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Abstract. For analytic functions in the open unit disk U, we introduce a general family of integral operators.
The main object of the this paper is to present a systematic study if this general family of integral operators
and to determine the associated univalence conditions. Relevant connections of the results derived in this
paper with those in several earlier works are also indicated.

1. Introduction, Definitions and Preliminaries

Let A be the class of functions f(z) of the form:
fz)=z+ Zakzk (ze ),
k=2

which are analytic in the open unit disk
U={z:z€eC and lz| <1}
and satisfy the following normalization conditions:
fO)=f0)-1=0.

We denote by S the class of functions in A which are also univalent in U (see, for details, [4] and [11]).

A function f € A is said to be in the class S*(x) of starlike functions of order x (0 < k¥ < 1) in U if it
satisfies the following inequality:

zf'(2) ,
‘?\(W)>K (zeU; 0k <1).
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We denote by K(x) the class of convex functions of order « (0 £ k¥ < 1) in U, that is, the class of functions
in A which satisfy the following inequality:

%(%+1)>K (zeU; 05k <1).

A function f € Ais said to belong to the class R(x) (0 < g < 1) if
RIf'(2)] > « (zeU; 0k <1).

Recently, Frasin and Jahangiri [6] studied the class B(u, ) (1 2 0; 0 £ x < 1), which consists of functions
f € A that satisfy the following condition:

This class B(u, «) is a comprehensive class of normalized analytic functions in U that contains several other
classes of analytic and univalent functions in U such as

<l-x (zeU; 0=2x<1;, uz0). (2)

B1,x) =5, BO,x) =R and B(2,x) =: B(x).

In particular, the analytic and univalent function class $(x) was studied by Frasin and Darus [5].

The problem of finding sufficient conditions for univalence of various integral operators has been
investigated in many recent works (see, for example, [1-3, 9, 10, 12, 13]; see also the other relevant references
cited in each of these earlier works). Here, in our present investigation, we study the univalence conditions
for the function I,, 4(z) given by the following integral operator:

1

z n . . Vi B
L2
j=1

when R(B) > 0 and the functions fi(z),- -, fu(z) and g1(z), - - , gu(2) are constrained suitably.
We note here that the following theorems on univalence conditions of certain given integral operators
were proven recently by Pascu [9] and Pescar [10], respectively.

Theorem 1. (see Pascu [9]) Let f € Aand p € C. If R(B) > 0 and

1- 2201217 (2)
RE) 1@

then the function Fg(z) defined by

<1 (zel),

Fi@) = (/3 | Z tﬁ‘lf'a)dt)ﬁ e,

is in the class S of analytic and univalent functions in U.
Theorem 2. (see Pescar [10]) Let ¢, « € C with
R(a) >0 and | £1 (c#-1).

If the function f(z), regular in U, is given by (1) and

clel + (1~ [2P) % <1 (zeU), (4)
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then the function F,(z) given by

F.(z) = (oz fz t“lf’(t)dt)a =z+ Zakzk (ze )
0 k=2

is in the class S of regular and univalent functions in U.
In order to derive our main results, we recall here the General Schwarz Lemma as follows.
General Schwarz Lemma (see, for example, [7] and [8]). Let the function f be regular in the disk
Ur={z:z€C and |z| < R}

with
lf@)| <M (2 <Ur; M>0)

for fixed M > 0. If f has one zero at z = 0 with multiplicity = m, then
f@)] < " e Ug), ®
The equality in (5) holds true for z # 0 only if
f@) =" @eUp),
where O is a constant.

2. Univalence Conditions on the Class B(y, a)

In this section, we first prove the univalence condition for the function I g(z) which is given in terms of
the integral operator defined by (3).

Theorem 3. Let the functions fj,g; € A (j=1,---,n). Suppose that

ByieC, RP) >0 and M;N;z1 (j=1,--,n).

Also let
R(B) 2 [( (2-a)M "+ 1) ; |yj|( (2-a)N' 4 1)] ©)
=1
If
firgi€ B(uj,aj), 0£aj<1  and u; 20 (j=1,---,n)
and

li@|sM;, and  |g@|sN;  (zeU;j=1,-,n),

then the function I,,5(z) given by the integral operator (3) is in the class S of analytic and univalent functions in U.

Proof. We begin by considering the function h(z) defined by

z N f(t) gA(t) Vi
h(z) :=f0 g[(’T)(’T) ]dt (z € U). 7)
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For this function h(z), which is regular in U, we calculate the first-order and the second-order derivatives
as follows:

o))

j=1
and
v -y [ f] 91(2) TTIE2) (22)
z L ] z z
(k#j)
- ([ fi(2) @\ (29,3~ 9iC)
:2[“ W’ ) =)
n Yk
i) |
o
From (8) and (9), we get
zh"’(z) B i Zf].'(Z)_ Zg](z)
I (z) _;[[ 7@ e (10)
which readily yields
2 (2) zf{(2) 29;(2)
) Z"(f(z> bllga ) =

Thus, clearly, we find from this last inequality (11) that

1— [2PR®) | zh" (z)
RE) | WG
1— 2?26 Zf () 2g7(2)
S TXG 2[[ el ge |
1 - [z]PR® ( ) ff )| 1}
=TRp ;[f() 7@ '
2R(p) B () [Mt
e Zm[y, (z) |22 +1]- (12)

By the hypothesis of Theorem 3, we have
lfial<M; and  |gjx)|=N; (zeU; j=1,---,n).
Therefore, by applying the General Schwarz Lemma to the functions fi,---, f, and g1, -+ , ., we obtain

Ifi(2)] £ Mjlz| and |7i(z)] < Njlz| (zeU; j=1,---,n). (13)
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Now, by using the inequalities (2) and (13), we get

1— 2P0 |zh" (z)
RPB) | ()
1— 2220 & , z \Y -1
=R ;[(ff(z)(%) 1)t e
1 — |z|2RB) L
?f(lﬁ ZI% [(gj(z)( )) 1 +1)N§f 1+1] (14)
(Z € U)/
which can be rewritten as follows:
1 — 2P0 |zh" (z)
RPB) | M)
1 v i~ i~
< m;[((2—04]-)1\/1;‘ ! # 1)+ il (2 - o) N "+ 1)] (15)
(z e V).

If we make use of the condition (6) from the hypothesis of Theorem 3, this last inequality (15) yields
1— |Z|2%(ﬁ)

R(p)

Finally, we apply Theorem 1 to the function h(z) defined by (7). We thus conclude that the function
I, 5(z) given by (3) is in the class S of analytic and univalent functions in U. [J

zh"' (z)
W (z)

<1 (zel). (16)

Corollary 1. Let the functions fi(z) (j=1,---,n)and gj(z) (j =1,---,n) be in the class A. Suppose also that
By, €C (j=1,---,n) with R(B) > 0 and

RP) 2 Y [(3-a))+1yil(3-ay)]. (17)
=1
Iffi,gi€S(@j) (j=1,--- ,m)forOsa; <1 (j=1,---,n)and
lfi@ls1  and  |gi(z)ls1  (zeU; j=1,---,n),

then the function I, 3(z) given by (3) under that above constraints is in the class S of analytic and univalent functions
in U.

Proof. Corollary 1 follows readily by setting
pi=Mj=Nj=1  (j=1--n)
in Theorem 3. O

Corollary 2. Let the functions f(z) and g(z) be in the class A. Suppose also that B,y € C with R(B) >0, M = 1,
N 2> 1and

RPB) 2 (2= )M +1) + (2 - a)NFT +1). (18)
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IffgeBa)0sa<l; uz0)and
f@ISM  and  g@ISN  (zel),

then the function Jg(z) given by

Z V4 %
o))

is in the class S of analytic and univalent functions in U.

Proof. Since
@) =hg@  (z€U; R(p)>0),

which is an immediate consequence of the definitions (3) and (19), Corollary 2 corresponds to the special
case of Theorem 3 whenn =1. [

Next, by using Theorem 2 of Pescar [10], we get the following result.

Theorem 4. Let the functions fj,g; € A (j=1,---,n). Suppose that

C,‘B,]/]'EC, %(‘B)>O and Mj,Njgl (j=1,"-,1/l).

Also let
R(B) 2 > [( (2-a)M" + 1) +lyl((2- )N+ 1)] (20)
and
1 ' i~ i~

51 5 ) [(@-a)m e 1)+ (2 - a) N 1)) 1)

If
j’j,gjeﬂ(y]-,a]-), O§C¥]'<1 and [,l]'ZO (j=1,”',1”l)

and

i@ <M, ad  Jg@|SN;  @eU; j=1,-,m),

then the function I, 5(z) given by the integral operator (3) is in the class S of analytic and univalent functions in U.

Proof. Just as in the proof of Theorem 3, we have

Zh”(Z) ~ n Zf/l(Z) B ' Zg;(z) ~
e Z [(—f, o Uty el 1 zel), (22)

=1
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which, for a given constant c € C, yields
zh"' (z)
ph'(2)

2f/(@) 29(2)
-5 ) Z el - 1]”

clz? + (1 - |zIF)

zf] (Z) 29;(2)
§|c|+|ﬁ|2[[ e ] w( e +1)
1 f](Z) Hi=
—|C|+|5|Z[ (f](z)) +1]
il 1g2) pi-1
I X[WJ gi(a >(g (Z)) | +1| el (23)

Now, from the hypothesis of Theorem 4, we have
Ifie=M; and |g;)|EN; (zeU; j=1,---,n).
Applying the General Schwarz Lemma to the functions fi,---, f, and g1, - - , ., we obtain
Ifi@l £ Mjlzl  and  giz2) SNjlz2l  (zeU; j=1,---,n), (24)
which, in conjunction with the inequality (2), leads us to following result:

zh" (2)
Bl (2)

/ i # _ pi—1
<|C|+IF7|Z;[( (2 (f]-(z)) 1 +1)Mj +1
1 “ . , L M;_ pi=1
(o () —fev ]

|c|+—Z[ (2= a) M + 1)+ 1yl (2 - ) N+ 1)] (25)

clz + (1 - 21)

(z e ).
Thus, from the condition (21) of Theorem 4, we find that
zh"' (z)
i (2)

Finally, by applying Theorem 2 to the function k(z) given by (7), we deduce the desired assertion that
the function I, g(z) given by the integral operator (3) is in the class S of analytic and univalent functions in
U. O

clz + (1 - [zIF)

<1  (zel). (26)

Corollary 3. Let the functions fi(z) (j=1,---,n)and gj(z) (j =1,---,n) be in the class A. Suppose also that
¢Byi€C (j=1,---,n) with R(B) > 0and

R(p) = Zn:[(3—a]»)+ il (3-aj)]. (27)

=1
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IffigieS(aj) (j=1---,mfor0La;<1 (j=1,---,n),
i<l  and  |gj@Is1  (zeU;j=1,---,n)

and

n

1
=1 R 4 (3= @) + 1l (3 - )], -

then the function I, 5(z) given by (3) under the above constraints is in the class S of analytic and univalent functions
in U.

Proof. Corollary 3 follows easily upon setting
pi=Mj=N;j=1  (j=1,-,n)
in Theorem 4. [

Corollary 4. Let the functions f(z) and g(z) be in the class A. Suppose also that ¢, B,y € C with R(f) >0, M 2 1,
N 2= 1and

R(B) 2 (2 - )M+ 1) + (2 = a)NFT! +1). (29)
IffgeBpa)0sa<l; uz0),
lf@I=M  and gz SN (zel)

and

L
R(p)

then the function J4(z) given by (19) is in the class S of analytic and univalent functions in U.

ol <1- [2- )M + 1)+ i@ - wNeT 1)), (30)

Proof. Inits special case when n = 1, Theorem 4 would obviously correspond to Corollary 4. [

3. Concluding Remarks and Observations

Our present investigation was motivated essentially by several recent works dealing with the interesting
problem of finding sufficient conditions for univalence of normalized analytic functions which are defined
in terms of various families integral operators (see, for example, [1-3, 9, 10, 12, 13]; see also the other relevant
references cited in each of these earlier works). In our study here, we have successfully determined the
univalence conditions for the function I, g(z) given by the general family of integral operators in (3).

Our main results (Theorems 3 and 4 in this paper) are shown to yield several corollaries and conse-
quences. Some of these applications of our main results are stated here as Corollaries 1, 2, 3 and 4.

Derivations of further corollaries and consequences of the results presented in this paper, including also
their connections with known results given in several earlier works, are being left here as exercises for the
interested reader.
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