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Abstract. In this paper, we characterize the compact, invertible, Fredholm and closed range multiplication
operators on Cesàro function spaces.

1. Introduction and Preliminaries

Let (X, s, µ) be a σ-finite measure space and by L0(X) we denote the set of all equivalence classes of
complex valued measurable functions defined on X where X = [0, 1] or X = [0,∞). Then for 1 ≤ p ≤ ∞ the
Cesàro function space is denoted by Cesp(X) and is defined as

Cesp(X) =
{

f ∈ L0(X) :
∫

X

(1
x

∫ x

0
| f (t)|dµ(t)

)p
dµ(x) < ∞

}
.

The Cesàro function space Cesp(X) is a Banach space under the norm

‖ f ‖ =
( ∫

X

(1
x

∫ x

0
| f (t)|dµ(t)

)p
dµ(x)

) 1
p if 1 ≤ p < ∞

and

‖ f ‖∞ = sup
x∈I,x>0

1
x

∫ x

0
| f (t)|dµ(t) < ∞ if p = ∞. See [3]

The Cesàro function space Cesp[0,∞) for 1 ≤ p ≤ ∞ was considered by Shiue [21], Hassard and Hussein
[9] and Sy, Zhang and Lee [25]. The space Ces∞[0, 1] appeared in 1948 and it is known as the Korenblyum-
Krein-Levin space K (see [13], [20]). Recently in [4] it is proved that in contrast to Cesàro sequence spaces,
the Cesàro function spaces Cesp(X) on both X = [0, 1] and X = [0,∞) for 1 < p < ∞ are not reflexive and they
do not have the fixed point property. In [5], Astashkin and Maligranda investigated Rademacher sums in
Cesp[0, 1] for 1 ≤ p ≤ ∞. The description is different for 1 ≤ p < ∞ and p = ∞.
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Let u : X→ C be a function such that u. f ∈ Cesp(X) for every f ∈ Cesp(X), then we can define a multiplication
transformation Mu : Cesp(X)→ Cesp(X) by

Mu f = u. f , ∀ f ∈ Cesp(X).

If Mu is continuous, we call it a multiplication operator induced by u. These operators received considerable
attention over the past several decades especially on Lp-spaces, Bergman spaces. From the recent literature
available in operator theory we find that multiplication operators are very much intimately connected
with the composition operators as most of the properties of composition operators on Lp-spaces can be
stated in terms of properties of multiplication operators. For example Singh and Manhas [23] proved that
a composition operator on Lp(X,C) is compact if and only if the multiplication operator Mu is compact,

where u =
dµT−1

dµ , the Radon-Nikodym derivative of the measure µT−1 with respect to the measure µ. Infact
the multiplication operators play an important role in the theory of Hilbert space operators. One of the
main application is that every normal operator on a separable Hilbert space is unitarily equivalent to a
multiplication operator. Moreover multiplication operators has its roots in the spectral theory and is being
pursued today in such guises as the theory of subnormal operators and the theory of Toeplitz operators.
For more details on multiplication operators we refer to ([1], [6], [2], [7], [8], [10], [14], [11], [12], [18], [19],
[22], [24], [26], [27]) and refrences therein. Moreover, Compact operators on sequence spaces have recently
been studied by Malkowsky [16] and Mursaleen and Noman in [17].

Definition 1.1. A bounded linear operator A : E → E (where E is a Banach space) is called compact if A(B1) has
compact closure, where B1 denotes the closed unit ball of E.

Definition 1.2. A bounded linear operator A : E → E is called Fredholm if A has closed range, dim(kerA) and
co-dim(ranA) are finite.

In this paper we initiate the study of multiplication operators on Cesàro function spaces. We first prove
that the set of all multiplication operators on Cesp(X) is a maximal abelian subalgebra of B(Cesp(X)), the
Banach algebra of all bounded linear operators on Cesp(X) into itself and after that we use this result to
characterize the invertibility of multiplication operators on Cesp(X). By the symbol Aε(u) we denote the set
{x ∈ X : |u(x)| ≥ ε}.
The main purpose of this paper is to characterize the boundedness, compactness, closed range and Fred-
holmness of multiplication operators on Cesàro function spaces.

2. Invertible Multiplication Operators

The main purpose of this section is to characterize invertible multiplication operators on Cesàro function
spaces. The following result (Theorem 2.1) for more general spaces (ideal Banach function spaces) has been
proved by Maligranda and Persson [15]. For the sake of completeness, we give here a special case which
will be further used in Theorem 2.2.

Theorem 2.1. Let u : X→ C be a measurable function. Then Mu : Cesp(X)→ Cesp(X) is a bounded operator if and
only if u is an essentially bounded function. Moreover,

‖Mu‖ = ‖u‖∞.

Proof. Suppose first that u : X → C is an essentially bounded measurable function. Then for every
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f ∈ Cesp(X), we have

‖Mu f ‖p =

∫
X

(1
x

∫ x

0
|(u. f )(t)|dµ(t)

)p
dµ(x)

=

∫
X

(1
x

∫ x

0
|u(t) f (t)|dµ(t)

)p
dµ(x)

≤ ‖u‖p∞

∫
X

(1
x

∫ x

0
| f (t)|dµ(t)

)p
dµ(x)

= ‖u‖p∞‖ f ‖p.

Thus,

‖Mu f ‖ ≤ ‖u‖∞‖ f ‖, (1)

which implies that Mu is a bounded operator.
Conversely, Suppose that Mu is a bounded operator. We show that u is essentially bounded function.
Suppose u is not essentially bounded, then for every n ∈ N, the set En = {x ∈ X : |u(x)| > n} has a positive
measure.
Let Fn be a measurable subset of En such that χFn ∈ Cesp(X), then

‖MuχFn‖
p =

∫
X

(1
x

∫ x

0
|u(t)χFn (t)|dµ(t)

)p
dµ(x)

≥

∫
X

(1
x

∫ x

0
|nχFn (t)|dµ(t)

)p
dµ(x)

= np
‖χFn‖

p.

Hence, ‖MuχFn‖ > n‖χFn‖. This is true for every n ∈ N which contradicts the boundedness of Mu. Thus u
must be essentially bounded.
We now show that ‖Mu‖ = ‖u‖∞. For any ε > 0, let E = {x ∈ X : |u(x)| > (‖u‖∞ − ε)}. Then E has the positive
measure. Now

‖MuχE‖
p = ‖u.χE‖

p

=

∫
X

(1
x

∫ x

0
|u(t)χE(t)|dµ(t)

)p
dµ(x)

≥

∫
X

(1
x

∫ x

0

∣∣∣(‖u‖∞ − ε)χE(t)
∣∣∣dµ(t)

)p
dµ(x)

=
(
‖u‖∞ − ε

)p
∫

X

(1
x

∫ x

0
|χE(t)|dµ(t)

)p
dµ(x)

=
(
‖u‖∞ − ε

)p
‖χE‖

p

Therefore ‖Mu‖ ≥ ‖u‖∞ − ε, but ε is arbitrary. Hence

‖Mu‖ ≥ ‖u‖∞. (2)

Finally from (1) and (2)

‖Mu‖ = ‖u‖∞.

Theorem 2.2. The set of all multiplication operators on Cesp(X) is a maximal abelian subalgebra of the set B(Cesp(X)).



M. Mursaleen et al. / Filomat 30:5 (2016), 1175–1184 1178

Proof. LetH =
{
Mu : u is an essentially bounded measurable function

}
and consider the operator product

Mu.Mv = Muv,

where Mu, Mv ∈ H , let us check H is a Banach algebra. Let u, v are essentially bounded measurable
function then |u| ≤ ‖u‖∞ and |v| ≤ ‖v‖∞,
therefore

‖uv‖∞ ≤ ‖v‖∞‖u‖∞.

This implies that product is an inner operation, moreover the usual function product is associative, commu-
tative and distributive with respect to the sum and scalar product, thus we conclude thatH is a subalgebra
of B(Cesp(X)).
Now, we want to check thatH is a maximal subalgebra, that is, given N ∈ B(Cesp(X)), if N commute with
H we have to prove N ∈ H .
Consider the unit function e : X → C defined by e(x) = 1 for all x ∈ X. Let N ∈ B(Cesp(X)) be an operator
which commute withH and let χE be the characteristic function of a measurable set E. Then

N(χE) = N
(
MχE (e)

)
= MχE

(
N(e)

)
= χE.N(e)
= N(e).χE

= MwχE, where Mw = N(e).

Similarly

N(S) = Mw(S) (3)

for any simple function S. Now, let us check that w is essentially bounded. By way of contradiction assume
that w is not essentially bounded, then the set

En = {x ∈ X : |w(x)| > n}

has positive measure for each n ∈N. Note that

Mw(χEn (x)) = (wχEn (x)) ≥ nχEn (x)

for all x ∈ X. Thus

‖MwχEn‖
p = ‖wχEn‖

p

=

∫
X

(1
x

∫ x

0
|w(t)χEn (t)|dµ(t)

)p
dµ(x)

≥ np
∫

X

(1
x

∫ x

0
|χEn (t)|dµ(t)

)p
dµ(x)

= np
‖χEn‖

p,

since χEn is a simple function then by (3) we have

Mw(χEn ) = N(χEn ).

Hence,

‖N(χEn )‖ ≥ n‖χEn‖.
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Therefore, N is an unbounded operator. This is a contradiction to the fact that N is bounded. Thus w is an
essentially bounded measurable function and by Theorem 2.1 Mw is bounded.
Next, given f ∈ Cesp(X) there exists a nondecreasing sequence {sn}n∈N of measurable simple functions such
that lim

n→∞
sn = f , then by (3) we have

N( f ) = N( lim
n→∞

sn) = lim
n→∞

N(sn) = lim
n→∞

Mw(sn) = Mw lim
n→∞

(sn) = Mw( f ).

Therefore, N( f ) = Mw( f ) for all f ∈ Cesp(X) and thus we conclude that N ∈ H .

Theorem 2.3. The multiplication operator Mu is invertible if and only if u is invertible on Ces∞(X).

Proof. Let Mu be invertible, there exists N ∈ B(Cesp(X)) such that

Mu.N = N.Mu = I, (4)

where I represents the identity operator. Let us check that N commute withH . Let Mw ∈ H , then

Mw.Mu = Mu.Mw (5)

applying N to (5) and by (4) we obtain

N.Mw.Mu.N = N.Mu.Mw.N

N.Mw.I = I.Mw.N

N.Mw = Mw.N

and thus we conclude that N commute withH , by Theorem 2.2 N ∈ H , there exists 1 ∈ Ces∞(X) such that
N = M1. Hence

Mu.M1 = M1.Mu = I,

this implies that u1 = 1u = 1, µ−almost everywhere this means that u is invertible on Ces∞(X).
On the other hand, assume u is invertible on Ces∞(X) that is 1

u ∈ Ces∞(X), then

Mu.M 1
u

= M 1
u
.Mu = M 1

u
u = M1 = I,

which means that Mu is invertible on B(Cesp(X)).

Corollary 2.4. Let Mu ∈ B(Cesp(X)). Then Mu is invertible if and only if there exists ε > 0 such that |u(x)| ≥ ε for
µ− almost all x ∈ X.

Theorem 2.5. Let Mu ∈ B(Cesp(X)). Then Mu is an isometry if and only if |u(x)| = 1 a.e..

Proof. Suppose first that |u(x)| = 1 a.e., then

‖Mu f ‖p =

∫
X

(1
x

∫ x

0
|u(t) f (t)|dµ(t)

)p
dµ(x)

=

∫
X

(1
x

∫ x

0
| f (t)|dµ(t)

)p
dµ(x)

= ‖ f ‖p.

Therefore, ‖Mu f ‖ = ‖ f ‖ and hence Mu is an isometry.
Conversely, suppose Mu is an isometry. If this is not true, then there is a measurable subset E of positive
measure such that |u(x)| < 1 a.e. on E or there exists a measurable subset F of positive measure such that
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|u(x)| > 1 a.e.. If |u(x)| < 1 a.e. we can assume that Eε = {x ∈ X : |u(x)| < 1 − ε} is of positive measure for
some ε > 0. We can choose a subset A of Eε such that χA ∈ Cesp(X). Now

‖MuχA‖
p =

∫
X

(1
x

∫ x

0
|u(t)χA(t)|dµ(t)

)p
dµ(x)

≤ (1 − ε)p
∫

X

(1
x

∫ x

0
|χA(t)|dµ(t)

)p
dµ(x)

= (1 − ε)p
‖χA‖

p

< ‖χA‖
p, as ε is arbitrary.

Therefore, ‖MuχA‖ < ‖χA‖, which contradicts that Mu is an isometry.
Again, if |u(x)| > 1 a.e. on F, then the set Fε = {x ∈ X : |u(x)| > 1 + ε} is of positive measure for some ε > 0.
Suppose B is a subset of Fε so χB ∈ Cesp(X). Then, obviously

‖MuχB‖ ≥ (1 + ε)‖χB‖

> ‖χB‖,

which again contradicts the fact that Mu is an isometry. Hence, |u(x)| = 1 a.e.

3. Compact Multiplication Operators

In this section we investigate a necessary and sufficient condition for a multiplication operator to be
compact.

Lemma 3.1. Let Mu be a compact operator, for each ε > 0, define Aε(u) = {x ∈ X : |u(x)| ≥ ε}, and Cesp(Aε(u)) =

{ fχAε(u) : f ∈ Cesp(X)}.Then Cesp(Aε(u)) is a closed invariant subspace of Cesp(X) under Mu.Moreover, Mu

∣∣∣Cesp(Aε(u))
is a compact operator.

Proof. Let h, s ∈ Cesp(Aε(u)) and α, β ∈ R. Then h = fχAε(u) and s = 1χAε(u), where f , 1 ∈ Cesp(X). Thus,

αh + βs = α( fχAε(u)) + β(1χAε(u))
= (α f + β1)χAε(u) ∈ Cesp(Aε(u)).

which means that Cesp(Aε(u)) is a subspace of Cesp(X). Next, for all h ∈ Cesp(Aε(u)), we have

Muh = u.h = u fχAε(u) = (u f )χAε(u),

where u f ∈ Cesp(X).
Therefore, Muh ∈ Cesp(Aε(u)) which means that Cesp(Aε(u)) is an invariant subspace of Cesp(X) under Mu.
Now, let us show that Cesp(Aε(u)) is a closed set. Indeed 1 be a function belonging to the closure of
Cesp(Aε(u)), then there exists a sequence {1n}n∈N in Cesp(Aε(u)) such that 1n → 1 in Cesp(X). Just remains to
exhibit that 1 belongs to Cesp(Aε(u)). Note that

1 = 1χAε(u) + 1χAc
ε(u).

Next, we want to show that 1χAc
ε(u) = 0. In fact given ε1 > 0 there exists n0 ∈N such that

‖1χAc
ε(u)‖ = ‖(1 − 1n0 + 1n0 )χAc

ε(u)‖

= ‖(1 − 1n0 )χAc
ε(u)‖

≤ ‖1 − 1n0‖

< ε1.

Thus, 1χAc
ε(u) = 0, which means that 1 = 1χAε(u) that is 1 ∈ Cesp(Aε(u)). This completes the proof of the

lemma.
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Theorem 3.2. Let Mu ∈ B(Cesp(X)). Then Mu is compact if and only if Cesp(Aε(u)) is finite dimensional for each
ε > 0.

Proof. If |u(x)| ≥ ε, we should note that

|u fχAε(u)(x)| ≥ ε fχAε(u)(x)

and thus

‖Mu fχAε(u)‖
p = ‖u fχAε(u)‖

p

=

∫
X

(1
x

∫ x

0
|u(t)( fχAε(u))(t)|pdµ(t)

)
dµ(x)

≥ εp
∫

X

(1
x

∫ x

0
|( fχAε(u))(t)|pdµ(t)

)
dµ(x)

= εp
‖ fχAε(u)‖

p.

Therefore,

‖Mu fχAε(u)‖ ≥ ε‖ fχAε(u)‖. (6)

Now if Mu is a compact operator, then by Lemma 3.1 Cesp(Aε(u)) is closed invariant subspace of Mu and
Mu

∣∣∣Cesp(Aε(u)) is a compact operator. Then by (6) Mu

∣∣∣Cesp(Aε(u)) has a closed range in Cesp(Aε(u)) and it is
invertible, being compact. Thus Cesp(Aε(u)) is finite dimensional.
Conversely, Suppose that Cesp(Aε(u)) is finite dimensional, for each ε > 0. In particular for n ∈N, Cesp(A 1

n
(u))

is finite dimensional, then for each n, define

un : X→ C

as

un(x) =


u(x), if u(x) ≥ 1

n

0 , if u(x) < 1
n .

Then we find that

Mun f −Mu f = (un − u). f ≤ ‖un − u‖∞| f |

and thus

‖Mun f −Mu f ‖p =

∫
X

(1
x

∫ x

0
|(un − u) f (t)|pdµ(t)

)
dµ(x)

≤ ‖un − u‖p∞

∫
X

(1
x

∫ x

0
| f (t)|pdµ(t)

)
dµ(x)

= ‖un − u‖p∞‖ f ‖p.

Therefore

‖Mun f −Mu f ‖ ≤ ‖un − u‖∞‖ f ‖.

Consequently,

‖Mun f −Mu f ‖ ≤
1
n
‖ f ‖

which implies that Mun converges to Mu uniformly. As Cesp(Aε(u)) is finite dimensional so Mun is a finite
rank operator. Therefore Mun is a compact operator and hence Mu is a compact operator.
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Proposition 3.3. Mu is injective on Y = Cesp(supp(u)), where supp(u) = {x ∈ X : u(x) , 0}.

Proof. Let Y = Cesp(supp(u)) = { fχsupp(u) : f ∈ Cesp(X)}.
Indeed, if Mu( f̃ ) = 0 with f̃ = fχsupp(u) ∈ Y, then f (x)χsupp(u) = 0 for all x ∈ X and so

f (x)u(x) = 0,∀x ∈ supp(u)

f (x) = 0,∀x ∈ supp(u)

f (x)χsupp(u) = 0,∀x ∈ X.

Then f̃ = 0 and the proof is complete.

4. Fredholm Multiplication Operators

In this section we first establish a condition for multiplication operator to have closed range and then
we make use of it to characterize Fredholm multiplication operators.

Theorem 4.1. Let Mu ∈ B(Cesp(X)). Then Mu has closed range if and only if there exists a δ > 0 such that |u(x)| ≥ δ
µ-almost everywhere on S = {x ∈ X : u(x) , 0} the support of u.

Proof. If there exists a δ > 0 such that |u(x)| ≥ δ µ-almost everywhere on S, then for f ∈ Cesp(X) we have

‖Mu fχS‖
p =

∫
X

(1
x

∫ x

0
|u(t)( f .χS(t)|dµ(t)

)p
dµ(x)

≥ δp
∫

X

(1
x

∫ x

0
| fχS(t)|dµ(t)

)p
dµ(x)

= δp
‖ fχS‖

p

Therefore, ‖Mu fχS‖ ≥ δ‖ fχS‖. Thus Mu has closed range.
Conversely, if Mu has closed range on Cesp(S), since Mu is one-one on Cesp(S) then Mu is bounded below
and thus there exists an δ > 0 such that

‖Mu f ‖ ≥ δ‖ f ‖

for all f ∈ Cesp(S), where

Cesp(S) = { fχS : f ∈ Cesp(X)}.

Let E = {x ∈ S : |u(x)| < ε
2 }. If µ(E) > 0, then we can find a measurable set F ⊆ E such that χF ∈ Cesp(S). Now

‖MuχF‖
p = ‖uχF‖

p

=

∫
X

(1
x

∫ x

0
|u(t)χF(t)|dµ(t)

)p
dµ(x)

≤

(ε
2

)p
∫

X

(1
x

∫ x

0
|χF(t)|dµ(t)

)p
dµ(x)

=
(ε
2

)p
‖χF‖

p.

Hence

‖MuχF‖ ≤
ε
2
‖χF‖,

which is a contradiction. Therefore µ(E) = 0. This completes the proof.
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Theorem 4.2. Suppose Mu ∈ B(Cesp(X)). Then the following are equivalent;
(i) |u(x)| ≥ δ a.e. for some δ > 0,
(ii) Mu is invertible,
(iii) Mu is Fredholm,
(iv) ran(Mu) is closed and co-dim ran(Mu) < ∞.

Proof. The implications (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) are obvious. We only show that (iv) ⇒ (i). Suppose that
Mu has closed range and co-dim ran(Mu) < ∞. We claim that Mu is onto. Suppose this is not true, then for
1 ∈ Cesp(X) and 1 < ran(Mu) there exists a bounded linear functional 1∗ ∈ Ces∗p(X) such that

1∗(1) = 1 and 1∗(Mu f ) = 0 for all f ∈ Cesp(X). (7)

For 1∗ ∈ Ces∗p(X), we have by Representation theorem for continuous functionals on Cesp(X) there exists
1
′

∈ Cesq(X) where 1
p + 1

q = 1, such that

1∗(1) =

∫
X
1(t)1

′

(t)dµ(t),

for all 1 ∈ Cesp(X). From (7) we have∫
X

Re(1(t)1
′

(t))dµ(t) = 1

and

1∗(Mu1) =

∫
X

(Mu1)(t)1
′

(t)dµ(t) = 0.

Hence the set {x ∈ X : Re(11
′

)(x) ≥ δ}(= Eδ say ) must have finite measure for δ > 0. So we can find a
sequence {En} of disjoints measurable subsets of Eδ such that 0 < µ(En) < µ(Eδ). Take 1∗n = 1∗χEn . Then
1∗n ∈ Ces∗p(X) and 1∗n ∈ kerM∗u because for f ∈ Cesp(X),

(M∗u1
∗

n)( f ) = 1∗n(Mu f ) =

∫
En

(Mu f )(t)1
′

(t)dµ(t) = 0.

Then 1∗n ∈ kerM∗u which proves that kerM∗u is infinite dimensional which contradicts the fact that kerM∗u =
co-dim ran(Mu) < ∞. Hence, Mu is onto. Therefore from the Corollary 2.4 there exists δ > 0 such that
|u(x)| ≥ δ for µ− almost all x ∈ X.
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[14] S. Li, Weighted composition operators from minimal Möbius invariant spaces to Zygmund spaces, Filomat, 27(2) (2013), 267-275.
[15] L. Maligranda and L.E. Persson, Generalized duality of some Banach function spaces, Indag. Math., 51(3) (1989), 323-338.



M. Mursaleen et al. / Filomat 30:5 (2016), 1175–1184 1184

[16] E. Malkowsky, Characterization of compact operators between certain BK spaces, Filomat 27(3) (2013), 447-457.
[17] M. Mursaleen and A.K. Noman, Compactness by the Hausdorff measure of noncompactness, Nonlinear Anal., 73 (2010) 2541-2557.
[18] K. Raj, S. K. Sharma and A. Kumar, Multiplication operator on Musielak-Orlicz spaces of Bochner type, Jour. Adv. Studies in Topology,

3(2012), 1-7.
[19] A. K. Sharma, K. Raj and S. K Sharma., Products of multiplication composition and differentiation operators from H∞ to weighted Bloch

spaces, Indian J. Math., 54(2012), 159-179.
[20] E. Sawyer, Boundedness of classical operators on classical Lorentz spaces, Studia Math., 96(1990), 145-158.
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