 3.6 and (3.8),

σ
((

∆2
uvw

)t
, l1

)
⊆

α ∈ C :

∣∣∣∣∣∣∣ 2 (U − α)

−V +
√

V2 − 4W (U − α)

∣∣∣∣∣∣∣ ≤ 1

 . (11)

Combining (10) and (11), this completes the proof.

Remark 3.8. If
√

V2 = V, then σ
((

∆2
uvw

)t
, l1

)
=

{
α ∈ C :

∣∣∣∣∣ 2(U−α)

−V−
√

V2−4W(U−α)

∣∣∣∣∣ ≤ 1
}

.

Theorem 3.9. σc

((
∆2

uvw

)t
, l1

)
=

{
α ∈ C :

∣∣∣∣∣ 2(U−α)

−V+
√

V2−4W(U−α)

∣∣∣∣∣ = 1
}
.

Proof. This is clear by Theorem 3.4, 3.6, 3.7.

Theorem 3.10. Assume that
√

V2 = −V. If |2 (U − α)| <
∣∣∣∣−V −

√
V2 − 4W (U − α)

∣∣∣∣, then α ∈ A3σ
((

∆2
uvw

)t
, l1

)
.

Proof. By Remark 3.5,
((

∆2
uvw

)t
− αI

)−1
dosen’t exist. Let y = (y0, y1, ...) ∈ l1. Solving the linear equation((

∆2
uvw

)t
− αI

)
x = y,

(u0 − α) x0 + vox1 + w0x2 = y0
(u1 − α) x1 + v1x2 + w1x3 = y1
(u2 − α) x2 + v2x3 + w2x4 = y2
...
(uk − α) xk + vkxk+1 + wkxk+2 = yk
...

Let x0 = 0 and x1 = 0. So

x2 = 1
w0

y0, x3 = 1
w1

y1 + −v1
wow1

y0, x4 = 1
w2

y2 + −v2
w1w2

y1 +
(

v2v1
w0w1w2

−
(u2−α)
w0w2

)
y0, ... .

Let,ck,k+2 = 1
wk

, ck,k+3 = −vk+1
wkwk+1

, ck,k+4 = vk+2vk+1
wkwk+1wk+2

−
(uk+2−α)
wkwk+2

, . . . .

Hence, we say that

xk = c0,ky0 + c1,ky1 + · · · + ck−2,kyk−2 =
k−2∑
n=0

cn,kyn. Then,∑
k
|xk| ≤ sup

k
(Rk)

∑
k

∣∣∣yk

∣∣∣, where

Rk = 1
|wk |

+
∣∣∣ −vk+1

wkwk+1

∣∣∣ +
∣∣∣ vk+2vk+1

wkwk+1wk+2
−

uk+2−α
wk+2wk

∣∣∣ + · · · for all k ∈N0.

Now by letting

r1 =
−V+
√

V2−4W(U−α)
2(U−α) and r1 =

−V−
√

V2−4W(U−α)
2(U−α) ,

we can observe,

lim
k→∞

ck,k+2 = 1
W = t1 = 1√

V2−4W(U−α)
(−1)

(
1
r1
−

1
r2

)
,
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lim
k→∞

ck,k+3 = −V
W2 = t2 = 1√

V2−4W(U−α)
(−1)2

(
1
r2

1
−

1
r2

2

)
,

lim
k→∞

ck,k+4 = V2

W3 = t3 = 1√
V2−4W(U−α)

(−1)3
(

1
r3

1
−

1
r3

2

)
,

lim
k→∞

ck,k+5 = −V3

W4 = t4 = 1√
V2−4W(U−α)

(−1)4
(

1
r4

1
−

1
r4

2

)
,

...

where tn = 1√
V2−4W(U−α)

(−1)n
(

1
rn

1
−

1
rn

2

)
n = 1, 2, 3, . . ..

Since |r2| > 1 , we have |r1| > 1.

Let V2 , 4W(U − α).

Since lim
k→∞

∣∣∣∣ ck,2k+2

ck,2k+1

∣∣∣∣ = lim
k→∞

∣∣∣ tk+1
tk

∣∣∣ =
∣∣∣ 1

r2

∣∣∣ < 1, then Rk is convergent for all k ∈N.

That is lim
k→∞

Rk =
∞∑

n=1
|tn| ≤

1∣∣∣∣√V2−4W(U−α)
∣∣∣∣
(
∞∑

n=1

∣∣∣ 1
r1

∣∣∣n +
∞∑

n=1

∣∣∣ 1
r2

∣∣∣n) < ∞.

(Rk) is a convergent sequence of positive real numbers and lim
k→∞

Rk < ∞, hence sup
k

Rk < ∞.

This shows x = (xk) ∈ l1.

If V2 = 4W(U − α), then tn = 1
−W n

(
2(U−α)
−V

)n−1
(−1)n. Consequently,

lim
k→∞

∣∣∣∣ ck,2k+2

ck,2k+1

∣∣∣∣ = lim
k→∞

∣∣∣ tk+1
tk

∣∣∣ = 2|U−α|
|−V| < 1. So, Rk is convergent for all k ∈N and

lim
k→∞

Rk =
∞∑

n=1
|tn| =

∞∑
n=1

∣∣∣ n
W

∣∣∣ ∣∣∣ 2(U−α)
−V

∣∣∣n−1
< ∞.

(Rk) is a convergent sequence of positive real numbers and lim
k→∞

Rk < ∞, hence sup
k

Rk < ∞. This shows

x = (xk) ∈ l1 . Thus,
((

∆2
uvw

)t
− αI

)
is onto. So we have α ∈ A3σ

((
∆2

uvw

)t
, l1

)
.

Theorem 3.11. Let
√

V2 = −V . The following statements hold:

i. σap

((
∆2

uvw

)t
, l1

)
= S3.

ii. σco

((
∆2

uvw

)t
, l1

)
= ∅.

Proof. i. Since from Table 1 determined [10],

σap

((
∆2

uvw

)t
, l1

)
= σ

((
∆2

uvw

)t
, l1

)
/C1σ

((
∆2

uvw

)t
, l1

)
.

We have by Theorem 3.6

C1σ
((

∆2
uvw

)t
, l1

)
= C2σ

((
∆2

uvw

)t
, l1

)
= ∅.

So, σap

((
∆2

uvw

)t
, l1

)
= S3.

ii. From Table 1, we have
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σco

((
∆2

uvw

)t
, l1

)
= C1σ

((
∆2

uvw

)t
, l1

)
∪ C2σ

((
∆2

uvw

)t
, l1

)
∪ C3σ

((
∆2

uvw

)t
, l1

)
.

By Theorem 3.2, σco

((
∆2

uvw

)t
, l1

)
= ∅.

Theorem 3.12. σc

(((
∆2

uvw

)t
)∗
, l∗1

)
=

{
α ∈ C : 2|U−α|∣∣∣∣−V+

√
V2−4W(U−α)

∣∣∣∣ = 1
}
.

Proof. The proof is obvious, so is ommitted.

Theorem 3.13. Let
√

V2 = −V. If |2 (U − α)| <
∣∣∣∣−V +

√
V2 − 4W (U − α)

∣∣∣∣, then α ∈ C1σ
(((

∆2
uvw

)t
)∗
, l∗1

)
.

Proof. By Theorem 3.2,
(((

∆2
uvw

)t
)∗
− αI

)−1
is exist. By Theorem 3.3 and 3.12, proof is completed.

Theorem 3.14. σδ
((

∆2
uvw

)t
, l1

)
=

{
α ∈ C :

∣∣∣∣∣ 2(U−α)

−V+
√

V2−4W(U−α)

∣∣∣∣∣ = 1
}

.

Proof. By Proposition 2.2 (c), it can be seen readily.

4. Acknowledgement

This work was supported by the Sakarya University Research Fund with Project Number 2013-02-00-004.
This article was studied partly in International University of Sarajevo, Faculty of Engineering and Natural
Sciences, Sarajevo, BIH. The authors also thank Prof. Dr. Fuat GURCAN (Faculty Dean, International
University of Sarajevo, Faculty of Engineering and Natural Sciences, Sarajevo, BIH) for his contributions to
this study.

References
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