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aDepartment of Mathematics, Manipal Institute of Technology, Manipal University, Manipal-576104, Karnataka, India.
bDepartamento de Matemática Aplicada y Estadı́stica, Universidad de Almerı́a, Almerı́a, Spain.

cP. G. Department and Research Centre in Mathematics, Payyanur College, Kannur University, Kerala ,India.

Abstract. The idea of convex sets and various related results in 2-Probabilistic normed spaces were estab-
lished in [7]. In this paper, we obtain the concepts of convex series closedness, convex series compactness,
boundedness and their interrelationships in Menger’s 2-probabilistic normed space. Finally, the idea of
D− Boundedness in Menger’s 2-probabilistic normed spaces and Menger’s Generalized 2-Probabilistic
Normed spaces are discussed.

1. Introduction and Preliminaries

Probabilistic functional analysis has emerged as one of the important mathematical disciplines in view
of its need in dealing with probabilistic models in applied problems. Probabilistic functional analysis was
first initiated by Prague school of probabilistics led by Spacek and Hans in the 1950’s. Probabilistic Normed
spaces were introduced by Śerstnev and its new definition was proposed by C.Alsina, B.Schwerier and
A.Sklar ([1, 2, 17, 18]). General theory of Probabilistic Metric spaces and Probabilistic Normed spaces can
be read in ([4, 13, 10, 12, 18, 15, 16]).An important family of Probabilistic Metric spaces are Probabilistic
Normed spaces. The theory of probabilistic normed spaces is important as a generalization of deterministic
results of linear normed spaces and in the study of random operator equations. The concept of 2-Probabilistic
normed spaces has been introduced by Fatemeh Lael and Kourosh Nourouzi ([9]).

Let X be a real linear space of dimension greater than 1. We recall the definition of a 2-norm on X × X
[5].

Definition 1.1. ([5]) Let X be a real linear space of dimension greater than 1 and ‖., .‖ be a real valued function on
X × X satisfying the properties, for all x, y, z ∈ X and α ∈ R

(N1) ‖x, y‖ = 0 if and only if x and y are linearly dependent

(N2) ‖x, y‖ = ‖y, x‖

(N3) ‖αx, y‖ = |α|‖y, x‖
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(N4) ‖x + y, z‖ ≤ ‖x, z‖ + ‖y, z‖

then the function ‖., .‖ is called a 2-norm on X. The pair (X,‖., .‖) is called a linear 2- normed space.

It is immediate from the definition that 2-norms are non-negative and ‖x, y + αx‖ = ‖x, y‖ for all x and y in
X and for every α in R.

The most standard example for a linear 2-normed space is X = R2 equipped with the following 2-norm,

‖x1, x2‖ = abs
(∣∣∣∣∣ x11 x12

x21 x22

∣∣∣∣∣)
where xi = (xi1, xi2) for i = 1, 2 and ”abs” stands for absolute value of.

Definition 1.2. ([5])Let (X, ‖., .‖) be a linear 2-normed space, then a map T : X × X → R is called a 2- linear
functional on X whenever for every x1, x2, y1, y2 ∈ X and α, β ∈ R

(i) T(x1 + x2, y1 + y2) = T(x1, y1) + T(x1, y2) + T(x2, y1) + T(x2, y2)
(ii) T(αx1, βy1) = αβT(x1, y1)
hold.

Every linear 2-normed space is a locally convex topological vector space (briefly TVS). In fact, for a fixed
b ∈ X, Pb(x) = ‖x, b‖ for x ∈ X is a semi norm and the family {Pb; b ∈ X} of semi norms generates a locally
convex topology on X.

The geometrical meaning of a 2-norm ‖x, y‖ is that of the area of the parallelogram spanned by the
vectors x and y. Also, it is clear that 2-norm ‖., .‖ is a continuous 2-linear functional in the linear 2-normed
space (X, ‖., .‖) ([5] page 54).

Definition 1.3. ([2]) A distribution function (= d.f.) is a function F : R → [0, 1] that is non decreasing and
left-continuous on R; moreover, F(−∞) = 0 and F(+∞) = 1.Here R = R ∪ {−∞,+∞}. The set of all the d.f.’s will be
denoted by ∆ and the subset of those d.f.’s called distance d.f.’s, such that F(0) = 0, by ∆+. We shall also considerD
and D+, the subsets of ∆ and ∆+, respectively, formed by the proper d.f.’s, i.e., by those d.f.’s F ∈ ∆ that satisfy the
conditions

lim
x→−∞

F(x) = 0 and lim
x→+∞

F(x) = 1.

The first of these is obviously satisfied in all of ∆+ since, in it, F(0) = 0.

For every a ∈ R, εa is the d.f. defined by

εa(t) :=

0, t ≤ a,
1, t > a.

The set ∆, as well as its subsets, can partially be ordered by the usual point wise order; in this order, ε0 is
the maximal element in ∆+. We recall below for the reader’s convenience the definition of a PN space;

Definition 1.4. ([1]) A Probabilistic Normed space is a quadruple (V, ν, τ, τ∗), where V is a real linear space, τ and
τ∗ are continuous triangle functions and the mapping ν : V → ∆+ satisfies, for all p and q in V, the conditions

(N1) νp = ε0 if, and only if, p = θ (θ is the null vector in V);

(N2) ∀p ∈ V ν−p = νp;

(N3) νp+q ≥ τ
(
νp, νq

)
;

(N4) ∀α ∈ [0, 1] νp ≤ τ∗
(
να p, ν(1−α) p

)
.
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If τ = τT and τ∗ = τT∗ for some continuous t–norm T and its t–conorm T∗ then (V, ν, τT, τT∗ ) is denoted by (V, ν,T)
and is said to be a Menger PN space. Briefly a t-norm is any binary operation T on [0, 1] that is communicative,
associative, increasing in each place and such that T(a, 1) = a for every a ∈ [0, 1]. A t-conorm T∗ is associated with
every t-norm T; it is defined by T∗(x, y) := 1 − T(1 − x, 1 − y).

Definition 1.5. ([9]) A pair (X, ν) is called a Menger’s 2- Probabilistic Normed space (briefly Menger’s 2PN space)
(see [17, 5]) if X is a real vector space of dimX > 1, ν is a mapping from X×X intoD(for each x ∈ X, the distribution
function ν(x, y) is denoted by νx,y and νx,y(t) is the value of νx,y at t ∈ R ) satisfying the axioms:

(A1) νx,y(0) = 0 for all x, y ∈ X

(A2) νx,y(t) = 1 for all t > 0 if, and only if x, y are linearly dependent.

(A3) νx,y(t) = νy,x(t) for all x, y ∈ X

(A4) ναx,y(t) = νx,y( t
|α| ) for all α ∈ R \ {0} and for all x, y ∈ X

(A5) νx+y,z(s + t) ≥ min{νx,z(s), νy,z(t)} for all x, y, z ∈ X and s, t ∈ R.

We call the mapping (x, y)→ νx,y a 2-probabilistic norm (briefly 2-P norm) on X.

The geometrical meaning of 2-P norm on X is νx,y(t) = P{(x, y) : ‖x, y‖ < t}, which is the probability of the
set of all (x, y) ∈ X × X such that the area of the parallelogram spanned by the vectors x an y is less than t.

From the axioms A1 and A2 of the above definition, it is clear that

νx,y(t) = ε0(t)⇔ x and y are linearly dependent

From a probabilistic point of view this means that for every t > 0

P{‖x, y‖ < t} = 1⇔ x = λy, λ , 0.

If one of the points x, y is θ then x and y are linearly dependent and ‖x, y‖ = 0.

Example 1.6. ([9]) Let (X, ‖., .‖) be a 2-normed space. Every 2-norm induces a 2-P norm on X as follows:

νx,y(t) :=

0, t ≤ 0,
t

t+‖x,y‖ , t > 0.

This 2-P norm is called the standard 2-P norm.

Example 1.7. ([9]) Let (X, ‖·, ·‖) be a 2-normed space. One defines for every x, y ∈ X and t ∈ R the following 2-P
norm

νx,y(t) :=

0, t ≤ ‖x, y‖,
1, t > ‖x, y‖.

Then (X, ν) is a 2-PN space.

Definition 1.8. ([9]) Let (X, ν) be a Menger’s 2-PN space, and (xn) be a sequence of X. Then the sequence (xn) is
said to be convergent to x if lim

n→∞
νxn−x,z(t) = 1, i.e. for all z ∈ X and t > 0, and α ∈ (0, 1), ∃n0 ∈ N such that for every

n > n0, one has νxn−x,z(t) > 1 − α.

Definition 1.9. ([9]) Let (X, ν) be a Menger’s 2-PN space then a sequence (xn) ∈ X is said to be a Cauchy sequence
if lim

n→∞
νxm−xn,z(t) = 1 for all z ∈ X, t > 0 and m > n.

Definition 1.10. ([9]) A Menger’s 2-PN space is said to be complete if every Cauchy sequence in X is convergent to
a point of X.

A Complete Menger’s 2-PN space is called Menger’s 2-P Banach space.
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Definition 1.11. ([9]) Let (X, ν) be a Menger’s 2-PN space, E be a subset of X then the closure of E is E = {x ∈ X :
∃(xn) ⊂ E/xn → x}, i.e. for e,∈ X, α ∈ (0, 1) and r > 0, x ∈ E: there exists n0 ∈ N such that for every n > n0 one has
νx−xn,e(r) ≥ α.

We say, E is sequentially closed if E = E.

Definition 1.12. ([9]) Let E be a subset of a real vector space X then E is said to be a convex set if λx + (1 − λ)y ∈ E
for all x, y ∈ E and 0 < λ < 1.

Definition 1.13. ([9]) Let (X, ν) be a Menger’s 2-PN space, for e, x ∈ X, α ∈ (0, 1) and r > 0 we define the locally
ball by,

Be,α [x, r] = {y ∈ X : νx−y,e(r) ≥ α}

Definition 1.14. ([9]) Let (X, ν) and (Y, ν′ ) be two Menger’s 2-PN spaces, a mapping T : X → Y is said to be
sequentially continuous if xn → x implies T(xn)→ T(x).

Definition 1.15. ([14]) Let X,Y be two real linear spaces of dimension greater than one and let ν be a function defined
on the cartesian product X × Y into ∆+ satisfying the following properties:

(MG2P-N1) νp(0) = 0 for all (x, y) = p ∈ X × Y.

(MG2P-N2) νx,y(t) = 1 for all t > 0 if, and only if νx,y = ε0.

(MG2P-N3) νx,y(t) = νy,x(t) for all (x, y) ∈ X × Y.

(MG2P-N4) ναx,y(t) = νx,αy(t) = νx,y

(
t
‖α‖

)
for every t > 0, α ∈ R \ {0}

and (x, y) ∈ X × Y.

(MG2P-N5) νx+y,z ≥ min{νx,z, νy,z} for every x, y ∈ X and z ∈ Y.

(MG2P-N6) νx,y+z ≥ min{νx,y, νx,z} for every x ∈ X and y, z ∈ Y.

The function ν is called a Menger generalized 2-probabilistic norm on X × Y and the pair (X × Y, ν) is called a
Menger generalized 2-probabilistic normed space (briefly MG2PN space).

Definition 1.16. ([14]) Let A × B be a non empty subset of a MG2PN space (X × Y, ν) then its probabilistic radius
RA×B is defined by

RA×B(x) :=

l−ϕA×B(x), x ∈ [0,+∞),
1, x = ∞.

where ϕA×B(x) := in f {νx,y(x) : x ∈ A, y ∈ B}

Definition 1.17. ([14]) Let A × B be a non empty subset of a MG2PN space (X × Y, ν) then A × B is said to be:

1. Certainly bounded, if RA×B(x0) = 1 for some x0 ∈ (0,∞).

2. Perhaps bounded, if one has RA×B(x) < 1 for every x ∈ (0,∞) and l−1RA×B(+∞) = 1.

3. Perhaps unbounded,if RA×B(x0) > 0 for some x0 ∈ (0,∞) and l−1RA×B(+∞) ∈ (0, 1).

4. Certainly unbounded, if l−1RA×B(+∞) = 0.

A is said to beD-Bounded if either (1) or (2) holds.

Theorem 1.18. (see [11], [14] ) Let (X × Y, ν) and A × B be a Menger’s G2PN space and a D-bounded subset of
X ×Y respectively. The set αA× B := {(αp, q) : p ∈ A, q ∈ B} is alsoD-bounded for every fixed α ∈ R \ {0} ifD+ is a
closed set under the t-norm M.
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Theorem 1.19. [7] Every locally ball in Menger’s 2-PN space is Convex.

Theorem 1.20. [7] The closure of a closed convex set in a Menger’s 2-PN space is convex

Definition 1.21. [7] Let E be a subset of a Menger’s 2-PN space (X, ν) then an element x ∈ E is called a interior
point of E if there are r > 0, e ∈ X such that Be,α [x, r] ⊆ E.

The set of all interior points of E is denoted by int(E).

Definition 1.22. [7] A subset E of a Menger’s 2-PN space((X, ν) is said to be open if E = int(E).

For any two points x, y in the real vector space X denote,

(x, y) = {λx + (1 − λ)y;λ ∈ (0, 1)}

Theorem 1.23. [7] Let E be a convex subset of a Menger’s 2-PN space (X, ν). Let a ∈ E and x is an interior point of
E then every point in (a, x) = {λa + (1 − λ)x;λ ∈ (0, 1)} is an interior point of E.

Corollary 1.24. [7] Let E be a convex subset of a Menger’s 2-PN space (X, ν).Let x be an interior point of E and
y ∈ E then (x, y) ⊆ int(E).

2. Main Results

2.1. Convex series in Menger’s 2-PN space

In this section we establish the results that are the continuation of the convexity results in 2-probabilistic
normed spaces, obtained in the paper [7].

Definition 2.1. A subset E of a Menger’s 2-PN space (X, ν) is called semi closed if E and E have the same interior.

Corollary 2.2. If the interior of a convex set E of a Menger’s 2-PN space (X, ν) is non-empty, then E is semi closed.

Proof. It is obvious that int(E) ⊆ E. Take x ∈ int(E). If y ∈ int(E) then by Corollary 2.1, (x, y) ⊆ int(E). Let
zλ = (1 − λ)−1(y − λx) for 0 < λ < 1 then as λ → 0 we have zλ → y. So, zλ ∈ E for some λ. Therefore,
y = λx + (1 − λ)zλ ∈ int(E). Hence E and E has the same interior.

Remark 2.3. If (X, ν′ ) and (Y, ν′′ ) are two Menger’s 2-PN spaces then X × Y equipped with a product norm

ν[(x,y),(z,z′ )](t) = min{ν
′

x,z(t), ν
′′

y,z′ (t)}

where [(x, y), (z, z′ )] ∈ (X × Y) × (X × Y) and t > 0. If (xn)→ x and (yn)→ y then (xn, yn)→ (x, y). For, (xn)→ x
and (yn)→ y implies lim

n→∞
ν
′

xn−x,z(t) = 1 and lim
n→∞

ν
′′

yn−y,z′ (t) = 1 for all z, z′ ∈ X.

So, lim
n→∞

[ν(xn−x,yn−y),(z,z′ )] = lim
n→∞

[min{ν
′

x,z(t), ν
′′

y,z′ (t)}] = 1.

Lemma 2.4. Let (X, ‖·, ·‖) be a real 2-normed space. Define the standard 2-P norm

νx,y(t) =
t

t + ‖x, y‖
,

where x, y ∈ X and t ≥ 0.Then xn → x for the 2-norm if, and only if xn → x for the standard 2-P norm.
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Proof. Suppose xn → x for the 2-norm ‖·, ·‖, ‖xn − x, z‖ → 0 as n→ +∞ for every z ∈ X. Let z ∈ X, one has

lim
n→∞

νxn−x,z(t) = lim
n→∞

t
t + ‖xn − x, z‖

=
t

t + lim
n→∞
‖xn − x, z‖

=
t

t + 0
= 1, i.e. xn → x for the 2-P norm.

Conversely, assume that xn → x for the 2-P norm, then

lim
n→∞

νxn−x,z(t) = 1⇒ lim
n→∞

t
t + ‖xn − x, z‖

= 1

⇒ lim
n→∞
‖xn − x, z‖ = 0⇒ xn → x f or the 2 − norm .

2.2. Compactness and boundedness

Definition 2.5. Let E be a subset of a 2-PN space (X, ν) then E is said to be compact if each sequence of elements of
X has a convergent subsequence in E.

Definition 2.6. Let F be a subset of a 2-PN space (X, ν). A convex series of elements of F is a series of the form
Σ∞n=1λnxn where xn ∈ F and λn ≥ 0 for each n and Σ∞n=1λn = 1.

The set F is said to be Convex series closed if F contains the sum of every convergent convex series of its elements.
Also, F is said to be Convex series compact if every convex series of its elements is convergent to a point of F.

Lemma 2.7. Every convex series compact set in a Menger’s 2-PN space (X, ν) is Convex series closed.

Proof. : Let F be a convex series compact set in (X, ν) then there exists a convex series of elements of F, say
∑
∞

n=1 λnxn
where xn ∈ F and λn ≥ 0, which converges to some x ∈ F.
⇒ lim

n→∞
ν∑λnxn−x,z(t) = 1 for all z ∈ X

⇒ ν∑λnxn−x,z(t) = ε0(t) for all z ∈ X
⇒

∑
λnxn − x and z are linearly dependent

⇒
∑
λnxn − x = λz for all z ∈ X

In particular for λz = z − x, with z ∈ F and
∑
λnxn − x = (z − x) + x = z. Hence F is Convex series closed.

Lemma 2.8. Let F be a convex subset of a Menger’s 2-PN space (X, ν) and xn ∈ F for n ≥ 1. If
∑
λn = λ > 0 where

λn ≥ 0 then
∑
λ−1λnxn is a convex series of elements of F. So, if

∑
λnxn → x then x = λa where a ∈ F.

Proof. : We have
∑
λ−1λnxn is a convex series of elements of F because xn ∈ F and λ > 0 with

∑
λ−1λn = λ−1 ∑

λn =

λ−1λ = 1. Suppose
∑
λnxn → x then

∑
λ−1λnxn = λ−1 ∑

λnxn → λ−1x ∈ F. ie; λ−1x = a for some a ∈ F implies
x = λa.

Theorem 2.9. Let (X, ν) be a Menger’s 2-PN space then every closed convex subset of X is convex series closed.

Proof. Let F be a closed convex subset of X and Σλnxn be a convergent convex series of elements of F with

sum x. We have
∑
λnxn = x⇒ x = λ1x1 +

∞∑
n=2

λnxn. Since
∞∑

n=1

λn = 1⇒
∞∑

n=2

λn = 1 − λ1 > 0. By Remark(2.4),

x = λ1x1 + (1 − λ1)a where a ∈ F then x ∈ F. Hence F is convex series compact.

Definition 2.10. A subset F of a Menger’s 2-PN space (X, ν) is said to be bounded if for every r ∈ (0, 1) there exists
t0 > 0 such that νx,y(t0) > 1 − r for every x ∈ F and y ∈ X.
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Theorem 2.11. A subset F of a 2-normed space (X, ‖., .‖) is bounded if and only if F is bounded in the Menger’s 2-PN
space (X, t

t+‖.,.‖ ).

Proof. Suppose that F is a bounded subset of (X, ‖., .‖) then for every x ∈ F there exists M > 0 such that
‖x, y‖ ≤ M for every y ∈ X. We have νx,y(t) = t

t+‖x,y‖ for x, y ∈ X. Let r ∈ (0, 1), choose t0 =
M(1−r)

r then t0 > 0

and νx,y(t0) = t0
t0+‖x,y‖ >

t0
t0+M = 1− r. So, F is bounded in (X, t

t+‖.,.‖ ). Conversely, F is bounded in (X, t
t+‖.,.‖ ) then

for every r ∈ (0, 1) there exists t0 > 0 such that νx,y(t0) > 1− r for every x ∈ F and y ∈ X implies t0
t0+‖x,y‖ > 1− r.

Choose M = t0r
1−r then M > 0 with ‖x, y‖ < M for every y ∈ X.

Theorem 2.12. Let (X, ν) be a Menger’s 2-PN space and F be a convex series compact subset of X then

1. F is convex series closed.

2. F is bounded.

The converse is true if X is complete.

Proof. (1) By Remark(2.3) it is clear.
(2) We prove this result by contradiction method.

Let r ∈ (0, 1) and (an) ⊂ F such that νan,z(2n) < 1 − r) for all n and z ∈ X. We have
∞∑

n=1

2−n = 1 then

∞∑
n=1

2−nan is a convex series of elements of F. Since F is convex series compact,
∞∑

n=1

2−nan is convergent to

some point in F. Hence 2−nan converges to 0 as n → +∞ implies that for every ε > 0 and r ∈ (0, 1) there
exists k ∈ N such that ν2−nan,z(t) > 1 − r for every n ≥ k and t > 0. In particular, ν2−nan,z(1) > 1 − r for every
n ≥ k⇒ νan,z(2n) > 1 − r, a contradiction to our assumption. So, F is bounded.

Conversely, Suppose that X is complete. Assume that (1) and (2) holds. One has to prove that F is
convex series compact. Choose r ∈ (0, 1). Since F is bounded there exists t0 > 0 such that νx,y(t0) > 1 − r for

every x ∈ F and y ∈ X. Let
∞∑

n=1

λnxn be a convergent convex series of elements of F. If γn,m =

m∑
i=n

λi then

γn,m → 0 as n,m → ∞. Choose t ∈ R then there is k ∈ N such that tγ−1
n,m > 0 for every m,n ≥ k. Since F is

bounded, νxn,z(tγ−1
n,m) > 1 − r implies

ν m∑
i=n

λixi, z
(t) = ν m∑

i=n

λixi, z
(tγ−1

n,m(λn + λn+1 + ... + λm))

= ν m∑
i=n

λixi, z
(tγ−1

n,mλn + tγ−1
n,mλn+1 + ... + tγ−1

n,mλm)

≥ min{νλnxn,z(tγ−1
n,mλn), νλn+1xn+1,z(tγ−1

n,mλn+1), ..., νλmxm,z(tγ−1
n,mλm)}

= min{νxn,z(tγ−1
n,m), νxn+1,z(tγ−1

n,m), ..., νxm,z(tγ−1
n,m)}

> min{1 − r, 1 − r, ..., 1 − r}
= 1 − r

ie;
∞∑

n=1

λnxn is a Cauchy sequence in X. So,
∞∑

n=1

λnxn converges. Since F is convex series closed, the sum of

∞∑
n=1

λnxn is in F. Hence F is convex series compact.
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Theorem 2.13. Let (X, ν) be a Menger’s 2-PN space and F be a complete, convex and bounded subset of X then F is
convex series compact.

Proof. Suppose that
∞∑

n=1

λnxn is a convex series of elements of F with λn > 0. By the same procedure in the

above theorem
∞∑

n=1

λnxn is a Cauchy sequence in X. Take αn =

n∑
i=1

λi and yn =

n∑
i=1

λixi. We show that (α−1yn)

is a Cauchy sequence in F. Choose r ∈ (0, 1) and t > 0. Since F is bounded there exists t0 > 0 such that
νx,y(t0) > 1 − r for every x ∈ F and y ∈ X. Let z ∈ X then we have,

νyn,z(t0) = ν n∑
i=1

λixi, z
(αnt0))

≥ min{νλ1x1,z(λ1t0), νλ2x2,z(λ2t0), ..., νλnxn,z(λnt0))}
= min{νx1,z(t0), νx2,z(t0), ..., νxn,z(t0)}
> min{1 − r, 1 − r, ..., 1 − r}
= 1 − r

Since α−1
n → 1 and (yn) is a Cauchy sequence, there exists k ∈ N such that for all z ∈ X

να−1
n yn−α−1

m ym,z(t) = να−1
n yn−α−1

m yn+α−1
m yn−α−1

m ym,z(
t
2

+
t
2

)

≥ min{να−1
n yn−α−1

m yn,z(
t
2

), να−1
m yn−α−1

m ym,z(
t
2

)}

= min{νyn,z(
t

2|α−1
n − α

−1
m |

), νyn−ym,z(
αmt

2
)}

> min{1 − r, 1 − r, ..., 1 − r}
= 1 − r

for every n,m ≥ k.
Therefore, (α−1

n yn) is a Cauchy sequence in F and since F is complete, (α−1
n yn) converges to some x ∈ F.

That is,there exists k ∈ N such that να−1
n yn−x,z(t) > 1 − r for every z ∈ X and n ≥ k

implies ν
α−1

n

n∑
i=1

λixi − x, z
(t) > 1 − r for every z ∈ X and n ≥ k as n→∞,

we have ν n∑
i=1

λixi − x, z
(t) = 1 implies lim

n→∞
νyn−x,z(t) = 1 implies yn → x and x ∈ F. Hence F is convex series

compact.

2.3. D-boundedness
Definition 2.14. Let A be a non empty subset of a Menger’s 2-PN space (X, ν) then its probabilistic radius RA is
defined by

RA(x) :=

l−ϕA(x), x ∈ [0,+∞),
1, x = ∞.

where ϕA(t) := inf{νx,y(t) : x, y ∈ A}

Definition 2.15. Let A be a non empty subset of a Menger’s 2-PN space (X, ν) then A is said to be:

1. Certainly bounded, if RA(x0) = 1 for some x0 ∈ (0,∞).
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2. Perhaps bounded, if one has RA(x) < 1 for every x ∈ (0,∞) and l−1RA(+∞) = 1.

3. Perhaps unbounded,if RA(x0) > 0 for some x0 ∈ (0,∞) and l−1RA(+∞) ∈ (0, 1).

4. Certainly unbounded, if l−1RA(+∞) = 0.

A is said to beD-Bounded if either (1) or (2) holds.

Theorem 2.16. Let (X, ν) be a Menger’s 2-PN space. If |α| ≤ |β| then νβx,y(t) ≤ ναx,y(t) for every x, y ∈ X and
α, β ∈ R \ {0}.

Proof. We have νβx,y(t) = νx,y( t
|β| ) and ναx,y(t) = νx,y( t

|α| ). Since |α| ≤ |β| then t
|β| ≤

t
|α| ⇒ νx,y( t

|β| ) ≤ νx,y( t
|α| ) ⇒

νβx,y(t) ≤ ναx,y(t).

Theorem 2.17. Let (X, ν) and A be a Menger’s 2-PN space and a nonempty subset respectively, then A isD-bounded
if, and only if there exists a d.f G ∈ D+ such that νx,y ≥ G for every x, y ∈ A.

Proof. Suppose that A is D-bounded then there exists RA ∈ D
+. Choose G := RA then νx,y ≥ G for every

x, y ∈ A. Conversely, Suppose that there is a d.f G ∈ D+ such that νx,y ≥ G for every x, y ∈ A implies
l−1in fx,y∈Aνx,y(t) ≥ in f G(t)⇒ RA(t) ≥ G(t)⇒ lim

t→∞
RA(t) ≥ lim

t→∞
G(t) = 1. So, A isD-bounded.

We denote the set of all D-bounded subsets in a Menger’s generalized 2-probabilistic normed space
(X × Y, ν) (briefly MG2PN space) by PD+ (X × Y).

Theorem 2.18. Let (X × Y, ν) and A × B, C × B be a Menger’s G2PN space and two non empty D-bounded
subsets of X × Y respectively. Then (A + C) × B is a D-bounded set if D+ is a closed set under the t-norm M, i.e.
M(D+

×D
+) ⊆ D+.

Proof. For every (a, b) ∈ A × B and (c, b) ∈ C × B one has (a + c, b) ∈ (A + C) × B. Therefore

νa+c,b ≥M{νa,b, νc,b} ≥M{νa,b,RC×B} ≥M{RA×B,RC×B},

and as a consequence
R(A+C)×B ≥M{RA×B,RC×B}.

According to hypothesis one has
M{RA×B,RC×B} ⊆ D

+,

and finally `−R(A+C)×B(+∞) = 1.

Theorem 2.19. Let (X × Y, ν) and A × B, C × D, A × D, C × B be a Menger’s G2PN space and four non empty
D-bounded subsets of X × Y respectively. Then the set given by

A × B + C ×D := {(p, q) + (r, s) = (p + r, q + s)}

isD-bounded ifD+ is a closed set under the t-norm M.

Proof. By ( MG2PN-3) one has, for all (p, q) ∈ A × B, (r, s) ∈ C ×D,

ν(p,q)+(r,s) ≥M{νp,q+s, νr,q+s} ≥M{RA×(B+D), νr,q+s} ≥M{RA×(B+D),RC×(B+D)},

and as a consequence
RA×B+C×D ≥M{RA×(B+D),RC×(B+D)}.
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