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Abstract. In this article, we investigate additive properties of the Drazin inverse of elements in rings and
algebras over an arbitrary field. The necessary and sufficient condition for the Drazin invertibility of a — b
is considered under the condition of ab = Aba in algebras over an arbitrary field. Moreover, we give explicit
representations of (a + b)P, as a function of 4,b,aP and b”, whenever a%b = ba and b%a = ab.

1. Introduction

Throughout this article, A denotes an algebra over an arbitrary field F and R denotes an associative
ring with unity. Recall that the Drazin inverse of a € R is the element b € R (denoted by a”) which satisfies
the following equations [12]:

bab="b, ab=ba, " =d*"p.

for some nonnegative integer k. The smallest integer k is called the Drazin index of a, denoted by ind(a). If
ind(a) = 1, then a is group invertible and the group inverse of a is denoted by a*. It is well known that the
Drazin inverse is unique, if it exists. The conditions in the definition of Drazin inverse are equivalent to:

bab="b, ab=ba, a-a®b is nilpotent.

The study of the Drazin inverse of the sum of two Drazin invertible elements was first developed by Drazin
[12]. It was proved that (a + b)P = aP + bP provided that ab = ba = 0. In recent years, many papers focused
on the problem under some weaker conditions. For two complex matrices A, B, Hartwig et al.[15] expressed
(A + B)P under one-sided condition AB = 0. This result was extended to bounded linear operators on an
arbitrary complex Banach space by Djordjevié and Wei [10], and was extended for morphisms on arbitrary
additive categories by Chen et al. [4]. In the article of Wei and Deng [22] and Zhuang et al. [24], the
commutativity ab = ba was assumed. In [22], they characterized the relationships of the Drazin inverse
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between A + B and I + APB by Jordan canonical decomposition for complex matrices A and B. In [24],
Zhuang et al. extended the result in [22] to a ring R, and it was shown that if a4, b € R are Drazin invertible
and ab = ba, then a + b is Drazin invertible if and only if 1 + aPb is Drazin invertible. More results on the
Drazin inverse can also be found in [1-3, 6, 7, 9, 11, 13, 14, 16, 17, 19-24]. The motivation for this article
was the results in Deng [8], Cvetkovic-1li¢ [5] and Liu et al. [18]. In [5, 8] the commutativity ab = Aba
was assumed. In [8], the author characterized the relationships of the Drazin inverse between a + b and
aaP(a + b)bbP by the space decomposition for operator matrices a and b. In [18], the author gave explicit
representations of (a + b)P of two matrices a and b, as a function of a,b,aP and bP, under the conditions
a®b = ba and b%a = ab. In this article, we extend the results in [8, 18] to more general settings.

As usual, the set of all Drazin invertible elements in an algebra A is denoted by AP. Similarly, RP
indicates the set of all Drazin invertible elements in a ring R. Given a € AP (or a € RP), it is easy to see that
1 —aadP is an idempotent, which is denoted by a™.

2. Under the Condition ab = Aba

In this section, we will extend the result in [8] to an algebra A over an arbitrary field FF.

Lemma 2.1. Let a,b € A be such that ab = Aba and A € IF\{0}. Then
(1) ab' = A'b'a and a'b = Aba'.

L)) i(i

() (ab)l = A= aib' and (ba) = A" bid'.
Proof. (1) By hypothesis, we have
ab' = abb'™! = Abab™! = Ababb'? = A*P?ab™? = --- = A'bla.

Similarly, we can obtain that a’b = A'ba’.
(2) By hypothesis, it follows that
(aby = abab(ab)~* = A7'a’b*(ab)* = A" P@’b? (ab)

= = AL Ry = A

Similarly, it is easy to get (ba)' = AT a'bi. [

Lemma 2.2. Let a,b € A be Drazin invertible and A € IF\{0}. If ab = Aba, then
(1) aPb = A~ 1baP.
(2) ab® = A~1bPa.
(3) (ab)P? = bPaP = A~1aPpP.

Proof. Assume k = max{ind(a), ind(b)}.
(1) By hypothesis, we have

ﬂD(ﬂkb) — ﬂD(/\kbﬂk) — AkaD(balﬁlaD) — AkaD(A_(k+1)ﬂk+1bﬂD)
AP paP = A71a baP.

It follows that

an — (ﬂD)k+1ﬂkb — (aD)kaDakb — A_l(aD)kakbaD — ...
— Af(k+1)akb(aD)k+l — Aflbak(aD)kJrl — AflbaD'

Moreover,

al) = _“%ia"an alb)’ = l%a"i.
baPy = AT B (@P) and (@Pb) = AT (@P)'b
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(2) The proof is similar to (1).
(3) By (1), we have aPb = A~1baP, then (aaP)b = A~tabaP = b(aaP). By [12], we get aaPbP = bPaaP.
Similarly, we can obtain that ab®b = A"'bPab = bPba and aPbbP = bbPaP. This implies that
abbPaP = bbPaa® = bPaPab.
bPaPabbPaP = bPbbPaPaa® = bPaP .
and

k) )
(ab)k+1 bDlZD = A= ak+1bk+1bDaD =12 ﬂk+lbk€lD

_ k(k+l) _kk-1)
A2 ak+1(Akank) A ak+1ank

A= = (ab)t.

Then we get (ab)P = bPaP. Similarly, we can check that (ab)? = A71aPbP. O

Theorem 2.3. Let a,b be Drazin invertible in A. If ab = Aba and A # 0, then a — b is Drazin invertible if and only
if w = aaP(a — b)bbP is Drazin invertible. In this case,
(a-b)P =wP +a°1 - bb™aP) 0™ — a™(1 - bPaa™)7'bP.
Proof. Since w = aaP(a — b)bbP, we have w = (1 —a™)(a — b)(1 — b™) and
a-b=w+@-bb" +a"(a—b)—a"(a—Db)b". (1)
By the proof of Lemma 2.2 (3), we have aaPb = baa® and abbP® = bPba. This means that a™b = ba™ and
iei s_ :‘1 l;na(a) and t = ind(b). By Lemma 2.2 (1) and b'b™ = 0, we get

(bb"aP) = A~ B @P) = 0
and (1 = bb™aP)™! = 1 + baPb™ + (baP)?b™ + - - - + (baP)!~1b™.
By a similar method, we get 1 — bPaa™ and 1 — aa™bP are both invertible.
Note that wa™ = a™w = a™aa®(a — b)bbP = 0 and b™w = wb™ = aaP(a — b)bb"b™ = 0 by a™b = ba™ and b™a = ab”™.
Now let us begin the proof of Theorem 2.3. Assume w is Drazin invertible and let
x =wP +aP(1 = bb™aP) 0" — a™(1 — bPaa™) 1P,
Since ab™ = b™a and ba™ = a™b, it is easy to obtain that w(a — b) = (a — b)w and wP(a — b) = (a — b)wP.
A direct computation yields
(a - b)[aP (1 - bb™aP)"1b™]

= aaP(1 - ba®)b™(1 - bb"a")!

= aaP(1 - bb™aP — bbbPaP)b™ (1 — bb™a")!

= aaP(1 - bb™aP)o" (1 - bb™aP) !

= adPb™.
Since (1 — bPaa™)bP = bP(1 — aa™bP), we have

(a —b)a™(1 — bPaa™) 1P (a - b)bPa™(1 — aa™bP)!
= —bbP(1 - ab®)a"(1 — aa"b")!
= —bbPa".
So, by the above, we can obtain that
(a-bx = (a-b)wP+a@1-bb"a®) ™ —a™(1 - bPaa™)'bP) )
= (a-DbwP +aaPb"™ + bbPa".
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Similar to the above way, we also have [aP(1 — bb™a?)"'b™|(a — b) = aPab™ and [a™(1 — bPaa™)"'bP](a — b) =
—bPba™.
So, it follows x(a — b) = wP(a — b) + aPab™ + bPba™ and x(a — b) = (a — b)x.

We now prove that x(a — b)x = x.
Let (2 — b)x = x1 + x, where x; = wP(a — b) and x, = aPab™ + bPba™. Note that wa™ = a™w = 0, wb™ = b™w = 0
and wP(a — b) = (a — b)wP. By Eq.(1), we have

wP(@a—-b) = wP W+ (a—b)b™ +a™(a—b) —a"(a - b)b") = wPw (3)
Then we have wPx; = w” and wPx; = wP(aaPb™ + bbPa™) = wPb™aaP + wPa™bbP = 0.
Similarly, it is easy to get (a”(1 — bb™aP)~1b™ — a™(1 — bPaa™)~1bP)wP = 0, this shows that (aP(1 — bb™aP)1p™ -
a™(1 — bPaa™)~1hP)x; = 0.
[aP(1 = bb™aP) o™ — a™(1 = bPaa™) 6P ]x,
[aP(1 = bb™aP) 1™ — a™(1 — bPaa™) 6P (@Pab™ + bPba™)
aP(1 - bb™aP)~ '™ — a™(1 — bPaa™) 1P,

So, we get x(a — b)x = x.
By Eq.(3), we have (a — b)*w” = w?wP = w — ww™ and
(a — b)(@a®b™ + bbPa™)
@=b)((1—=a™ ™+ (1 -0 a")
= ab™ —ba" +aa"™ — bb"™ — 2aa™b™ + 2bb™a".

Then by Eq.(1) and Eq.(2), we have

(a-b)—(a-b)’x
= (a—-Db) - (a-Db)(wP(@a—Db)+aPab™ + bPba™)
= (@a-b)— (w—-ww™+ab™ —ba™ +aa™ — bb™ — 2aa™b™ + 2bb™a"™)
= (@=-b)—-[@a-b)—(a-b)b" —a"(a—-"b)+a"(a—-b)b™ —ww"

+ab™ — ba™ + aa™ — bb™ — 2aa™b™ + 2bb™a™]
= (a-b)—((a—Db)+bb™a™ —aa™b™ — ww")
= —(bb"a" —ad"b" — ww").

Note that (bb™a™ — aa™b™)* = (b — a)*b™a™ and (b — a)* = Y., i A jbla’.
Let k > 2max{s, t}. Then we have (bb™a™ — aa™b™)* = 0.
Since (bb™a™ — aa™ b )ww™ = ww™(bb™a™ — aa"b™) = 0, we have bb™a™ — aa™b™ — ww"™ is nilpotent.

Hence, we get (a — b)P = wP +aP(1 — bb™aP) 6™ — a™(1 — bPaa™)1bP.

For the “ only if ” part: Assume (2 — b) € AP. Since (bbP)?> = bbP, bbP € AP. By Lemma 2.2 and
(a — b)bbP = bbP(a — b), we have (a — b)bbP € AP. Similarly, since aaP(a — b)bbP = (a — b)bbPaaP, we have
aaP(a - b)bb® € AP. O

3. Under the Condition a®b = ba , b%a = ab.

In [18], Liu et al. gave the explicit representations of (a+b)® of two complex matrices under the condition
a®b = ba and b%a = ab. In this section, we will extend the result to a ring R in which 2=1+1 is Drazin invertible
for the unity 1.

Lemma 3.1. Let a,b € R be such that a*b = ba and b>a = ab. then fori € N
(1) ba' = a®band b'a = a>b'.
(2) ab' = b¥a and a'b = b*a'.
(3) ab = a®%(ab)b* and ba = b*%'(ba)a®.
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Proof. (1) By induction, it is easy to obtain (1) and (2).
(3) The proof is similar to [18, lemma 2.1]. [J

Lemma 3.2. Let a, b € RP be such that a®b = ba and b3a = ab. Then

(1) a™baP = 0 and aPba™ = 0.

(2) b™ab® = 0 and bPab™ = 0.
Proof. (1) By Lemma 3.1(1), there exists some i € N, such that a™ba® = a"ba'(aP)*! = a™a3b(aP)*! = 0.
Similarly, a®ba™ = 0.

(2) It is analogous to the proof of (1). O

Corollary 3.3. Let a,b € RP be such that a®*b = ba and ba = ab. Then

(1) (@)3b = baP and (b)%a = abP.

(2) aaP commutes with b and b°.

(3) bb® commutes with a and aP.

(4) ab® = bPa® and baP = aPb3.

(5) aPbP = bP(aP)3 and bPaP = aP(HP)3.

(6) aPbP = bPaPh? and bPaP = aPbPa?.
Proof. (1) By hypothesis, (a”)*baa® = (aP)%a’baP. By Lemma 3.2 (1), (a°)*b = baP. Similarly, we have
(bP)%a = abD.

(2) By hypothesis and (1), we get baa® = abaP = a®@aP)%b = aaPb. Then bPaaP = aaPbP. (3) is analogous
to the proof of (2).

(4) By (3), we get bPa3 = bPa®bbP = bPbabP = abP. Similarly, aPb = aPb®.

(5) By (1) and (3), we have bP (aP)? = bP(aP)?bbP = bPbaPbP = aPbPbbP = aPbP. Similarly, aP (bP)® = bPaP.

(6) By (5), we have bPaPb? = aP (bP)*b? = aPbP. Similarly, bPaP = aPbPa?. [

In Corollary 3.3 (5), one can see that a”bP = bP(aP)? and bPaP = aP(bP)3. In the following, we will
consider the analogous condition of ab® = ba and ba® = ab.

Lemma 3.4. Let a,b € RP be such that ab® = ba and ba® = ab. Then aPbP = b3a and bPaP = a°b.

Proof. Similar to Lemma 3.2 and Corollary 3.3, we have aPb = b(aP)? and bPa = a(bP)>.
Then we can obtain that aa”b = ab(aP)? = ba®(aP)? = baPa and bbPa = abPb.
This implies that
aSbD — 113b(bD)2 — ba9(bD)2
- bDbzllg(bD)z — bDba?)b(bD)Z
= bPabb(P)? = bPa(bbP)? = bPa.
So, we get aPbP = aPbPaal = aPa(bP)3al = (bP)%aP and bPaP = (aP)3bP.
Similar to the proof of Lemma 3.1, we have ab = a*(ab)b®* for i > max{ind(a), ind(b)}. Then it is easy to
get
abbPaP = bbPaa® = bPbaPa = bPaPab,
bPaPabbPaP = bPbbPaPaa®,
(ab)*bPaP = (ab)abbPaP = (ab)aaPbbP = a* (ab)b**'aaPbbP = 2% (ab)b** = ab.
Then this implies that (ab)* = b”aP and (ba)* = aPbP.
Hence, there exist i € N such that
bPaP (ab)* = ((ab)*)2ab = bPaPbPaPba® = bPaPbP (aPa)b’a® = bPaPbPhPa?
= PP WPh)?a? = bPaPr*a? = bPaPbab®a = bPaPab®a = bP10a2aP
= b(bPb)(ba)(aPa) = b*(bPb)b* (ba)a®® (aPa) = b*b?* (ba)a®® = b*ba
= b
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and aPbP = (ba)* = a°b.
So, we have aPbP = (bP)3aP = (bP)2bPaP = (bP)2b°a = b*(bbP)ba = b*(bbP)b?baa®s = b3a and bPaP =
a®h. O

Lemma 3.5. Let a,b € RP be such that a®b = ba and b®a = ab. Then the following statements hold:
(1) aPbP = (bP)3aP = bPaPa? = b?bPaP.
(2) bPaP = (aP)3bP = aPbPh? = a2aPP.

Proof. LetaP = x € R* and bP = y € R¥. By Corollary 3.3, we have xy> = yx and yx® = xy. Then by Lemma
3.4, it follows x*y# = 1Px and y#x* = 1%y, that is, a2aPb?bP = (bP)%aP.
Note that
El2ElDb2bD — ﬂ2an3(bD)2 — azbaD(bD)z — El2(lZD)3b(bD)2 — anD,

and
bDaDa2 — bDaS(aD)Z — abD(aD)Z — aaD(bD)3aD — (bD)SuDaaD — (bD)SaD.

So, we get aPbP = (bP)3aP = bPaPa?. Similarly, bPaP = (aP)3bP = aPbP12.
Hence, by bPaP = aPbPb? and Corollary 3.3 (6), we have

PbPaP = bPh(bal) = bPhaPb = aPbPb* = BPalh? = aP1P.
Similarly, a2a®bP = bPaP. O

Lemma 3.6. Let a,b € RP be such that a®b = ba and b®a = ab. Then the following statements hold:
(1) aaPa**'bibbP = aaPa'b/bbP .
(2) aaPa?*'p?*ibbP = aaPa'bibbP, where i, j € N.
(3) aaPabbP = aP(bP)%.
(4) aaPabbP = aPbbP.
(5) aaPa?bbb® = aaPbP.
(6) aaPab*bbP = aPbbP.
(7) aba™ = 0 and bab™ = 0.

Proof. (1) By Lemma 3.5 (2), we have
aa?a*bbP = aaPabab® = aba*aPbP = abbPaP = aa®bbP.

Then we get aaPa**'b/bbP = aaPa'bibbP.

(2) Note that a?aPb*bP = aPbP, Then we have aaPa?b*bbP = a(a*aPb*bP)b = aaPbbP. This implies that
aaPa®b**ibbP = aaPa’bibbP .

(3) By Lemma 3.5 (2), we have aaPabbP = a?aPbPb = bPaPb = aP (bP)*b = aP (bP)?.

(4) aaPa®bbP = aaPbabP = ba?aPbP = bbPaP = aPbbP.

(5) In the proof of Lemma 3.5 (1), we get a2a”b?bP = aPbP. Then we have

aaPa*bbb® = a(aa®abbbP) = aaPvP.

(6) Similar to (5), we have aa”ab?bb® = (aaPabbbP)b = aPbbP.
(7) For k > max{ind(a), ind(b)}, we have aba™ = a™ab = a™a**(ab)b* = 0 and bab™ = b"ba = b"b***(ba)a®* =
0. O

Theorem 3.7. Leta,b € RP be such that a®b = ba and b®a = ab. Suppose 2 is Drazin invertible. Then a+ b is Drazin
invertible and
(a +b)P = (2P)3bbP (3a® + 3b° — a — byaa® + aP(1 — bbP) + (1 — aaP)bP.
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Proof. Firstly, let M = M; + My + M3, where M; = (2P)*bbP(3a® + 3b° — a — b)aa®, My = aP(1 — bbP),
M; = (1 — aaP)bP. In what follows, we show that M is the Drazin inverse of a + b, i.e. the following
conditions hold: (a). M(a + b) = (a + b)M, (b). M(a + b)M = M and (c). (a + b) — (a + b)*M is nilpotent.

For the condition (a), we will show that (a + b) is communicate with M;, M, and M3. By Corollary 3.3 (2)
and (3), we have

(a+b)M; = 2P)30bP(a + b)(3a® + 3b° — a — b)aa®

and
Mi(a +b) = 2P)°bbP(3a® + 36> — a — b)(a + b)aaP.

After a calculation we can obtain

(@a+b)M; — My(a +b) (2P)*bbP (3ab® + 3ba® — 3ab — 3ba)aa®

(2P)*3(aaPa’bbbP + aaPb’abbP — aaPbabb® — aaPabbbP)
From Lemma 3.6 (1), one can get aa”a’bbb® = aaPabbbP. Similar to Lemma 3.6(1), it is easy to check
that aaPb**'a/bb? = aaPbiaibbP for j € IN. Then one can see that aa”b’abbP® = aaPbabbP. This implies

Mi(a + b) = (ﬂ + b)M1
Note that abb™ = 0, we get

(a +b)M, — My(a + b) (baP — aPb)(1 - bbP)
((a®)b — aPb)(1 — bbP)
((a°)* = (@°)*)ab(1 - bb")

= 0.

Similarly, (a + b)M3 — Ms(a + b) = ((bP)* — (bP)*)ba(1 — aaP) = 0. This means that (a + b)M = M(a + b).
(b) By Corollary 3.3 (2)(3), we get

Mi(a +b)My = My(a + b)M; = 0,

Mz(a + b)Ml = Mz(a + b)Mg =0,
M3(a + b)Ml = M3(ﬂ + b)Mz =0.
By hypothesis and Lemma 3.6, we can simplify

Mi(a + b)M; (2P)*bbP (3a® + 3% — a — b)aaP (a + b)(2P)3bbP (3a® + 3b° — a — b)aa®
= 2P)°bbP(3a® + 3b° — a — b)(a + b)(3a® + 3b°> — a — b)aa®

= (2D)%pbP (25a° + 25b° — ab* — a®b — 8a — 8b)aa®

= (2P)°(25aPbbP + 25bPaaP — aPvbP — bPaaP — 8aPPLP — 8bPalaP)
= (2P)(24aPbbP + 24bPaaP — 84°bPHP — 8bPaPaP)

= (P3P (3a® + 3b® — a — b)aaP.

Note that aPbaP(1 — bbP) = aP(1 — bbP)baaPaP = 0 and b”abP (1 — aaP) = 0. After a calculation, we obtain

Ma + )M

Mi(a + b)M; + Mj(a + b)M, + Ms(a + b)M;3

M; +aP@a + b)aP(1 - bbP) + bP(a + b)bP (1 — aa®)
M; + (@° +aPbaP)(1 - bbP) + (bPab® + bP)(1 - aaP)
M.

(c) Note that (aba” + baaP + bbaP)(1 — bbP) = 0 and (aab® + abbP + babP)(1 — aa®) = 0.
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Similar to the proof of (b), by Lemma 3.6, we have

(a +b*M (a + b)[(2P)°bbP (3a* + 3ab® + 3ba® + 3b* — a* — ab — ba — b*)aa®

+(aaP + baP)(1 — bbP) + (1 — aaP)(ab® + bbP)]

= (2PYubP(3a® + 306> + 3aba® + 3ab* + 3ba* + 3bab® + 3a%b° + 31°
—a® — a*b — aba — ab® — ba® — bab — V*a — b%)aa® + (a*a® + aba®
+baaP + bbaP)(1 - bbP) + (aab® + abb® + bab® + bbHP)(1 — aaP)

= (2P)3(8aPbPhP + 8bPaPaP) + a*aP (1 - bbP) + VP (1 — aaP)

= (2P)3(84PbPbP + 8bPaPaP) + a*aP — aPbPhP + b*bP — bPaPaP

= 2% + b — (1 - 22°)@PbPuP + bPaPaP).

Note that a?bPbP + bPaPaP = aaP(a + b)bbP and
[(1 = 22PYaaP(a + b)bbP]* = 2(1 — 22P)aaP (3 + 24a°b + 2ab + a*)bbP.

Since aa™bb™ = bb™aa™ = 0 and aa™aaP(a + b)bb® = bb™aaP(a + b)bb" = 0, it follows that a + b — (a + b)>M =
aa™ + bb™ — (1 — 22P)aaP(a + b)bbP is nilpotent. O

Example 3.8. Suppose S = Zg and R = Syyp. Set a = ( 3 8 )and b= ( g g ) By direct computation, we have

2 _ 3 _ 1D _
a* =0and b° = —(0 3

bP 00 ) It is easy to check a®b = ba and ba = ab. Then by theorem 3.7, one can obtain that
00
D_
(a+b)F = ( 0 3 )
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