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Abstract. In this article, we investigate additive properties of the Drazin inverse of elements in rings and
algebras over an arbitrary field. The necessary and sufficient condition for the Drazin invertibility of a − b
is considered under the condition of ab = λba in algebras over an arbitrary field. Moreover, we give explicit
representations of (a + b)D, as a function of a, b, aD and bD, whenever a3b = ba and b3a = ab.

1. Introduction

Throughout this article, A denotes an algebra over an arbitrary field F and R denotes an associative
ring with unity. Recall that the Drazin inverse of a ∈ R is the element b ∈ R (denoted by aD) which satisfies
the following equations [12]:

bab = b, ab = ba, ak = ak+1b.

for some nonnegative integer k. The smallest integer k is called the Drazin index of a, denoted by ind(a). If
ind(a) = 1, then a is group invertible and the group inverse of a is denoted by a]. It is well known that the
Drazin inverse is unique, if it exists. The conditions in the definition of Drazin inverse are equivalent to:

bab = b, ab = ba, a − a2b is nilpotent.

The study of the Drazin inverse of the sum of two Drazin invertible elements was first developed by Drazin
[12]. It was proved that (a + b)D = aD + bD provided that ab = ba = 0. In recent years, many papers focused
on the problem under some weaker conditions. For two complex matrices A,B, Hartwig et al.[15] expressed
(A + B)D under one-sided condition AB = 0. This result was extended to bounded linear operators on an
arbitrary complex Banach space by Djordjević and Wei [10], and was extended for morphisms on arbitrary
additive categories by Chen et al. [4]. In the article of Wei and Deng [22] and Zhuang et al. [24], the
commutativity ab = ba was assumed. In [22], they characterized the relationships of the Drazin inverse
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between A + B and I + ADB by Jordan canonical decomposition for complex matrices A and B. In [24],
Zhuang et al. extended the result in [22] to a ring R , and it was shown that if a, b ∈ R are Drazin invertible
and ab = ba, then a + b is Drazin invertible if and only if 1 + aDb is Drazin invertible. More results on the
Drazin inverse can also be found in [1-3, 6, 7, 9, 11, 13, 14, 16, 17, 19-24]. The motivation for this article
was the results in Deng [8], Cvetković-Ilić [5] and Liu et al. [18]. In [5, 8] the commutativity ab = λba
was assumed. In [8], the author characterized the relationships of the Drazin inverse between a ± b and
aaD(a ± b)bbD by the space decomposition for operator matrices a and b. In [18], the author gave explicit
representations of (a + b)D of two matrices a and b, as a function of a, b, aD and bD, under the conditions
a3b = ba and b3a = ab. In this article, we extend the results in [8, 18] to more general settings.

As usual, the set of all Drazin invertible elements in an algebra A is denoted by AD. Similarly, RD

indicates the set of all Drazin invertible elements in a ring R. Given a ∈ AD (or a ∈ RD), it is easy to see that
1 − aaD is an idempotent, which is denoted by aπ.

2. Under the Condition ab = λba

In this section, we will extend the result in [8] to an algebraA over an arbitrary field F.

Lemma 2.1. Let a, b ∈ A be such that ab = λba and λ ∈ F\{0}. Then
(1) abi = λibia and aib = λibai.
(2) (ab)i = λ−

i(i−1)
2 aibi and (ba)i = λ

i(i−1)
2 biai.

Proof. (1) By hypothesis, we have

abi = abbi−1 = λbabi−1 = λbabbi−2 = λ2b2abi−2 = · · · = λibia.

Similarly, we can obtain that aib = λibai.
(2) By hypothesis, it follows that

(ab)i = abab(ab)i−2 = λ−1a2b2(ab)i−2 = λ−(1+2)a3b3(ab)i−3

= · · · = λ−
∑k=i−1

k=0 kaibi = λ−
i(i−1)

2 aibi.

Similarly, it is easy to get (ba)i = λ
i(i−1)

2 aibi.

Lemma 2.2. Let a, b ∈ A be Drazin invertible and λ ∈ F\{0}. If ab = λba, then
(1) aDb = λ−1baD.
(2) abD = λ−1bDa.
(3) (ab)D = bDaD = λ−1aDbD.

Proof. Assume k = max{ind(a), ind(b)}.
(1) By hypothesis, we have

aD(akb) = aD(λkbak) = λkaD(bak+1aD) = λkaD(λ−(k+1)ak+1baD)
= λ−1aDak+1baD = λ−1akbaD.

It follows that

aDb = (aD)k+1akb = (aD)kaDakb = λ−1(aD)kakbaD = · · ·

= λ−(k+1)akb(aD)k+1 = λ−1bak(aD)k+1 = λ−1baD.

Moreover,

(baD)i = λ−
i(i−1)

2 bi(aD)i and (aDb)i = λ
i(i−1)

2 (aD)ibi.
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(2) The proof is similar to (1).
(3) By (1), we have aDb = λ−1baD, then (aaD)b = λ−1abaD = b(aaD). By [12], we get aaDbD = bDaaD.
Similarly, we can obtain that abDb = λ−1bDab = bDba and aDbbD = bbDaD. This implies that

abbDaD = bbDaaD = bDaDab.

bDaDabbDaD = bDbbDaDaaD = bDaD.

and

(ab)k+1bDaD = λ−
k(k+1)

2 ak+1bk+1bDaD = λ−
k(k+1)

2 ak+1bkaD

= λ−
k(k+1)

2 ak+1(λkaDbk) = λ−
k(k−1)

2 ak+1aDbk

= λ−
k(k−1)

2 akbk = (ab)k.

Then we get (ab)D = bDaD. Similarly, we can check that (ab)D = λ−1aDbD.

Theorem 2.3. Let a, b be Drazin invertible inA. If ab = λba and λ , 0, then a − b is Drazin invertible if and only
if w = aaD(a − b)bbD is Drazin invertible. In this case,

(a − b)D = wD + aD(1 − bbπaD)−1bπ − aπ(1 − bDaaπ)−1bD.

Proof. Since w = aaD(a − b)bbD, we have w = (1 − aπ)(a − b)(1 − bπ) and

a − b = w + (a − b)bπ + aπ(a − b) − aπ(a − b)bπ. (1)

By the proof of Lemma 2.2 (3), we have aaDb = baaD and abbD = bDba. This means that aπb = baπ and
bπa = abπ.
Let s = ind(a) and t = ind(b). By Lemma 2.2 (1) and btbπ = 0, we get

(bbπaD)t = λ−
t(t−1)

2 btbπ(aD)t = 0

and (1 − bbπaD)−1 = 1 + baDbπ + (baD)2bπ + · · · + (baD)t−1bπ.
By a similar method, we get 1 − bDaaπ and 1 − aaπbD are both invertible.
Note that waπ = aπw = aπaaD(a− b)bbD = 0 and bπw = wbπ = aaD(a− b)bbDbπ = 0 by aπb = baπ and bπa = abπ.

Now let us begin the proof of Theorem 2.3. Assume w is Drazin invertible and let

x = wD + aD(1 − bbπaD)−1bπ − aπ(1 − bDaaπ)−1bD.

Since abπ = bπa and baπ = aπb, it is easy to obtain that w(a − b) = (a − b)w and wD(a − b) = (a − b)wD.
A direct computation yields

(a − b)[aD(1 − bbπaD)−1bπ]
= aaD(1 − baD)bπ(1 − bbπaD)−1

= aaD(1 − bbπaD
− bbbDaD)bπ(1 − bbπaD)−1

= aaD(1 − bbπaD)bπ(1 − bbπaD)−1

= aaDbπ.

Since (1 − bDaaπ)bD = bD(1 − aaπbD), we have

(a − b)aπ(1 − bDaaπ)−1bD = (a − b)bDaπ(1 − aaπbD)−1

= −bbD(1 − abD)aπ(1 − aaπbD)−1

= −bbDaπ.

So, by the above, we can obtain that

(a − b)x = (a − b)(wD + aD(1 − bbπaD)−1bπ − aπ(1 − bDaaπ)−1bD) (2)
= (a − b)wD + aaDbπ + bbDaπ.



L. Wang, X. Zhu, J.L. Chen / Filomat 30:5 (2016), 1185–1193 1188

Similar to the above way, we also have [aD(1 − bbπaD)−1bπ](a − b) = aDabπ and [aπ(1 − bDaaπ)−1bD](a − b) =
−bDbaπ.
So, it follows x(a − b) = wD(a − b) + aDabπ + bDbaπ and x(a − b) = (a − b)x.

We now prove that x(a − b)x = x.
Let (a − b)x = x1 + x2 where x1 = wD(a − b) and x2 = aDabπ + bDbaπ. Note that waπ = aπw = 0, wbπ = bπw = 0
and wD(a − b) = (a − b)wD. By Eq.(1), we have

wD(a − b) = wD(w + (a − b)bπ + aπ(a − b) − aπ(a − b)bπ) = wDw (3)

Then we have wDx1 = wD and wDx2 = wD(aaDbπ + bbDaπ) = wDbπaaD + wDaπbbD = 0.
Similarly, it is easy to get (aD(1− bbπaD)−1bπ − aπ(1− bDaaπ)−1bD)wD = 0, this shows that (aD(1− bbπaD)−1bπ −
aπ(1 − bDaaπ)−1bD)x1 = 0.

[aD(1 − bbπaD)−1bπ − aπ(1 − bDaaπ)−1bD]x2

= [aD(1 − bbπaD)−1bπ − aπ(1 − bDaaπ)−1bD](aDabπ + bDbaπ)
= aD(1 − bbπaD)−1bπ − aπ(1 − bDaaπ)−1bD.

So, we get x(a − b)x = x.
By Eq.(3), we have (a − b)2wD = w2wD = w − wwπ and

(a − b)(aaDbπ + bbDaπ)
= (a − b)((1 − aπ)bπ + (1 − bπ)aπ)
= abπ − baπ + aaπ − bbπ − 2aaπbπ + 2bbπaπ.

Then by Eq.(1) and Eq.(2), we have

(a − b) − (a − b)2x
= (a − b) − (a − b)(wD(a − b) + aDabπ + bDbaπ)
= (a − b) − (w − wwπ + abπ − baπ + aaπ − bbπ − 2aaπbπ + 2bbπaπ)
= (a − b) − [(a − b) − (a − b)bπ − aπ(a − b) + aπ(a − b)bπ − wwπ

+abπ − baπ + aaπ − bbπ − 2aaπbπ + 2bbπaπ]
= (a − b) − ((a − b) + bbπaπ − aaπbπ − wwπ)
= −(bbπaπ − aaπbπ − wwπ).

Note that (bbπaπ − aaπbπ)k = (b − a)kbπaπ and (b − a)k =
∑

i+ j=k λi, jb jai.
Let k ≥ 2 max{s, t}. Then we have (bbπaπ − aaπbπ)k = 0.
Since (bbπaπ − aaπbπ)wwπ = wwπ(bbπaπ − aaπbπ) = 0, we have bbπaπ − aaπbπ − wwπ is nilpotent.

Hence, we get (a − b)D = wD + aD(1 − bbπaD)−1bπ − aπ(1 − bDaaπ)−1bD.
For the “ only if ” part: Assume (a − b) ∈ AD. Since (bbD)2 = bbD, bbD

∈ A
D. By Lemma 2.2 and

(a − b)bbD = bbD(a − b), we have (a − b)bbD
∈ A

D. Similarly, since aaD(a − b)bbD = (a − b)bbDaaD, we have
aaD(a − b)bbD

∈ A
D.

3. Under the Condition a3b = ba , b3a = ab.

In [18], Liu et al. gave the explicit representations of (a+b)D of two complex matrices under the condition
a3b = ba and b3a = ab. In this section, we will extend the result to a ring R in which 2=1+1 is Drazin invertible
for the unity 1.

Lemma 3.1. Let a, b ∈ R be such that a3b = ba and b3a = ab. then for i ∈N
(1) bai = a3ib and bia = a3i bi.
(2) abi = b3ia and aib = b3i ai.
(3) ab = a26i(ab)b2i and ba = b26i(ba)a2i.
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Proof. (1) By induction, it is easy to obtain (1) and (2).
(3) The proof is similar to [18, lemma 2.1].

Lemma 3.2. Let a, b ∈ RD be such that a3b = ba and b3a = ab. Then
(1) aπbaD = 0 and aDbaπ = 0.
(2) bπabD = 0 and bDabπ = 0.

Proof. (1) By Lemma 3.1(1), there exists some i ∈ N, such that aπbaD = aπbai(aD)i+1 = aπa3ib(aD)i+1 = 0.
Similarly, aDbaπ = 0.

(2) It is analogous to the proof of (1).

Corollary 3.3. Let a, b ∈ RD be such that a3b = ba and b3a = ab. Then
(1) (aD)3b = baD and (bD)3a = abD.
(2) aaD commutes with b and bD.
(3) bbD commutes with a and aD.
(4) abD = bDa3 and baD = aDb3.
(5) aDbD = bD(aD)3 and bDaD = aD(bD)3.
(6) aDbD = bDaDb2 and bDaD = aDbDa2.

Proof. (1) By hypothesis, (aD)3baaD = (aD)3a3baD. By Lemma 3.2 (1), (aD)3b = baD. Similarly, we have
(bD)3a = abD.

(2) By hypothesis and (1), we get baaD = a3baD = a3(aD)3b = aaDb. Then bDaaD = aaDbD. (3) is analogous
to the proof of (2).

(4) By (3), we get bDa3 = bDa3bbD = bDbabD = abD. Similarly, aDb = aDb3.
(5) By (1) and (3), we have bD(aD)3 = bD(aD)3bbD = bDbaDbD = aDbDbbD = aDbD. Similarly, aD(bD)3 = bDaD.
(6) By (5), we have bDaDb2 = aD(bD)3b2 = aDbD. Similarly, bDaD = aDbDa2.

In Corollary 3.3 (5), one can see that aDbD = bD(aD)3 and bDaD = aD(bD)3. In the following, we will
consider the analogous condition of ab3 = ba and ba3 = ab.

Lemma 3.4. Let a, b ∈ RD be such that ab3 = ba and ba3 = ab. Then aDbD = b3a and bDaD = a3b.

Proof. Similar to Lemma 3.2 and Corollary 3.3, we have aDb = b(aD)3 and bDa = a(bD)3.
Then we can obtain that aaDb = ab(aD)3 = ba3(aD)3 = baDa and bbDa = abDb.
This implies that

a3bD = a3b(bD)2 = ba9(bD)2

= bDb2a9(bD)2 = bDba3b(bD)2

= bDabb(bD)2 = bDa(bbD)2 = bDa.

So, we get aDbD = aDbDaaD = aDa(bD)3aD = (bD)3aD and bDaD = (aD)3bD.
Similar to the proof of Lemma 3.1, we have ab = a2i(ab)b26i for i > max{ind(a), ind(b)}. Then it is easy to

get

abbDaD = bbDaaD = bDbaDa = bDaDab,
bDaDabbDaD = bDbbDaDaaD,

(ab)2bDaD = (ab)abbDaD = (ab)aaDbbD = a2i(ab)b26iaaDbbD = a2i(ab)b26i = ab.

Then this implies that (ab)] = bDaD and (ba)] = aDbD.
Hence, there exist i ∈N such that

bDaD = (ab)] = ((ab)])2ab = bDaDbDaDba3 = bDaDbD(aDa)b3a2 = bDaDbDb3a2

= bDaD(bDb)b2a2 = bDaDb2a2 = bDaDbab3a = bDaDab6a = bDb6a2aD

= b4(bDb)(ba)(aDa) = b4(bDb)b2i(ba)a26i(aDa) = b4b2i(ba)a26i = b4ba
= b5a.
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and aDbD = (ba)] = a5b.
So, we have aDbD = (bD)3aD = (bD)2bDaD = (bD)2b5a = b2(bbD)ba = b2(bbD)b2ibaa26i = b3a and bDaD =

a3b.

Lemma 3.5. Let a, b ∈ RD be such that a3b = ba and b3a = ab. Then the following statements hold:
(1) aDbD = (bD)3aD = bDaDa2 = b2bDaD.
(2) bDaD = (aD)3bD = aDbDb2 = a2aDbD.

Proof. Let aD = x ∈ R] and bD = y ∈ R]. By Corollary 3.3, we have xy3 = yx and yx3 = xy. Then by Lemma
3.4, it follows x]y] = y3x and y]x] = x3y, that is, a2aDb2bD = (bD)3aD.

Note that
a2aDb2bD = a2aDb3(bD)2 = a2baD(bD)2 = a2(aD)3b(bD)2 = aDbD,

and
bDaDa2 = bDa3(aD)2 = abD(aD)2 = aaD(bD)3aD = (bD)3aDaaD = (bD)3aD.

So, we get aDbD = (bD)3aD = bDaDa2. Similarly, bDaD = (aD)3bD = aDbDb2.
Hence, by bDaD = aDbDb2 and Corollary 3.3 (6), we have

b2bDaD = bDb(baD) = bDbaDb3 = aDbDb4 = bDaDb2 = aDbD.

Similarly, a2aDbD = bDaD.

Lemma 3.6. Let a, b ∈ RD be such that a3b = ba and b3a = ab. Then the following statements hold:
(1) aaDa4+ib jbbD = aaDaib jbbD.
(2) aaDa2+ib2+ jbbD = aaDaib jbbD, where i, j ∈N.
(3) aaDabbD = aD(bD)2.
(4) aaDa3bbD = aDbbD.
(5) aaDa2bbbD = aaDbD.
(6) aaDab2bbD = aDbbD.
(7) abaπ = 0 and babπ = 0.

Proof. (1) By Lemma 3.5 (2), we have

aaDa4bbD = aaDababD = aba2aDbD = abbDaD = aaDbbD.

Then we get aaDa4+ib jbbD = aaDaib jbbD.
(2) Note that a2aDb2bD = aDbD, Then we have aaDa2b2bbD = a(a2aDb2bD)b = aaDbbD. This implies that

aaDa2+ib2+ jbbD = aaDaib jbbD.
(3) By Lemma 3.5 (2), we have aaDabbD = a2aDbDb = bDaDb = aD(bD)3b = aD(bD)2.
(4) aaDa3bbD = aaDbabD = ba2aDbD = bbDaD = aDbbD.
(5) In the proof of Lemma 3.5 (1), we get a2aDb2bD = aDbD. Then we have

aaDa2bbbD = a(aaDabbbD) = aaDbD.

(6) Similar to (5), we have aaDab2bbD = (aaDabbbD)b = aDbbD.
(7) For k > max{ind(a), ind(b)}, we have abaπ = aπab = aπa26k(ab)b2k = 0 and babπ = bπba = bπb26k(ba)a2k =

0.

Theorem 3.7. Let a, b ∈ RD be such that a3b = ba and b3a = ab. Suppose 2 is Drazin invertible. Then a+b is Drazin
invertible and

(a + b)D = (2D)3bbD(3a3 + 3b3
− a − b)aaD + aD(1 − bbD) + (1 − aaD)bD.
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Proof. Firstly, let M = M1 + M2 + M3, where M1 = (2D)3bbD(3a3 + 3b3
− a − b)aaD, M2 = aD(1 − bbD),

M3 = (1 − aaD)bD. In what follows, we show that M is the Drazin inverse of a + b, i.e. the following
conditions hold: (a). M(a + b) = (a + b)M, (b). M(a + b)M = M and (c). (a + b) − (a + b)2M is nilpotent.
For the condition (a), we will show that (a + b) is communicate with M1,M2 and M3. By Corollary 3.3 (2)
and (3), we have

(a + b)M1 = (2D)3bbD(a + b)(3a3 + 3b3
− a − b)aaD

and
M1(a + b) = (2D)3bbD(3a3 + 3b3

− a − b)(a + b)aaD.

After a calculation we can obtain

(a + b)M1 −M1(a + b) = (2D)3bbD(3ab3 + 3ba3
− 3ab − 3ba)aaD

= (2D)33(aaDa9bbbD + aaDb9abbD
− aaDbabbD

− aaDabbbD)

From Lemma 3.6 (1), one can get aaDa9bbbD = aaDabbbD. Similar to Lemma 3.6(1), it is easy to check
that aaDb4+ia jbbD = aaDbia jbbD for j ∈ N. Then one can see that aaDb9abbD = aaDbabbD. This implies
M1(a + b) = (a + b)M1.
Note that abbπ = 0, we get

(a + b)M2 −M2(a + b) = (baD
− aDb)(1 − bbD)

= ((aD)3b − aDb)(1 − bbD)
= ((aD)4

− (aD)2)ab(1 − bbD)
= 0.

Similarly, (a + b)M3 −M3(a + b) = ((bD)4
− (bD)2)ba(1 − aaD) = 0. This means that (a + b)M = M(a + b).

(b) By Corollary 3.3 (2)(3), we get

M1(a + b)M2 = M1(a + b)M3 = 0,

M2(a + b)M1 = M2(a + b)M3 = 0,

M3(a + b)M1 = M3(a + b)M2 = 0.

By hypothesis and Lemma 3.6, we can simplify

M1(a + b)M1 = (2D)3bbD(3a3 + 3b3
− a − b)aaD(a + b)(2D)3bbD(3a3 + 3b3

− a − b)aaD

= (2D)6bbD(3a3 + 3b3
− a − b)(a + b)(3a3 + 3b3

− a − b)aaD

= (2D)6bbD(25a3 + 25b3
− ab2

− a2b − 8a − 8b)aaD

= (2D)6(25aDbbD + 25bDaaD
− aDbbD

− bDaaD
− 8aDbDbD

− 8bDaDaD)
= (2D)6(24aDbbD + 24bDaaD

− 8aDbDbD
− 8bDaDaD)

= (2D)3bbD(3a3 + 3b3
− a − b)aaD.

Note that aDbaD(1 − bbD) = aD(1 − bbD)baaDaD = 0 and bDabD(1 − aaD) = 0. After a calculation, we obtain

M(a + b)M = M1(a + b)M1 + M2(a + b)M2 + M3(a + b)M3

= M1 + aD(a + b)aD(1 − bbD) + bD(a + b)bD(1 − aaD)
= M1 + (aD + aDbaD)(1 − bbD) + (bDabD + bD)(1 − aaD)
= M.

(c) Note that (abaD + baaD + bbaD)(1 − bbD) = 0 and (aabD + abbD + babD)(1 − aaD) = 0.
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Similar to the proof of (b), by Lemma 3.6, we have

(a + b)2M = (a + b)[(2D)3bbD(3a4 + 3ab3 + 3ba3 + 3b4
− a2
− ab − ba − b2)aaD

+(aaD + baD)(1 − bbD) + (1 − aaD)(abD + bbD)]
= (2D)3bbD(3a5 + 3a2b3 + 3aba3 + 3ab4 + 3ba4 + 3bab3 + 3a2b3 + 3b5

−a3
− a2b − aba − ab2

− ba2
− bab − b2a − b3)aaD + (a2aD + abaD

+baaD + bbaD)(1 − bbD) + (aabD + abbD + babD + bbbD)(1 − aaD)
= (2D)3(8aDbDbD + 8bDaDaD) + a2aD(1 − bbD) + b2bD(1 − aaD)
= (2D)3(8aDbDbD + 8bDaDaD) + a2aD

− aDbDbD + b2bD
− bDaDaD

= a2aD + b2bD
− (1 − 22D)(aDbDbD + bDaDaD).

Note that aDbDbD + bDaDaD = aaD(a + b)bbD and

[(1 − 22D)aaD(a + b)bbD]4 = 2(1 − 22D)aaD(3 + 2a3b + 2ab + a2)bbD.

Since aaπbbπ = bbπaaπ = 0 and aaπaaD(a + b)bbD = bbπaaD(a + b)bbD = 0, it follows that a + b − (a + b)2M =
aaπ + bbπ − (1 − 22D)aaD(a + b)bbD is nilpotent.

Example 3.8. Suppose S = Z8 and R = S2×2. Set a =

(
4 0
0 0

)
and b =

(
2 0
0 3

)
. By direct computation, we have

a2 = 0 and b3 = bD =

(
0 0
0 3

)
. It is easy to check a3b = ba and b3a = ab. Then by theorem 3.7, one can obtain that

(a + b)D =

(
0 0
0 3

)
.
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