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Convergence Theorem, Convergence Rate and
Convergence Speed for Continuous Real Functions

Prasit Cholamjiak?, Suparat Baiya®

?School of Science, University of Phayao, Phayao 56000, Thailand

Abstract. In this work, we study convergence theorem, convergence rate and convergence speed of a
new three-step iterative scheme for continuous functions on an arbitrary interval. We also give numerical
examples for comparing with iterations of Mann, Ishikawa, Noor and Kadioglu-Yildirim.

1. Introduction

Let E be a closed interval on the real line and let f : E — E be a continuous function. A point p € E is
called a fixed point of f if f(p) = p.

One classical way to approximate a fixed point of a nonlinear mapping was introduced, in 1953, by
Mann [6] as follows: a sequence {u,};, , defined by u; € E and

Upy1 = (1 — ap)uy + D‘nf(un) 1)

for all n > 1, where {a,}; is a sequence in [0, 1]. Such an iteration process is known as Mann iteration.
In 1991, D. Borwein and J. Borwein [1] proved the convergence theorem for a continuous function on the
closed and bounded interval in the real line by using iteration (1).

Another classical iteration process was introduced by Ishikawa [4] as follows: a sequence {sn};":1 defined

by s; € E and
th = (1 =bn)su+buf(sn)
si1 = (1= an)sy + anf(tn) 2)
for all n > 1, where {a,} and {b,} are sequences in [0,1]. Such an iterative method is known as Ishikawa
iteration. In 2006, Qing and Qihou [10] proved the convergence theorem of the sequence generated by

iteration (2) for a continuous function on the closed interval in the real line (see also [11]).
In 2000, Noor [7] defined the following iterative scheme by /; € E and

m, = (1—ayl,+ anf(ln)
vy = (1=by)ly+byf(my)
Iivi = A—-an)l, + Ofnf(vn) 3)

2010 Mathematics Subject Classification. Primary 26A18; Secondary 47H10, 54C05

Keywords. Continuous function; Convergence theorem; Convergence rate; Convergence speed.
Received: 02 April 2014; Accepted: 13 November 2014

Communicated by Ljubomir Ciri¢

Research supported by the Thailand Research Fund and University of Phayao under Grant TRG5780075
Email addresses: prasitch2008@yahoo.com (Prasit Cholamjiak), s.baiya20@hotmail.com (Suparat Baiya)



P. Cholamjiak, S. Baiya / Filomat 30:2 (2016), 505-513 506

for all n > 1, where {a,}, {a,} and {b,} are sequences in [0,1]. Such an iterative method is known as
Noor iteration. Phuengrattana and Suantai [8] considered the convergence of a new three-step called the
SP-iteration for continuous functions on an arbitrary interval in the real line.

Recently, Kadioglu and Yildirim [5] defined the following KY-iteration process: w; € E and

Ty (1 -a,)w, + anf(wn)
Gn = (L =by—cu)wy + by f(ry) + cuf(wy)
Wpr1 = (1—a,-— ﬁn)wn + anf(‘]n) + ﬁnf(rn) (4)

for all n > 1, where {a,}, {84}, b,} and {c,} are sequences in [0,1]. They showed that (4) converges to a
fixed point of f. Moreover the rate of convergence is better than those of Mann, Ishikawa and Noor in the
sense of Rhoades [13]. We denote the above iteration by KY (w1, a,, by, ¢y, &tn, Bu, f)-

Some interesting results concerning fixed point theory of continuous functions can be foundin [2, 3,9, 12—
14].

In this paper, we propose a new three-step iteration process for solving a fixed point problem for
continuous functions on an arbitrary interval in the real line. Numerical examples are also presented to
compare with iterations of Mann, Ishikawa, Noor and Kadioglu-Yildirim.

2. Convergence Theorem

In this section, we study convergence theorem for the iteration process defined by the following for
continuous functions on an arbitrary interval.

Theorem 2.1. Let E be a closed interval on the real line and f : E — E be a continuous function. For x; € E, let the
sequence {x,},; | be defined by

Zn (1 —an)x, + anf(x,)
Yo = (1=by—cn)zn +buf(zn) + cuf(xn)
Xn+l = (1 —ay — ,Bn)]/n + (an(yn) + ,an(zn) (5)

where {a,}> 1, Abut ), Aculyry, {antyr, and (B}, are sequences in [0,1) with 0 < by, + ¢, <1and 0 < ay, + B, < 1
satisfying the following conditions :

(i) Yoy an < 00, ¥uly by < 00,357 ¢y < 00and Y74 By < o0,

(ii) im0 aty = 0, and Y1 ay = 0.

Then {x,};. , is bounded if and only if it converges to a fixed point of f.

Proof. Sufficiency is obvious. It suffices to show that if {x,}, is bounded, then {x,}}’ ; converges to a fixed
point. We will show that {x,} , is convergent. Suppose that {xu})7, is divergent. Then there exist a,beRR,
a = liminf, e x,,b = lim supn_>c>o x, and a < b. First, we show that ifa < m < b, then f(m) = m. Suppose
that f(m) # m. Without loss of generality, we assume that f(m) — m > 0. Since f is continuous, there exists
0 € (0,b — a) such that, for |[x —m| < 6,

flx)—x>0. (6)

By the boundedness of {x,};7 ; and the continuity of f, we have {f(x,)},", is bounded. So are {y,} ,, {zn}n v
{fyn)h2, and {f(z)} ;- From (5), wehave x,41 =¥y = an(f(yn) — yn)+ﬂn(f(zn)—yn), Yn—2zn = bu(f(zn) —2n) +
cn(f(x4) — zn) and z, — x,, = a,(f(x,) — x,,). By conditions (i) and (ii), we see that |x,+1 — yu| = 0, |y, — znl -0
and |z, — x| = 0. Since |xy41 = Xn| < [Xnt1 = Yal + [Yn — Zul + 20 — x| and |y, — xul < |y — zal + |20 — x4l, We
have |x,4+1 — x,| = 0 and |y, — x,| — 0. Thus there exists a natural number N such that

st =l < 3l =% < 3y =l < 3 %
forall n > N. Since b = limsup,,_,, x, > m. there exists k; > N such that x,, > m. Letk = ny,, then x; > m.
For x;, we consider the following two cases:



P. Cholamjiak, S. Baiya / Filomat 30:2 (2016), 505-513 507

Case 1: if xy > m + §, then by (7), we have x,1 — x¢ > —2. Thus X1 > x¢ — § > m and xgq > m.
Case?2:if m < x, <m+ %, thenby (7), wehavem — § <y <m+ZL and m—§ <z <m+ 2. So we have
lxe —m| < ‘33 <O,y —m| < 23—° <odand |z —m| < 23—b < 6. From (6), we have
fO) = x>0, f(yi) = Yk > 0, f(zk) — 2 > 0. (8)
By (5), we obtain
Xer1 = Xk — X+ (1= ax — By + arf(yi) + Prf(zk)
= X+ (1 — o = B) (v — xi) + a(f (yi) — xx) + Bre(f (zx) — )
= X+ (1= ax = Bk — x) + a(f (i) — vi) + ey — xic) + Pie(f(z6) — zi) + Pre(zr — xx)
= X+ (1= Bi) (i — xi0) + aie(f (Yi) — yie) + Bi(f (zk) — zie) + Braw(f (xic) — Xk).- )
Also, we have
ye—xk = (1=bx—c)ze + bif(ze) + e f (k) —
= (2 — xx) + bie(f (z6) — z&) + o (f (k) — zk)
= (zk — xi) + bie(f (zk) — zi) + e (f (i) — xx) + (e — i)
= (1 — ez — xi) + bi(f (z6) — zie) + ew(f (xi)) — xi)
= (1 —crar(f(xx) — x) + bie(f (zx) — z&) + c(f (xk) — x)- (10)
Substituting (10) into (9), we obtain
Yo = X+ (1= Bo)(ar( — co(Far) — x0) + be(f(zi) — 2i) + e Fe) — x)) + a(F (i) = i) + Pel(f(zi) — 26)
+Brar(f (xk) — )
= xe+ (1= B)(aed = o) + o) + Brae) (FO) — xi) + (b1 = Be) + i) (f(z) — z6) + e (i) — Wi,

From (8), we have x;41 > m. So, by Case 1 and Case 2, we can conclude that x¢; > m. Employing the
same argument, we obtain Xy, > m, X3 > m,... Hence, by induction, x, > m for all n > k. Therefore
a = liminf,_,. x,, > m, which contradicts with a < m. It follows that f(m) = m.

For the sequence {x,},, we consider the following two cases:

Case 1 : There exists x,, such thata < x,, < b, then f(x,,) = x,, and

Zm = (1 = ap)Xp + amf(xm) = Xpm-
which yields

Ym = (1 =by —cm)zm + bmf(zm) + Cmf(xm) =1 =by—cm)xXm+ bmf(xm) + Cmf(xm) = Xm-

So we have
X1 = (1 — v — ,Bm)ym + Ofmf(ym) + ﬁmf(zm) =(1-ay- ,Bm)xm + Ufmf(xm) + ﬁmf(xm) = Xm-
By induction, we obtain x,, = Xu+1 = Xp42 = a3 = ..., 50 that x, — x,,. This shows that x,, = a and x,, — 4,

which contradicts to the divergence of {x,}’ ;.

Case2: Foralln, x, <aorx, >Db,sinceb—a > 0 and |x,;1 — x,] — 0, there exists Ny such that
|41 — Xu] < % for all n > Ny. If x, < a for n > Ny, then b = limsup, _,  x, < a, which is a contradiction
witha < b. If x,, > b for n > Ny, then a = liminf,_, . x,, > b, which is also a contradiction with a < b. Hence
{xu})”, is convergent.

Finally, we show that {x,}” | converges to a fixed point of f. Let x, — p and suppose that f(p) # p. Since
zn = (1 —a,)x, + a,f(x,) and a, — 0, we obtain z, — p. From vy, = (1 — b, — c4)zy + by f(2z0) + cuf (x4), by = 0
and ¢, — 0, it follows that v, — p. Let hx = f(xx) — X, e = f(yx) — yx and sg = f(zx) — z¢. By the continuity
of f, we see that

limy oo g = limg oo (f () — 24) = f(p) —p # 0,
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limy o 7% = limyeo(f (Y1) — yi) = f(p) —p # 0,
Hmyeo Sk = limygseo(f(26) — 20) = f(p) —p # 0.
Putw = f(p) — p. From (5) we get

X1 = X+ (1= Bu)(@a(1 = ) + €0) + Bt ) (FGen) = %) + (a1 = Bu) + B ) (F(Zn) = 20) + Au(F(Yn) = Y.

It follows that
=21+ ) (ae = B = ) + el = i) + Brar)hi + Y (b1 = B) + Bi)sic + )
k=1 k=1 k=1

From hy — w,r. — w, sy — w and conditions (i), (i), we can easily check that {x,}” , is divergent. Thus
f(p) = pand we complete the proof. O

Corollary 2.2. Let f : [a,b] — [a, b] be a continuous function. For x1 € [a,b], let the sequence {x,} . | be defined by
(5), where {an})”  Aba}y Acntyy Aant, and {B,} | are sequences in [0,1) with0 < b, +c, < 1and 0 < a,+f, <1
satisfying the following conditions:

(1) Yoy G < 00, Y " 1 by <00, Y. 1 ¢y < 00and Y, ;" q Bn < 0,

(ii) im0 ay = 0, and Y1 aty = 0.

Then {x,}. | converges to a fixed point of f.

Remark 2.3. If we take c, = B, = 0, we then obtain Theorem 2.1 of Phuengrattana and Suantai [8].

3. Rate of Convergence

In this section, we compare the convergence rate of (5) with the KY-iteration proposed in [5].
To this end, we use the concept introduced by Rhoades [13] as follows:

Definition 3.1. Let E be a closed interval on the real line and let f : E — E be a continuous function. Suppose that
{xuky” and {w,}> | are two iterations which converge to the fixed point p of f. Then {x,}}" , is said to converge faster
than {wn}n if

=1

| —P| < |wy, _P|
foralln > 1.
We next prove some crucial lemmas which will be used in the sequel.

Lemma 3.2. [5] Let E be a closed interval on the real line and let f : E — E be a continuous and nondecreasing
function.  Let {a,}>,, {by }n v el Aandy, and (B} e sequences in [0,1) with 0 < by, + ¢, < 1 and
0 < ay +Bu <1 Let {w,} | bedefined by the KY-iteration. Then the following hold:

(i) If f(w1) < wy, then f(wn) <wy foralln > 1 and {w,} | is nonincreasing.

(ii) If f(w1) > wy, then f(w,) > w, for alln > 1 and {wn}n: is nondecreasing.

Lemma 3.3. Let E be a closed interval on the real line and f : E — E be a continuous and nondecreasing function.
Let {an}n 1 0 Aenty ) ek and {B, ) be sequences in [0,1) with 0 < b, + ¢, <1and 0 < o, + By < 1. Let
{xu}>" be defined by (5). Then the followmg hold

() If f(x1) < x1, then f(x,) < x, for all n > 1 and {x,} , is nonincreasing.

(i) If f(x1) > x1, then f(x,) > x,, for all n > 1 and {x,}}" | is nondecreasing.
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Proof. (i) Let f(x1) < x1. Then f(x1) < z; < x3. Since f is nondecreasing, f(z1) < f(x1) < z1 < x1. This implies
f(z1) <y1 < z1. Thus f(y1) £ f(z1) < f(x1) < z1 < x1. For y1, we consider the following cases:

Case 1: If f(z1) < y1 < z1, then f(y1) < f(z1) < y1 < x1. It follows that if f(y1) < x» < y1, then
fx2) < f(1h) < x2,if y1 < x2 < 21, then f(x2) < f(z1) < y1 < xpandifz; < x; < xp, then f(x2) < f(x1) < z1 < X2
So, we have f(x;) < x,.

Case 2: If z; < y1 < x1, then f(y1) < f(x1) < z1 < x7. This implies that f(y1) < x2 < x3 and f(x2) < f(x1) <
z1 < y1 < x2. We thus have f(x) < xs.

From Case 1 and Case 2, we have f(x,) < x2. So we can show that f(x,) < x, foralln > 1. So z,, < x,, for
all n > 1. Since f is nondecreasing, we have f(z,) < f(x,) < x, foralln > 1. Thus y, < x,, foralln > 1, and
f(yn) < f(xn) < x, for alln > 1. Hence, we have x,41 < x;, for all n > 1, and thus {x,};” | is nonincreasing.

(ii) Following the proof line as in (i), we obtain the desired result. [

Lemma 3.4. Let E be a closed interval on the real line and f : E — E be a continuous and nondecreasing function.
Let {a,} , {bu)o2,, (e}, {2, and (B} be sequences in [0,1) with 0 < b, + ¢, <1and 0 < a, + B, < 1.

For wn nzlxl € E, let {u)”,,}%:’:1 and {x,}" | be sequences defined by the KY-iteration and (5), respectively. Then the
following are satisfied:

(i) If f(w1) < wy, then x,, < wy, for alln > 1.

(ii) If f(wy) > w, then x, > wy, foralln > 1.

Proof. (i) Let f(w1) < wy. Then f(x1) < x1 since w1 = x;. From (5), we get f(x1) < z; < x1. Since f is
nondecreasing, we obtain f(z1) < f(x1) < z1 < x1. Hence f(z1) < 11 < z1.
Using the KY-iteration and (5), we obtain the following estimation:

z1—1r = (I—ay)(xr —wy)+ar(f(x1) — f(wr)) = 0.

So, z1 = r1, and also

vi—q1 = (1=by—ci)(z1 —wr)+bi(f(z1) — f(r1)) + c1(f(x1) — f(w1)) < 0.

Since f is nondecreasing, we have f(y1) < f(g1). We next obtain

xo—wy = (I—a1=B1)(y1 —wi1) +ar(f(y1) — f(q1) + B1(f(z1) = f(r1)) <0,
50, Xo < wy. Assume that xx < wg. Thus f(xx) < f(wy).
From Lemma 3.2 (i), we get f(wi) < wrand f(xx) < xx. Itfollows that f(xx) < zx < xpand f(zx) < f(xx) < k.
Hence
zr—1e = (T—ap)(x —wi) + ax(f(xx) — f(wy)) < 0.
So, zx < 1. Since f(zx) < f(rx),

Ye—qe = (1=be—ce)(ze —wi) + bi(f(zi) = f(re)) + el f (i) = fwy)) <0,
S0 Yk < gk, which yields f(yx) < f(qx). This shows that

Xerr — Wier = (1= ax = Bk — wi) + ax(f(yx) = f(qr)) + Br(f(z) = f(r)) <0,

which gives, xx41 < wis1. By induction, we conclude that x, < w, for alln > 1.
(ii) From Lemma 3.2 (ii) and the same proof as in (i), we can show that x,, > w, foralln > 1. O

For convenience, we write algorithm (5) by BC(x1, ay, by, ¢, @, Bu, f)-

Proposition 3.5. Let E be a closed interval on the real line and f : E — E be a continuous and nondecreasing
function such that F(f) is nonempty and bounded with x; > sup{p € E : p = f(p)}. Let {an}; |, {bul>",, {cukry,

{anty ) and {B,}> | be sequences in [0,1) with 0 < b, + ¢, < 1and 0 < a, + Bn < L. If f(x1) > x1, then {x,}7,
defined by KY(x1, 4, by, ¢, n, Bn, f) and BC(x1, ay, by, cu, a1, P, f) do not converge to a fixed point of f.

(e8]

Proof. From Lemma 3.3 (ii), we know that {x,}'; | is nondecreasing. Since the initial point x, > sup{p € E : p = f(p)},
it follows that {x,} ", does not converge to a fixed point of f. O
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Proposition 3.6. Let E be a closed interval on the real line and f : E — E be a continuous and nondecreasing
function such that F(f) is nonempty and bounded with x; < inf{p € E : p = f(p)}. Let {an},,, (b}, {c,,}n v
{an}y | and {B,}, be sequences in [0,1) with 0 < by, + ¢, < 1and 0 < a, + B, < 1. If f(x1) < x1, then {x,}
deﬁned by KY(xl,an, by, cn, A, Bu, ) and BC(x1,ay, by, ¢4, a1, Bu, f) do not converge to a fixed point of f.

Proof. From Lemma 3.3 (i), we know that {x,};; | is nonincreasing. Since the initial point x; <inf{p € E : p = f(p)},
it follows that {x,} ", does not converge to a ﬁxed point of f. [

We are now in position to prove the main results of this paper.

Theorem 3.7. Let E be a closed interval on the real line and f : E — E be a continuous and nondecreasing function
such that F(f) is nonempty and bounded. Let {a,} |, {ba}) 1, {culiy, lan), and {Ba}) | be sequences in [0, 1)
with 0 < b, + ¢, <1and 0 < a, + By < 1. Forwy = x1 € E, let {wy}) and {xu}7, be sequences defined by the
KY-iteration and the BC-iteration, respectively. Then the BC-iteration {xn} converges top € F(f) if and only if the

KY-iteration {w,} | converges to p. Moreover, the BC-iteration {x,} converges faster than the KY-iteration.

=1 n=1

Proof. Put L =inflp € E:p = f(p)) and U = sup{p € E : p = f(p)}.

(=) Let the BC-iteration {x,} ", converges to p € F(f). From Theorem 3.7 (iii) in [8] and Theorem 3 in
[5], we get the convergence of the KY-iteration.

(<) Suppose that the KY-iteration {w,}’; converges to p € F(f). We split the proof into three cases as
follows:

Casel: wy =x1>U,Case2: wy =x1 <L,Case3: L<w; =x1 <U.

Case 1: wy = x1 > U. By Proposition 3.5, we get f(w1) < wq and f(x1) < x1. So, by Lemma 3.4 (i), we have
Xy < wy forall n > 1. By induction, we can show that U < x,, foralln > 1. Then, we have 0 < x,, —p < w, —p,
which yields |x, — p| < |w,, — p| for all n > 1. This shows that x, — p. By Definition 3.1, we conclude that the
BC-iteration {x,}’ ; converges faster than the KY-iteration {w,}

Case 2: w; = x; < L. By Proposition 3.6, we get f(w;) > w; and f(x;) > x;. This implies, by Lemma
3.4 (ii), that x, > w, for all n > 1. So, by induction, we can show that x, < L for all n > 1. Then, we have

=1

|x, — pl < |w, — p| for all n > 1. It follows that x, — p and the BC-iteration {x,}’’ ; converges faster than the
KY-iteration {w,})’ ;.

Case3: L <w; = x1 < U. Suppose that f(w;) # w;. If f(w1) < w1, we have, by Lemma 3.2 (i), that {w,}
is nonincreasing with limit p. Lemma 3.4 (i) gives p < x,, < w, for all n > 1. It follows that |x, — p| < [w, — p|
for all n > 1. Therefore x, — p and the result follows. If f(w;) > w1, by Lemma 3.2 (ii) and Lemma 3.4 (ii),
then we can also show that the result holds. O

Remark 3.8. We note that, by Theorem 2 in [5] and Theorem 3.7 in [8], the convergence of Mann, Ishikawa, Noor and
the KY-iteration are all equivalent. Hence, by Theorem 3.7, the BC-iteration converges faster than Mann, Ishikawa
and Noor iterations.

4. Speed of Convergence
In this section, we study the convergence speed of our algorithm defined in this paper.

Theorem 4.1. Let E be a closed interval on the real line and f : E — E be a continuous and nondecreasing function
such that F(f) is nonempty and bounded. Let {a,}>",, {bul>",, {cnkiy, ok, g, ABuliey, Aantiy, b} v {enory,
lay ) and (B} | be sequences in [0, 1)wzth0< by+cn <1,0<a,+B,<1,0<a,+b, <land 0 < a, +ﬁ,, <1
suchthatun <a b <by, cn <cpan <ayand B, < B foralln > 1. Forx] =x; €E, let {xn 1and{ xp be
defined by BC(xl,an,bn,cn,an,ﬁn,f) and BC(xl,a by, ¢y 0, B, f), respectively. If {x,} | converges to p € F(f),

then {x;}> | converges to p. Moreover, {x,}*> | converges faster than {x,}

=1 =1 1

Proof. PutL =inf{p € E:p = f(p)}and U = supfp € E : p = f(p)}. Suppose that {x,}, converges to p € F(f).
we divide our proof into the following three cases:
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Case 1: x; = x] > U. By Proposition 3.5, we have f(x1) < x; and f(x1) < z; < x1. By Lemma 3.3 (i), we
obtain that f(x,) < x, for alln > 1. Moreover, we can show that f(z,) < z, and f(y,) < y, foralln > 1. From
the BC-iteration, we have

Zi—z1 = (1=ap)x]+a;f(x))— (1 —a)x —aif(x)
(x] —x1) +a}(f(x]) —x7) + a1 (x1 = f(x1))
(] —a1)(f(x1) —x1) <0,

that is z] < z;. Since f is nondecreasing, f(z]) < f(z1). So we get

vi—y1 = (1=by—cyzy +bif(z)) + ) f(x7) = (1 = b1 —c1)z1 = bif(z1) — c1.f(x1)
= (21 —2z1) + D (f(2]) — 27) = bi(f(z1) — z1) + D) (f(z1) — z1) + €| (f(x]) — 27) — 1 (f(x1) — z1)
+c1(f(x1) = z1) + bi(z1 — f(z1)) + c1(z1 = f(x1))
= (21 —z1) +D{(f(Z) = f(z1)) + by(z1 — 27) + (B) = b1)(f(z1) — z1) + C{(f(x]) — f(x1)) + ¢f(z1 — 27)
+(c} —e1)(f(x1) — z1)
= (1=by—c))E] —z1) + D (f(z)) — f(z1)) + (0] — b1)(f(z1) — z1) + ey (f(x]) — f(x1))
+(cy = c)(f(x1) —z1) <0,

which implies y; < y1 and f(y;) < f(y1). Noting y1 — f(y1) > 0 and f(z1) < y1, we have

x5 -x2 = (1-af =B)yy +a)f(yy) +B1f(E) — (1 — a1 = B)y1 — arf(y1) — 1 f(z1)

= (y; —y) + i (f(y)) — v1) + B(f(z) — y)) + an(ya — f(y1)) + Pa(y1 — f(z1))

= vy — )+ (f(yy) —yy) — &1 (f(ya) — ya) + &4 (f () — ya) + By (f(2)) — vy) — By (f(z1) — y1)
+B1(f(z1) — y1) + a1 (y1 — f(y1)) + (1 — f(z1))

= vy —y) +ay(f(yy) = f(y)) + &1 (y1 — yy) + (@) — a)(f(v1) — y1) + By (f (=) — f(z0))
+B1(y1 — y1) + (B — B1)(f(z1) — 1)

= (1—-a] =B —y1) + & (f(¥) — f(y1) + (@] — a))(f(y1) — y1) + BL(f(z) — f(z1))

= B(f(z1) —y1) <0,

which also implies x, < x,. Assume that x; < xi. Since f(x}) < f(x¢) < x, we have z; —z, < (1 - ak)(x —x;) +
a (f(x;) — f(x)) < 0, that is z; < z. Since f(z;) < f(zk) <zr,wehave y; — vk = (1= b, — ¢ )(z, — z¢) + by (f(z}) —
f(zk) + (b, = bi)(f(zk) — zi) + ¢ (f () = f(xi)) + (e, — ci)(f () —z) < 0. So ;. < i, and F) < f(ye) < yx- We

then obtam

Y = yi) + o (f () = fyw) + ar(yx — yi) + (a — a)(F(ye) — yi) + Br(f(z0) — f(zK))
+B (i — vi) + (B — B (f(zx) — yi)

= (1= =B — yu) + i (f(yp) — f(yw)) + (@ — a)(f (yi) — i) + B(f(zp) — f(zx))
+(Br = B(f(zx) — k) <0,

which yields x] | < x¢41. By mathematical induction, we have x;, < x,, for all n > 1. We note that U < x]. By
induction, we can show that U < x], for all n > 1. Hence, we have |x], — p| < |x, — p| for all n > 1. Therefore
x, — pand {x;}~ | converges faster than {x,} >

Case 2: x; = x] < L. From Proposition 3.6, we get f(x1) > x;. In the same way as Case 1, we can show
that x;, > x, for all n > 1. We note that x; < L. By induction, we can show that x;, < L foralln > 1. So

1
[, = pl < |x, — pl for all n > 1. Hence x;, — p and {x;,}** | converges faster than {x,}>,.

Case 3: L < x; = x] < U. Suppose that f(x;) # xnl.l If f(x1) < x1, then we have, by Lemma 3.3 (i), that
{xx}77, is nonincreasing with limit p. We also have p < x;, for all n > 1. By using the same argument as in
Case 1, we can show that x;, < x, foralln > 1,sop < x;, < x, for all n > 1. It follows that |x], — p| < |x,, — pl
for all n > 1. Hence we have x, — pand {x;}, converges faster than {xn} . If f(x1) > x1, then we have,

by Lemma 3.3 (ii), that {x,} , is nondecreasmg with limit p. We also have p > x;, for all n > 1. By using the

/
Xpr1 ~ Xkl
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same argument as in Case 2, we can show that x}, > x, foralln > 1,sop > x), > x, for all n > 1. It follows
that [x}, — p| < |x, —pl for all n > 1. Hence we obtain that x;, — p and {x}}7 | converges faster than {x,}~,. O

Corollary 4.2. Let f : [a,b] — [a, b] be a continuous function. Let {a,}>" ;, {ba}e, {cnkioy Aanbsr  AButiey, {an )y

n=1’ nip=1/

Ot Aoy et and {B,}, be sequences in [0,1) with0 < b, +¢, <1,0<a, +p,<1,0<a,+b, <1

n=1" n=1’
and 0 < a;, + By, < 1 such that a, < ay, by, < by, ¢y < ¢;,, ay < ay and B, < B, foralln > 1. For x| = x1 € [a,]], let

{xn};":1 and {x;};f:l be defined by BC(x1,ay, by, ¢, n, Bn, f) and BC(xg,a;,,b’n,c;l, ay, B, f), respectively. If {xn};l”:1
converges to p € F(f), then {x,} | converges to p. Moreover, {x,}*> | converges faster than {x,} ,.

5. Numerical Examples

In this section, we demonstrate numerical examples to support our main results.

Example 5.1. Let f : [0,2] — [0,2] be defined by f(x) = (2x* — x*> + sin £)/10. Then f is continuous and

nondecreasing. Use the initial point uy = s; = Iy = wy = x1 = 1 and the control conditions a, = W, b, = ﬁ,
Cn = (n-&l)z’ n = (n+11)0~5 and f, = ﬁ
Mann | Ishikawa | Noor | KY-iteration | BC-iteration
n Uy Sn Ly Wy Xn |f(xn) = Xl
1 1.000000 1.000000 1.000000 1.000000 1.000000 0.852057
5 0.052708 0.048564 0.048185 0.007517 0.002162 0.002054
10 | 0.006520 0.006008 0.005962 0.000820 0.000171 0.000163
15 | 0.001399 0.001290 0.001280 0.000169 0.000031 0.000029
20 | 0.000392 0.000362 0.000359 0.000047 0.000008 0.000007
25 | 0.000130 0.000120 0.000119 0.000015 0.000002 0.000002
30 | 0.000048 0.000044 0.000044 0.000006 0.000001 0.000001
35 | 0.000020 0.000018 0.000018 0.000002 0.000000 0.000000
40 | 0.000008 0.000008 0.000008 0.000001 0.000000 0.000000
45 | 0.000004 0.000004 0.000004 0.000000 0.000000 0.000000
50 | 0.000002 0.000002 0.000002 0.000000 0.000000 0.000000
55 | 0.000001 0.000001 0.000001 0.000000 0.000000 0.000000
60 | 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Table 1 Comparison of the convergence rate between Mann, Ishikawa, Noor, KY-iteration and
BC-iteration

Remark 5.2. From Table 1, we see that the BC-iteration converges significantly to a fixed point p = 0 of f faster than
Mann, Ishikawa, Noor and KY-iteration.

We end this section by giving numerical examples for the convergence speed of our algorithm.

Example 5.3. Let f : [-1,2] — [~1,2] be defined by f(x) = (Vx° +1)/5. Use the initial point x; = x] = 2 and

g ;7 _ 1 ’ 1 ’ 1 ;7 _ 1 ’ 1 _ 1 —_ 1
the control conditions a], = ESiEl by, = e S T i M T s B = D M = G b, = TS
1

_ 1 _ 1 _
Cn = Gy @n = Ganps and Bn = Gy
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BC-iteration BC’-iteration

n Xn |f (xn) = Xl X, If () — %l

2.000000 0.851087 2.000000 0.851087
5 0.240367 0.040287 0.200957 0.000924
10 0.203369 0.003335 0.200036 0.000004
12 0.201602 0.001569 0.200033 0.000001
13 0.201141 0.001108 0.200032 0.000000
15 0.200613 0.000580 0.200032 0.000000
20 0.200173 0.000141 0.200032 0.000000
25 0.200074 0.000042 0.200032 0.000000
30 0.200046 0.000014 0.200032 0.000000
35 0.200037 0.000005 0.200032 0.000000
40 0.200034 0.000002 0.200032 0.000000
45 0.200033 0.000001 0.200032 0.000000
50 0.200032 0.000000 0.200032 0.000000

Table 2 Comparison of the convergence speed

Remark 5.4. From Table 2, we see that the BC'-iteration converges to a fixed point p = 0.200032 faster than the
BC-iteration.
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