
Filomat 30:5 (2016), 1283–1296
DOI 10.2298/FIL1605283A

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. In this paper, a modified BFGS algorithm is proposed to solve unconstrained optimization
problems. First, based on a modified secant condition, an update formula is recommended to approximate
Hessian matrix. Then thanks to the remarkable nonmonotone line search properties, an appropriate
nonmonotone idea is employed. Under some mild conditions, the global convergence properties of the
algorithm are established without convexity assumption on the objective function. Preliminary numerical
experiments are also reported which indicate the promising behavior of the new algorithm.

1. Introduction

In this paper, we consider the unconstrained optimization problem

min
x∈Rn

f (x), (1)

where f : Rn
→ R is a continuously differentiable function. Iterative methods are usually used for solving

this problem by generating a sequence {xk} as follows:

xk+1 = xk + αkdk, (2)

for k ≥ 0, where dk is a search direction, αk > 0 is a steplength and x0 is a given initial point. Choosing
an appropriate direction and a suitable step size are two basic steps of these algorithms. Generally, the
search direction dk is required to satisfy the descent condition ∇ f (xk)Tdk < 0 and αk is determined such that
it guarantees a sufficient reduction in function value. There are many different procedures to choose the
search direction dk. For example, Newton, quasi-Newton, conjugate gradient, steepest descent and trust
region methods, see [20]. Among these methods, the Newton method has the highest rate of convergence
where its direction is computed by solving system Gkdk = −1k where Gk = ∇2 f (xk) and 1k = ∇ f (xk).

Computation of Gk or G−1
k , in each iteration, is expensive or even could be analytically unavailable.

Quasi-Newton methods were proposed to overcome this drawback without explicitly evaluating the Hes-
sian. In these methods, Bk is an approximation to the Hessian that is updated at every iteration by means
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Email addresses: kamini@razi.ac.ir (Keyvan Amini), bahrami.somaye@gmail.com (Somayeh Bahrami),

shadi 24 63@yahoo.com (Shadi Amiri)



K. Amini, S. Bahrami, Sh. Amiri / Filomat 30:5 (2016), 1283–1296 1284

of a low-rank formula based only on the function and gradient values gathered during the descent process.
The standard quasi-Newton methods generally meet the following secant equation:

Bk+1sk = yk,

where sk = xk+1 − xk, yk = 1k+1 − 1k and Bk+1 is an approximation of Gk which at the first iterate, B0 is
an arbitrary nonsingular positive definite matrix. Nowadays, Among quasi-Newton methods, the most
efficient quasi-Newton method is perhaps the BFGS method which was proposed by Broyden, Fletcher,
Goldfarb and Shanno independently. The matrix Bk+1 in the BFGS method can be updated by the following
formula:

Bk+1 = Bk −
BksksT

k Bk

sT
k Bksk

+
ykyT

k

sT
k yk

.

It is known that the BFGS method preserves the positive definiteness of the matrices {Bk}, if the curvature
condition sT

k yk > 0 holds. Therefore the BFGS direction is the descent direction of f at xk no matter whether
Gk is positive definite or not.

The convergence properties of the BFGS method for convex minimization have been well studied, for
instance see [3, 4, 21]. Dai constructed an example with six cycling points and showed by it that the BFGS
method with the Wolfe line search may fail for nonconvex functions[5]. Later, Mascarenhas presented a
three-dimensional counter-example such that the BFGS method does not converge even with exact line
search [17]. We note that many of studies have been focused on convex objective functions. To improve the
global convergence property of the BFGS method, many modifications have been proposed, for instances Li
and Fukushima made some modifications on the standard BFGS method and introduced a modified BFGS
algorithm (MBFGS) [13, 14]. Under appropriate conditions, the globally and superlinearly convergence
of their method have been proved for nonconvex optimization problems. Their modifications were so
useful that have motivated many researchers to make further improvements on the BFGS method. For
example, Xiao et al. introduced a new algorithm by using the MBFGS update formula suggested by Li
and Fukushima along with a nonmonotone line search proposed in [23]. They proved that the method is
globally convergent for nonconvex optimization problems.

As mentioned, another factor making a good iterative process is an appropriate line search which
produces a sufficient reduction in function value. There are many conditions namely, Armijo, Wolfe or
Goldstein condition. Among these conditions, Armijo rule is the most popular condition to accept a
steplength stating as follows:

f (xk + αkdk) ≤ fk + σαk1
T
k dk, (3)

in which σ ∈ (0, 1) and αk is the largest member in {1, ρ, ρ2, · · · } satisfying (3) such that ρ ∈ (0, 1). In the
mentioned formula fk denotes f (xk) and it is clear that fk+1 < fk for every descent directions, so this schema
is called a monotone line search.

The first nonmonotone line search technique was proposed by Grippo et al. for Newton’s method by
relaxing Armijo condition [10]. It was defined as follows:

f (xk + αkdk) ≤ max
0≤ j≤m(k)

{ fk− j} + σαk1
T
k dk, (4)

where 0 ≤ m(k) ≤ min{m(k−1) + 1,N} that N is a nonnegative integer constant. In fact, in nonmonotone line
search procedures some growth in the function value is permitted. As pointed out by many researchers,
for example [6, 10, 11, 18, 22, 25], nonmonotone schemas not only can enhance the likelihood of finding a
global optimum but also can improve speed of convergence in cases where a monotone schema is forced
to creep along the bottom of a narrow curved valley. Although the nonmonotone techniques based on (4)
have some advantages and work well in many cases, they include some drawbacks, see [6, 25]. One of the
efficient nonmonotone line search methods to overcome these drawbacks has been proposed by Zhang and
Hager in [25]. It has the same general schema as Grippo et al. while the statement ”max” is replaced with
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a weighted average of function values over successive iterations. In detail, their nonmonotone line search
is described as follows:

f (xk + αkdk) ≤ Ck + σαk1
T
k dk, (5)

where

Ck =

{
fk, if k = 0
(ηk−1Qk−1Ck−1 + fk)/Qk, if k ≥ 1

Qk =

{
1, if k = 0
ηk−1Qk−1 + 1, if k ≥ 1,

(6)

with ηk−1 ∈ [ηmin, ηmax] which ηmin and ηmax are two constants such that 0 ≤ ηmin ≤ ηmax < 1. Numerical
results have been showed that the nonmonotone line search (5) is more efficient than the line search of
Grippo et al. [25].

The nonmonotone BFGS method was first studied by Liu, et al. in [15]. Subsequently, two other
nonmonotone BFGS methods were proposed for solving problem (1) in [12, 16]. Note that convergence
analysis in all these algorithms was proved under convex assumption on the objective function. In this
paper, a nonmonotone MBFGS algorithm is introduced and the global convergence of the method is proved
without convexity assumption. Actually, the algorithm combines the MBFGS method, proposed by Xiao
et al. in [23], with nonmonotone line search (5) and also gains advantages of [2] and [24]. Numerical
experiments indicate that the new algorithm is promising and efficient.

This paper is organized as follows. The new algorithm is described in section 2. The convergence
properties of the algorithm is proved in Section 3. Section 4 is dedicated to the numerical experiments.
Finally, some conclusions are delivered in the last section.

2. The Nonmonotone Modified BFGS Algorithm

Although the BFGS algorithm is one of the most successful algorithms for unconstrained nonlinear
optimization, it is well known that this method has two important disadvantages. First, the BFGS directions
may not be descent especially when the condition sT

k yk > 0 isn’t satisfied and so can not guarantee positive
definiteness of the matrix Bk. Second, Although global and superlinear convergence results have been
established for convex problems, it has been proved that, for general problems, the BFGS algorithm may
not be convergent for nonconvex objective functions.

In this section, a nonmonotone MBFGS algorithm for nonconvex objective functions is presented guar-
anteeing the positive definiteness of the matrix Bk. The new method is introduced after describing some
motivations.

As mentioned in the previous section, Li and Fukushima, in [13], introduced the modified secant
equation

Bk+1sk = y∗k, (7)

where

y∗k , yk + t∗ksk, (8)

and

t∗k = C‖1k‖
µ + max{

−sT
k yk

‖sk‖
2 , 0} ≥ 0, (9)

where C and µ are two positive constants. Based on (7), they reformed the BFGS update formula as follows:

Bk+1 = Bk −
BksksT

k Bk

sT
k Bksk

+
y∗ky∗k

T

sT
k y∗k

,
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and introduced an efficient algorithm that is called MBFGS. It is easily seen that

sT
k y∗k ≥ C‖1k‖

µ
‖sk‖

2 > 0, (10)

for all k ∈ N. This property is independent on the convexity of f as well as the used line search and
guarantees positive definiteness of the matrix Bk, see [23]. Following that, Xiao et al. combined the
MBFGS algorithm with the nonmonotone line search (4) and constructed another MBFGS algorithm,[23].
They proved that this MBFGS methods possess a global convergence property even without convexity
assumption on the objective function.

Under other circumstances, Yuan, in [24], proposed another modified BFGS algorithm for unconstrained
optimization in which Bk is updated by the relation

Bk+1 = Bk −
BksksT

k Bk

sT
k Bksk

+ t̃k
yk(yk)T

sT
k yk

, (11)

where

t̃k =
2

sT
k yk

( fk − fk+1 + sT
k 1k+1). (12)

The algorithm preserves the global and local superlinear convergence properties for convex objective
functions, too.

Now, a new algorithm is going to be proposed in which an update formula for the BFGS method using
y∗k in equation (8) is presented then similar to (11), a parameter τ > 0 is embeded into the update formula
for computing Bk as follows:

Bk+1 = Bk −
BksksT

k Bk

sT
k Bksk

+ τ
y∗k(y∗k)T

sT
k y∗k

. (13)

The mentioned Bk satisfies the following modified secant condition

Bk+1sk = τy∗k. (14)

Remark 2.1. Obviously, if τ = 1, (14) reduces to the modified secant condition (7). Furthermore, a suitable choice
for τ is t̃k in (12).

Remark 2.2. Since τ > 0 and the inequality (10) holds, it is concluded that Bk+1 generated by (13) is a positive
definite matrix when Bk is a positive definite matrix.

We now outline the new nonmonotone MBFGS algorithm as follows:

Algorithm N-MBFGS: (Nonmonotone Modified BFGS algorithm)
Input:. An initial point x0 ∈ Rn, a symmetric positive definite matrix B0 ∈ Rn×n, constants

σ, ρ ∈ (0, 1) and the positive constants C, µ and ε.
Step 0. Set Q0 = 1, C0 = f0 and k = 0.
Step 1. If ‖1k‖ ≤ ε, stop.
Step 2. Compute direction dk by solving Bkdk = −1k.
Step 3. Set αk = ρ jk where jk is the smallest non-negative integer such that αk satisfies (5).
Step 4. Set xk+1 = xk + αkdk.
Step 5. Select an appropriate τ. Update Bk by (13) in which y∗k is obtained by (8) .
Step 6. Set k = k + 1 and go to Step 1.
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3. Convergence Analysis

In this section, we discuss the global convergence properties of the new algorithm for general non-
linear objective function. We need to make the following assumptions on the objective function f .

(H1) The level set L(x0) = {x ∈ Rn
| f (x) ≤ f (x0)} is bounded.

(H2) f (x) is differentiable on some neighborhood L0 of L(x0) and its gradient 1 is Lipschitz continuous on
L0, namely, there exists a constant L > 0 such that

‖1(x) − 1(y)‖ ≤ L‖x − y‖, ∀ x, y ∈ L0,

where ||.|| denotes the Euclidean norm.

Lemma 3.1. Suppose Assumption H1 is satisfied and the sequence {xk} is generated by Algorithm N-MBFGS, then
fk ≤ Ck, for each k ∈N ∪ {0}. Also the nonmonotone line search (5) is well-defined.

Proof. Because f (x) is a continuous function, by considering Assumption H1, it is deduced that f (x) is
bounded. Then the proof is followed Similar to Lemma 1.1 in [25].

Lemma 3.2. Suppose the sequence {xk} is generated by Algorithm N-MBFGS, then {Ck} is a nonincreasing sequence
and for all k ∈N ∪ {0}

{xk} ⊂ L(x0). (15)

Proof. Since Bk is a positive definite matrix, we obtain 1T
k dk = −dT

k Bkdk < 0. So, according to Theorem 3.1 in
[25], {Ck} is a non-increasing sequence and

fk+1 ≤ Ck ≤ Ck−1 ≤ ... ≤ C0 = f0.

This implies that {xk} generated by Algorithm N-MBFGS is contained in the level set L(x0).

Lemma 3.3. Let Assumptions H1 and H2 are satisfied and the sequence {xk} is generated by Algorithm N-MBFGS.
If ‖1k‖ ≥ ζ holds for all k ∈ N with a constant ζ > 0, then there exist positive constants β1, β2 and β3 such that, for
all k ∈N, the inequalities

‖Bisi‖ ≤ β1‖si‖ , β2‖si‖
2
≤ sT

i Bisi ≤ β3‖si‖
2, (16)

hold for at least a half of the indices i ∈ {1, 2, ..., k}.

Proof. We first show that there exist two positive constants m and M such that

y∗Tk sk

‖sk‖
2 ≥ m, (17)

and

‖y∗k‖
2

y∗Tk sk
≤M. (18)

To do this, from (10) and assumption ‖1k‖ ≥ ζ, we have

sT
k y∗k ≥ C̄‖1k‖

µ
‖sk‖

2
≥ C̄ζµ‖sk‖

2, (19)

so

y∗Tk sk

‖sk‖
2 ≥ m,
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where m := C̄ζµ is a positive constant.
Besides, it follows from (8), (9) and Cauchy-Schwartz inequality that

‖y∗k‖ ≤ ‖yk‖ + ‖sk‖(C̄‖1k‖
µ +
‖yk‖

‖sk‖
).

Considering the relation (15) and Assumptions H1 and H2, there exists a constant M̄ > 0 such that ‖1k‖ ≤ M̄.
Therefore, it can be seen that

‖y∗k‖ ≤ ‖sk‖(L + C̄M̄µ + L) = c‖sk‖, (20)

where L is Lipschitz constant in Assumption H2 and c = L + C̄Dµ + L. The relation (19) along with (20), for
all k ∈N, result

‖y∗k‖
2

y∗Tk sk
≤M,

where M = c2

C̄ζµ . The rest of the proof follows from (17), (18) and Theorem 2.1 in [3].

Lemma 3.4. Let Assumptions H1 and H2 are satisfied and the sequence {xk} is generated by Algorithm N-MBFGS.
If ‖1k‖ ≥ ζ holds for all k ∈N with some constant ζ > 0, then there is a positive constant α such that αk > α for all k
belonging to J = {k ∈N| (16) holds}.

Proof. It is sufficient that the case αk , 1 is considered. The line search rule (5) implies that άk ≡ αk/ρ does
not satisfy inequality (5), i.e.

f (xk + άkdk) − Ck > σάk1
T
k dk,

because fk ≤ Ck, it is concluded that

f (xk + άkdk) − fk > σάk1
T
k dk.

Using the mean-value theorem, it is obtained

1(xk + θάkdk)Tdk > σ1
T
k dk, (21)

where θ ∈ (0, 1). Now, According to the Cauchy-Schwartz inequality, Assumption H2, (16) and (21), it
follows that

άkL‖dk‖
2
≥ ‖1(xk + θάkdk) − 1k‖.‖dk‖

≥ (1(xk + θάkdk) − 1k)Tdk

> −(1 − σ)1T
k dk

= (1 − σ)dT
k Bkdk

≥ (1 − σ)β2‖dk‖
2.

So άk > β2(1 − σ)/L. This means that αk > α, for all k ∈ J, where α = β2ρ(1 − σ)/L is positive.

Lemma 3.5. Suppose that Assumption H1 is satisfied and the sequence {xk} is generated by Algorithm N-MBFGS,
then

∞∑
k=0

(−1T
k sk) < ∞. (22)
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Proof. Using (5) and (6), it can be concluded that

Ck+1 =
ηkQkCk + fk+1

Qk+1

≤
ηkQkCk + Ck + σαk1

T
k dk

Qk+1

=
(ηkQk + 1)Ck

Qk+1
+
σαk1

T
k dk

Qk+1

= Ck +
σαk1

T
k dk

Qk+1
,

where the last equality is ensued from Qk+1 = ηkQk + 1. This means that

Ck − Ck+1 ≥
−σαk1

T
k dk

Qk+1
. (23)

On the other hand, it was proved in [25] that

Qk+1 = 1 +

k∑
j=0

j∏
i=0

ηk−i ≤ 1 +

k∑
j=0

η j+1
max ≤

∞∑
j=0

η j
max =

1
1 − ηmax

. (24)

Inequalities (23) and (24) imply

Ck − Ck+1 ≥ σ(1 − ηmax)(−αk1
T
k dk),

therefore
∞∑

k=0

(Ck − Ck+1) ≥ σ(1 − ηmax)
∞∑

k=0

(−αk1
T
k dk). (25)

This inequality along with Lemma 3.1 indicate

σ(1 − ηmax)
∞∑

k=0

(−αk1
T
k dk) ≤ C0 − lim

k→∞
Ck ≤ f0 − lim

k→∞
fk < ∞,

where the last inequality comes from Assumption H1 and this fact that f (x) is a continuous function. So
(22) holds and the proof is completed.

Now, the main result of this section, the global convergence of the new algorithm, can be described.

Theorem 3.6. Suppose Assumptions H1 and H2 are satisfied and the sequence {xk} is generated by Algorithm
N-MBFGS, then

lim inf
k→∞

‖1k‖ = 0. (26)

Proof. CONTRADICTION. Assume that lim infk→∞ ‖1k‖ , 0, so there exists a constant ζ > 0 such that

‖1k‖ ≥ ζ,

for all k sufficiently large. Since Bksk = αkBkdk = −αk1k, it follows from (22) that
∞∑

k=0

αk
sT

k Bksk

‖Bksk‖
2 ‖1k‖

2 =

∞∑
k=0

1
αk

sT
k Bksk

=

∞∑
k=0

(−αk1
T
k dk) < ∞.
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‖1k‖ ≥ ζ and considering the definition of J in Lemma 3.4, lead us to

∞∑
k=0

αk
sT

k Bksk

‖Bksk‖
2 ‖1k‖

2
≥ ζ2

∞∑
k=0

αk
sT

k Bksk

‖Bksk‖
2

≥ ζ2
∑
k∈J

αk
sT

k Bksk

‖Bksk‖
2

> ζ2α
∑
k∈J

sT
k Bksk

‖Bksk‖
2 ,

in which the last inequality comes from Lemma 3.4. This implies

∑
k∈J

sT
k Bksk

‖Bksk‖
2 < ∞. (27)

Since the set J is infinite, it is concluded that
sT

k Bksk

‖Bksk‖
2 → 0 for k ∈ J. This immediately contradicts the fact

sT
k Bksk

‖Bksk‖
2 ≥

β2‖sk‖
2

β2
1‖sk‖

2
=
β2

β2
1

,

that is an obvious result of (16).

4. Numerical Experiments

In this section, the numerical experiments of the new MBFGS algorithm (N-MBFGS) are compared
with the standard BFGS algorithm along with Armijo line search (BFGS) and the MBFGS algorithm proposed
by Xiao et al., (MBFGS-XG)[23]. To have an appropriate comparison, we introduce another algorithm in
which the nonmonotone line search proposed by Zhang and Hager is replaced by Xiao’s nonmonotone line
search and named it MBFGS-XZH.

The experiments are written in MATLAB R2009a programming environment with double precision
format. We tested all the algorithms on a set of 83 problems that were taken of Andrei [1] and Moré, et al.
[19]. For a better comparison, the same stopping criterion and the same parameters were used in all the
algorithms . The stopping criterion is

‖1k‖ ≤ 10−6
‖10‖,

and as far as our experiences show, the parameters σ = 0.38, ρ = 0.46, ηk = 0.2 and τk = 0.1 have the best
results for all the algorithms. In addition, similar to [23], N = 5, µ = 4 and C̄ = 10−2 if ‖1k‖ ≤ 10−2 and C̄ = 0
otherwise, are chosen.

Tables 1 and 2 demonstrate the numerical results of the algorithms in which ’Prob. name’ and ’Dim’
present the name and the dimension of the test problems, respectively. Furthermore, the symbols Ni and
N f in Table 1 stand for the number of iterations and the number of function evaluations, respectively. Also,
Table 2 presents the required CPU time of the algorithms. Clearly, in the considered algorithms, the number
of iterates and the number of gradient evaluations are equal. Therefore, the number of gradient evaluations
is not included in the tables. Furthermore, the symbol ”NaN” in the tables means that the direction dk could
not be computed by dk = −B−1

k 1k.
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Table 1. Numerical results of the Ni and N f
Prob. name Dim BFGS MBFGS-XG MBFGS-XZH N-MBFGS

Ni/N f Ni/N f Ni/N f Ni/N f
1. Powell b. scaled 2 111/185 148/210 131/ 197 111/445
2. Brown b. scaled 2 12/51 11/ 48 11/ 49 38/137
3. Beale 2 14 / 25 14 / 22 14 / 23 20/ 65
4. Helical valley 3 25/57 28/ 52 27/ 52 27/106
5. Gaussian 3 4 /8 4/ 8 4/8 19/ 54
6. Box 3-dim 3 NaN 37/ 57 39/ 61 28/97
7. Gulf research 3 22 / 39 NaN 24 / 34 29 / 86
8. Brown and... 4 18/72 20/ 70 19/69 19/ 100
9. Wood 4 77 / 144 91 / 136 20 / 51 71/ 282
10. Biggs EXP6 6 38/51 36/42 34/ 43 NaN
11. Watson 20 43/80 45/ 76 34/ 69 45/ 159
12. VARDIM 50 16 /51 16/ 51 16 / 51 8/ 51
13. Variably dim... 100 16 / 57 16/ 57 16 / 57 9/ 58
14. Penalty II 100 103 / 1196 128 / 1569 119 / 1357 115/ 1331
15. LIARWHD 100 23 / 79 178 / 429 20 / 59 18 / 63
15. LIARWHD 1000 28 / 105 245 / 821 37 / 126 19/ 73
16. Trigonometric 200 60/ 66 58 / 60 58/ 60 126/ 361
17. Raydan 1 200 68 / 251 200 / 500 66 / 211 60 / 196
17. Raydan 1 1000 136 / 761 475 / 2277 131/ 675 116 / 592
18. Ge. trid. 2 200 91 / 607 370 / 1383 92 / 596 46 / 318
19. Penalty I 500 21 / 184 149 / 892 48 / 302 19 / 149
19. Penalty I 1000 16 / 190 225/ 1809 52/ 380 22 / 202
20. Ex.q.p. QP1 900 21 / 52 25 / 45 22 / 53 22 / 77
20. Ex.q.p. QP1 1000 26 / 60 34 / 54 22 / 48 19/ 62
21. Ex.q.p. QP2 900 80 / 570 NaN NaN 27 /104
21. Ex.q.p. QP2 1000 130 / 780 NaN NaN 22/ 83
22. Ex. White... 980 1419 / 9238 3242/ 11967 1523/ 9027 1201/ 8470
23. DIXMAANA 999 7 / 11 8/10 8 / 10 19/ 48
24. Ex. Rosen. 1000 1085 / 6155 1734 / 7736 1079 / 5812 541 / 3519
25. Ex. Freu... 1000 18 / 94 288 / 1572 28 / 126 21/ 114
26. Ge. Rose. 1000 4232 /13481 NaN 1215/9677 461/4094
27. Ge. White... 1000 6689/ 17949 NaN 6823/16358 6607/ 32783
28. Ex. Beale 1000 16 / 40 51 / 83 24 / 48 21/ 67
29. Ex. PEN. 1000 16 / 186 199 / 1530 47 / 386 26 / 228
30. Per. quad. 1000 224 / 2023 1002/ 8203 224 / 2020 131 / 1183
31. Raydan 2 1000 5 / 7 5 / 7 5 / 7 16/ 43
32. Diagonal 1 1000 NaN 1359 / 8777 604 / 4947 171 / 1419
33. Diagonal 2 1000 194 / 195 194 / 195 194 / 195 209/ 526
34. Diagonal 3 1000 198 / 1610 1051 / 7640 199 / 1596 118 / 948
35. Diagonal 4 1000 2/9 2/9 2/9 18/ 57
36. Diagonal 5 1000 5 / 7 5 / 6 5 / 6 16/ 43
37. Diagonal 7 1000 5 / 8 6 / 8 6 / 8 17/ 46
38. Diagonal 8 1000 4 / 7 4 / 7 4 / 7 15/ 39
39. Diagonal 9 1000 637 / 5326 1309 / 8572 449/ 3645 142 / 1157
40. Hager 1000 35 / 145 326/ 1063 48 / 189 31 / 124
41. Ge. trid. 1 1000 52 / 242 290 / 1085 62 / 269 27 / 119
42. Ex. trid. 1 1000 20 / 27 19/ 24 20 / 26 24/ 70
43. Ex. trid. 2 1000 28 / 65 70 / 74 30 / 59 40/ 115
44. Ex. TET 1000 7 / 14 7 / 13 7 / 14 17/ 49
45. Ex. Him. 1000 13 / 41 168/ 589 23/ 59 18/ 60
46. Ge. PSC1 1000 52 / 119 260 / 574 95 /168 42/ 128
47. Ex. PSC1 1000 12 / 23 14 / 21 13/ 21 17/ 47
48. Ex. Powell 1000 82 / 342 802 / 3170 78 / 307 37 / 152
49. Full H. FH3 1000 3 / 14 3 / 14 3 / 14 15/ 49
50. Ex. BD1 1000 10/ 19 18 /21 12 /17 20/ 56
51. Ex. Maratos 1000 1555 / 8285 NaN NaN 1006 / 6339
52. per.q.diag. 1000 15/ 63 123/ 308 27/ 86 17/ 54
53. Ex. Wood 1000 1592/ 10206 2444/ 10342 1602/ 10008 1310/ 10152
54. Quad. QF1 1000 200 / 1617 854 / 6390 201 / 1612 135 / 1084
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Table 1. (continued)
55. Quad. QF2 1000 347 / 3481 1140 / 9918 365 / 3653 168/ 1683
56. Ex.q.ex.EP1 1000 3 / 12 3 / 12 3 / 12 17/ 66
57. FLETCHCR 1000 1502 /10249 1796 / 9995 1538 /10106 1237 / 10302
58. BDQRTIC 1000 112 / 683 776 / 3917 137 / 785 69 / 424
59. TRIDIA 1000 528 / 6228 1062 / 10652 503 / 5841 374/ 4419
60. ARWHEAD 1000 7 / 22 7/ 20 7 / 21 11/ 44
61. NONDIA 1000 9/46 108/511 26/104 25/129
62. NONDQUAR 1000 39/123 184/ 726 45/ 139 17/ 59
63. DQDRTIC 1000 12 / 52 13 / 27 12 / 40 19/ 83
64. EG2 1000 58 / 82 59/ 75 61 / 80 63/ 229
66. Par. per. quad. 1000 150 / 1361 1022 / 8331 153 /1373 78 / 703
66. Al. per. quad. 1000 224 / 2023 1002/ 8206 225/ 2029 131/ 1183
67. Pert. trid. Q... 1000 214 / 1934 1043/ 8493 214/ 1930 133/ 1201
68. Stair. 1 1000 80/ 604 NaN 79 / 582 46/ 403
69. Stair. 2 1000 80 / 604 NaN 79 / 582 46/403
70. POWER 1000 1003/ 17351 1007/ 16550 1003 / 17244 1004/ 17259
71. ENGVAL1 1000 43 / 159 526 / 1400 76 / 245 23 / 84
72. EDENSCH 1000 48/ 191 428 / 1253 56 / 195 19/ 67
73. CUBE 1000 287 / 1244 NaN 216 / 1063 233 / 1246
74. BDEXP 1000 17 / 18 17 / 18 17 / 18 7/ 8
75. QUARTC 1000 16 / 20 16/20 16 / 20 6/ 14
76. DIXON3DQ 1000 518/1034 873/ 1156 524/ 1035 686/ 1783
77. Ex. DEN. B 1000 7 / 11 7 / 10 7 / 10 16/ 46
78. Ex. DEN. F 1000 13 / 67 292 / 1516 30 / 141 26 / 131
79. BIGGSB1 1000 518 / 1035 883 / 1167 521 / 1024 689 / 1794
80. Ge. Quad. 1000 NaN NaN NaN 19/ 57
81. SINCOS 1000 12 / 23 14 / 21 13 / 21 17/ 47
82. HIMMELBG 1000 20 / 24 18/ 21 20/ 24 7/ 14
83. HIMMELH 1000 6 / 11 6 / 10 6 / 11 17/ 49

Table 2.Numerical results of CPU time
Prob. name Dim BFGS MBFGS-XG MBFGS-XZH N-MBFGS
1. Powell b. scaled 2 0.04680029 0.04680030 0.03120020 0.07800050
2. Brown b. scaled 2 0.01560010 0 0 0.01560010
3. Beale 2 0 0.01560010 0 0.01560010
4. Helical valley 3 0 0 0 0
5. Gaussian 3 0 0 0 0
6. Box 3-dim 3 NaN 0.01560010 0.01560010 0.01560010
7. Gulf research 3 0.01560010 NaN 0.03120020 0.01560010
8. Brown and... 4 0.01560010 0.01560010 0.01560010 0
9. Wood 4 0.01560010 0.01560010 0.03120020 0.01560010
10. Biggs EXP6 6 0.01560010 0.01560009 0 NaN
11. Watson 20 0.04680030 0.04680030 0.03120020 0.07800050
12. VARDIM 50 0 0.01560010 0.01560010 0
13. Variably dim... 100 0.04680030 0.06240040 0.03120020 0.06240040
14. Penalty II 100 0.98280629 1.18560759 0.98280629 1.10760709
15. LIARWHD 100 0.09360060 0.37440239 0.06240040 0.07800050
15. LIARWHD 1000 7.95605099 70.71525330 10.43646690 5.55363560
16. Trigonometric 200 1.41960910 1.38840890 1.35720870 3.18242040
17. Raydan 1 200 0.46800299 1.57561010 0.53040339 0.54600349
17. Raydan 1 1000 0.39218651e+02 1.37936084e+02 0.38017443e+02 0.35459027e+02
18. Ge. trid. 2 200 0.63960409 2.63641689 0.68640440 0.37440240
19. Penalty I 500 2.88601849 17.62811299 5.61603599 2.19961410
19. Penalty I 1000 0.08065251e+02 1.04848272e+02 0.24351756e+02 0.11450473e+02
20. Ex.q.p. QP1 900 4.83603099 5.99043840 5.03883229 5.21043339
20. Ex.q.p. QP1 1000 7.80004999 9.65646190 6.16203949 5.66283629
21. Ex.q.p. QP2 900 19.45332469 NaN NaN 6.41164109
21. Ex.q.p. QP2 1000 37.93944319 NaN NaN 6.56764209
22. Ex. White... 980 4.19174687e+02 9.86363122e+02 4.58455738e+02 3.72280786
23. DIXMAANA 999 2.13721370 2.23081430 2.29321469 5.94363809
24. Ex. Rosen. 1000 4.33479978e+02 6.71896307e+02 4.35897994e+02 2.22691427e+02
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Table 2. (continued)
25. Ex. Freu... 1000 5.13243289 85.87855049 7.97165109 6.11523920
26. Ge. Rose. 1000 1.25105001e+03 NaN 0.36764755e+03 0.14387972e+03
27. Ge. White... 1000 1.93433439e+03 NaN 2.01275610e+03 2.03960387e+03
28. Ex. Beale 1000 4.92963159 15.11649689 6.84844389 6.08403900
29. Ex. PEN. 1000 4.53962909 58.23517330 13.54088679 7.61284879
30. Per. quad. 1000 0.68156836e+02 3.17072032e+02 0.69810447e+02 0.41543066e+02
31. Raydan 2 1000 1.20120769 1.43520919 1.27920820 4.61762960
32. Diagonal 1 1000 NaN 3.98192552e+02 1.78387143e+02 0.51277528e+02
33. Diagonal 2 1000 55.84835799 55.72355719 55.52075590 62.4940005
34. Diagonal 3 1000 0.57501968 3.130940069 0.57860770 0.36098631
35. Diagonal 4 1000 0.46800299 0.436802799 0.43680279 5.42883480
36. Diagonal 5 1000 1.26360810 1.404009000 1.38840889 4.92963159
37. Diagonal 7 1000 1.35720870 1.71601099 1.77841140 5.05443240
38. Diagonal 8 1000 0.98280629 1.2168078 1.24800799 4.64882979
39. Diagonal 9 1000 1.93831242 3.90891705 1.33942458 0.43945481
40. Hager 1000 10.24926570 93.9438021 14.18049090 9.09485820
41. Ge. trid. 1 1000 16.56730619 86.62735529 18.04931569 7.98725120
42. Ex. trid. 1 1000 5.818837299 5.44443490 5.78763710 7.05124520
43. Ex. trid. 2 1000 7.924850799 20.20212950 8.56445489 11.99647689
44. Ex. TET 1000 1.918812299 1.95001249 1.85641190 5.03883229
45. Ex. Him. 1000 3.978025500 49.73311880 6.63004250 5.47563509
46. Ge. PSC1 1000 15.303698100 78.92090590 28.15818050 13.07288388
47. Ex. PSC1 1000 3.416421899 4.05602599 3.60362309 5.02323219
48. Ex. Powell 1000 0.235405509e+02 2.35733111e+02 0.22464144e+02 0.10842069e+02
49. Full H. FH3 1000 0.717604599 0.68640440 0.73320469 4.88283130
50. Ex. BD1 1000 2.745617599 5.8032372 3.69722369 5.85003749
51. Ex. Maratos 1000 4.582997378e+02 NaN NaN 3.04467151e+02
52. per.q.diag. 1000 4.352427899 35.67742870 7.45684779 4.77363060
53. Ex. Wood 1000 4.662245885e+02 7.21442224e+02 4.73073032e+02 3.92935318e+02
54. Quad. QF1 1000 0.585315752e+02 2.61722877e+02 0.58453574e+02 0.41184264e+02
55. Quad. QF2 1000 1.037250648e+02 3.49255038e+02 1.08342694e+02 0.50996726e+02
56. Ex.q.ex.EP1 1000 0.717604600 0.7956051000 0.67080429 4.94523170
57. FLETCHCR 1000 4.306407605e+02 5.14288496e+02 4.42793238e+02 3.70034372e+02
58. BDQRTIC 1000 0.316682030e+02 2.23643033e+02 0.39125050e+02 0.203737306e+02
59. TRIDIA 1000 1.531773819e+02 3.11315595e+02 1.44098123e+02 1.11540715e+02
60. ARWHEAD 1000 1.887612099 1.85641190 1.88761209 3.13562009
61. NONDIA 1000 2.480415900 32.01140519 7.39444739 7.50364809
62. NONDQUAR 1000 11.528473899 53.92954569 12.87008250 4.92963159
63. DQDRTIC 1000 3.354021499 3.58802299 3.27602100 5.89683780
64. EG2 1000 16.520505900 17.33171109 17.33171109 19.29732370
65. Par. per. quad. 1000 46.61309879 3.24996883e+02 46.65989910 25.61536420
66. Al. per. quad. 1000 0.67096030e+02 3.03109942e+02 0.66019623e+02 0.39967456e+02
67. Pert. trid. Q... 1000 0.64163211e+02 3.20691255e+02 0.63820009e+02 0.40575860e+02
68. Stair. 1 1000 24.97576010 NaN 24.30495579 27.92417899
69. Stair. 2 1000 24.80415900 NaN 24.44535670 29.70259039
70. POWER 1000 3.10972393e+02 3.13858411e+02 3.13702410e+02 3.24029677e+02
71. ENGVAL1 1000 0.12121277e+02 1.51383370e+02 0.21668538e+02 0.06661242e+02
72. EDENSCH 1000 0.14055690e+02 1.26594811e+02 0.16863708e+02 0.06988844e+02
73. CUBE 1000 0.84443341e+02 NaN 0.63960410e+02 0.70855654e+02
74. BDEXP 1000 4.80483079 4.63322969 4.71123019 1.88761212
75. QUARTC 1000 4.43042839 4.53962909 4.47722869 1.65361060
76. DIXON3DQ 1000 1.46625339e+02 2.55248836e+02 1.46422538e+02 1.98714073e+02
77. Ex. DEN. B 1000 1.87201199 1.85641190 1.93441239 4.80483079
78. Ex. DEN. F 1000 3.66602350 84.66174269 8.68925570 7.78444990
79. BIGGSB1 1000 1.48902954e+02 2.54640432e+02 1.45829734e+02 2.03862106e+02
80. Ge. Quad. 1000 NaN NaN NaN 5.49123520
81. SINCOS 1000 3.41642190 4.29002749 3.75962410 4.97643189
82. HIMMELBG 1000 5.69403649 4.96083180 5.75643689 1.99681280
83. HIMMELH 1000 1.63801050 1.60681030 1.60681030 5.07003250

To have a comprehensive comparison among the reported results of the tables, the proposed performance
profiles from Dolan and Moré in [8] is exploited in the sense of the number of iterations, Ni, function
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Figure 1: Total number of iterations performance profiles for the presented algorithms

evaluations, N f , and CPU time.
The performance profile can be considered as a tool for evaluating and comparing the performances

of iterative algorithms, where the profile of each code is measured based on the ratio of its computational
outcome versus the computational outcome of the best presented code. It is known that a plot of the per-
formance profile reveals all of the major performance characteristics which is a common tool to graphically
compare the effectiveness as well as the robustness of the algorithms. One of the properties of this profile is
the first point to the left side of the graphs that indicates the percentage of test problems for which a method
is the fastest. The other property is the highest point in the right side of the graphs that shows the success
rate of algorithms in solving problems . We also can see, an algorithm growing up more faster than other
considered algorithms, it means in the cases that an algorithm is not the best algorithm which performance
index is close to performance index of the best algorithm, please see [8] for more details.

Figures 1-3 obviously exhibit that N-MBFGS algorithm has a better performance than the MBFGS-XG
algorithm proposed by Xiao et.al and it is competitive with the other algorithms.

Also, it is shown in Figure 1 that N-MBFGS algorithm has more than 48% of the minimum number
of iterations to solve the problems when BFGS algorithm is about 44% and MBFGS-XG and MBFGS-XZH
algorithms are only 19% and 25%, respectively. Secondly, the proposed algorithm solves problems more
successfully than the others.

Although Figure 2 shows BFGS and MBFGS-XZH algorithms grow up faster than N-MBFGS algorithm,
that means when these algorithms are not the best one their function evaluations are close to the best
algorithm, it demonstrates that N-MBFGS algorithm has the best algorithm respecting to the minimum
number of evaluation N f , about 39% of the mentioned problems more than the others.

Obviously, N-MBFGS in Figure 3 has the best results regarding to the most wins when the performance
measure is CPU time, approximately 42%. It means that N-MBFGS algorithm can solve 42% of the prob-
lems in the least time in comparison with the other. Also, considering the ability of completing the run
successfully, it can be seen that N-MBFGS has better results in comparison with the others, however it is
still in competition with BFGS and MBFGS-XZH.

Altogether, it is deduced that two algorithms we have presented, N-MBFGS and MBFGS-XZH, works
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Figure 2: Total number of function evaluations performance profiles for the presented algorithms
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Figure 3: CPUtime performance profiles for the presented algorithms
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as well as BFGS algorithm and it performs much better than MBFGS-XG algorithm.

5. Conclusions

In this paper, by proposing a modified BFGS update to approximate Hessian matrix and combining it
with a known nonmonotone line search strategy, we have introduced a new nonmonotone BFGS algorithm
for nonconvex unconstrained optimization problems. It is well-known that the nonmonotone schemas not
only can improve the likelihood of finding a global optimum but also can enhance speed of convergence
especially in presence of a narrow curved valley, so we are interested to getting benefit from their properties
in our algorithm. Finally, the globally convergence of the algorithm is proved for nonconvex unconstrained
problems and numerical results are presented to show that the proposed algorithm is competitive with the
standard BFGS method and is more efficient than the nonmonotone BFGS algorithm proposed by Xiao et
al. in [23].
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