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On the Rates of Convergence of the g-Lupas-Stancu Operators
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Abstract. We introduce a Stancu type generalization of the Lupag operators based on the g-integers, rate
of convergence of this modification are obtained by means of the modulus of continuity, Lipschitz class

functions and Peetre’s K-functional. We will also introduce r-th order generalization of these operators and
obtain its statistical approximation properties.

1. Introduction

Firstly, we give some definitions about g-integers. For any non-negative integer r, the g-integer of the
number r is defined by

o] T ifq#l
[r]q'_[r]_{ o ifg=1.

The g-factorial is defined as

012l ifk=1,2,..
W‘{ 1 ifk=0

and the g-binomial coefficient is defined as

n|_ [n]!
rl ] -]

(r,n € N) for q € (0,1]. It is obvious that g-binomial coefficient reduce to the ordinary case when g = 1.
Details on g-integers can be found in [2], [10], [12], [18], [19], [16] and [14].

The g-analogue of the classical Bernstein operators [3] is defined by Lupas [15] as follows:

- k
Ruq(f;x) = ;: f (%) bux(q; x) )
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(f € C[0,1] and x € [0, 1]) where

MMm@=;r—l———[ZP®ﬁg_@mk
11 -x+g°x)
s=0

In [15], Lupas proved the following Lemma.

Lemma 1.1. Let ¢;(x) = x, (i = 0,1,2). Then we have

Rn,q (eo; x)
Rn,q (61 ;X )

7

X,

x(l x) 1—-x+q"x
n T—x+qgx”

Rn,q (e2;x)

1152

Stancu type generalization of linear positive operators has been studied in several years (for instance
see [11]). Now, we introduce the Stancu type generalization of the Lupas operators based on g-integers as

(k] + [a] .
Z‘f([n]+ ) K(4; %)

where 0 < a <  and b, x(g; x) is given by (2).
We give some equalities for operators (6) in the following lemma.

Lemma 1.2. Let e;(x) = x', (i = 0,1,2). The following equalities are true:

Ryf(eg;x) = 1

apo N _ [nlx+lal
Rug@2) = Gy

ap, N _ ml ) oo x(1-x) 1-x+g"x
Rn,q(EZIx) = ([n]+[/3]) {x + " ( 1 _x+ gx )

2lalin] 2
e Gy

Proof. From (6), for the case f(s) = ey(s), we can easily get the equality (7).
If we take f(s) = e1(s) in operators (6), then we have

] +
Wl
L+ g1

[n] . [a] .
[n]Jr[ﬁ] n q(ell x) + [n]Jr[ﬁ] Rn,q(eO/ x)'

n ,q (61 (S)/ x)

So, from the equalities (3) and (4), we obtain (8).
Now, we take f(s) = ey(s) in operators (6), we get

. K] + [a]
RiP(ea(s);n) = Y ( )B4 X)
7 gﬁuqm g

[l 2 . [a] 2 .
( ) an(ebx) + I ]+[ﬁ])2 n,q(ellx) + (W) Rn,q(emx)'

So, from the equalities (3), (4) and (5), we have (9). O

In the light of the Lemma 2, we can give the following theorem for the convergence of R

(6)

©)

; operators.
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Theorem 1.3. Let f € C[0,1] and (g,) be a sequence, 0 < q,, < 1, satisfying the following expressions:
1il£n gn = land liin gy = ¢ (c is a constant).
Then we have
lim [Ry7(f; %) - f(x)| =

Proof. From Lemma 2 and Korovkin’s theorem, the proof is obvious. [

2. The Rates of Convergence

In this section, we compute the rates of convergence of the operators R;, ﬁ to the function f by means of
modulus continuity, elements of Lipschitz class and Peetre’s K-functional.
Let f € C[0,1]. The modulus of continuity of f denotes by w (f, 6), is defined to be

w(f,6)= sup |f(y)-f@).

y,x€[0,b]
ly—x|<6

It is well known that a necessary and sufficient condition for a function f € C[0,1] is
lima (f,8) =0.

It is also well known that for any 6 > 0 and each y € [0, 1]

fw)-f@l<o(f, 6)(1 + -+ |] (10)

Recall that, in [15], for every f € C[0,1] and 6 > 0 Lupas obtained the following rate of convergence for
the operators (1).

Rug(f:3) = £)| < w(f, 6) {1 + % x(l[n_] x)}. (11)

Theorem 2.1. Let (g,) be a sequence, 0 < q, <1, satisfying the following conditions:

limg, = 1and limgq), = c (c is a constant). (12)

For f € C[0,1] and 6,, > 0, we have

R0 = @), < 20(F0)

where

_ (/121+[6] i\
6”_(([n]+[ﬁ])2 ([n]+ [ﬁ])Z) )

Proof. From (7), (8) and (9), we have

R . _ [8] 2[a][p]
=270 = i)™ = Gl
nlx(1-x) ,1-x+g"x
([[n]]+%ﬁ]))2( 1 x+qqx )+ ([n]+[ﬁ]) (13)
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Here one can observe that

1-x+q"x —
xe[Oa,i(] T-x+qx 1 (14)
and
max x(1 —x) = E (15)
xe[01] 4

By using (13), (14) and (15), we get

aBirp N2, lal+[£] \2 []
Jg}()a,i(] Rn,q ((t X) ’ x) < ( [n]+[ﬁ] ) + ([n]+[ﬁ])2 . (16)

For x € [0, 1], If we take the maximum of both side of the following inequality

RS0 - f| < () {1+ 5 (R - 750) 7},

1 op s 1/2
w(f,0) {1 +5 (g[oa,ﬁRn,q((t - x) ;x)) }

1 ( 1a1+[] b\
w(f,0) {1 + 5 (([n]+[ﬁ] ) ([n]+[ﬁ])2) '
If we choose

([ Ta3+[g] m \?
On = ((["1+[15] y+ ([n]+[ﬁ])2) (17)

then we get

RiA(F0) - £

clo,1]

IN

IA

then we have
(SR f(x)HC[m] <20 (f,5,).

So we have the desired result. [

Now, we compute the approximation order of operator Rﬁg in term of the elements of the usual Lipschitz
class.
Let f € C[0,1] and 0 < a < 1. We recall that f belongs to Lipy (p) if the inequality

lfe) - f|<Mlx-y
holds.

7 V¥x,y€[0,1] (18)

Theorem 2.2. Forall f € Lipp (p), we have

R (fi2) = £ )|, < MO,
where

_{ la1+]] "
On = (([n]+[ﬁ] Y+ ([n]+[ﬁ])2)

and M is a positive constant.
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Proof. Let f € Lipm(p) and 0 < p < 1. By (18) and linearity and monotonicity of R ; then we have
Ruf(F - )| < Ry ( %)
MRy (It = 17 ).

IA

IA

Applying the Holder inequality with m = 2 and n = ﬁ, we get

o I

RA(F) - £ (0] < MRS - v%0) (19)

For x € [0, 1], if we take the maximum of both side of (19) then we have

If we use (13) and choose 6 = 6, as in (17), then proof is completed. [

R0 - £, <M (max R~ )

Finally, we will study the rate of convergence of the positive linear operators Rzg by means of the
Peetre’s K-functionals.

First of all, we recall the definition of Rﬁg

C2[0,1] : The space of those functions f for which f, f’, f € C[0, 1]. We recall the following norm in the
space C2 [0, 1]:

“fHCZ[o,n = ”f“C[O,l] + f”

We consider the following Peetre’s K-functional

+

clo1]”

K(f,0) = c2[01 {”f 9”(:[01 +6”9”c2[01]}'

Theorem 2.3. Let f € C[0,1]. Then we have

where K(f, 6,) is Peetre’s K-functional and

Rif(fi) = £, < 2K(F.00)

5 ap] | 1 taelp] o [n]
" 2[n]+[ﬁ] 4\ nl+g] A1+ g])?"

Proof. Let g € C?[0,1]. If we use the Taylor expansion of the function g at s = x, we have

(s—x)°
21

9(s) = g(x) + (s — x)g’ (x) + 9" ().

Hence, we get

|Rij§(g;x)—g(x)||cm < |Rﬁ;§((s—x);x)||q0” 96 cxo
+; 'Raﬁ x)”c[o 1] |g(x)”C2IO,1]' (20)

From the equality (8), we have

BACERES) I 1)

clo]
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So if we use (16) and (21) in (20), then we get
ap . a+[Bly2 , 1 [ ﬁ]]
‘ Rug(@:%) = X)H [ [n]+[ﬁ]) T I + ] 17| arg - (22)
On the other hand, we can write
R0 -f@| < [Riber-go|+

+[f(x) - g ().

If we take the maximum on [0, 1], we have

[Rezr0 - £, = 20 = allegon +|
If we consider (22) in (23), we obtain

[Rises0-fl,, < 2{lr- gum [l sy

+% n+[5] ] Hg(x)“czm 1]}

Ri1(g%) - 9 (9|

R0 9@, 23)

If we choose

_ 1lal+[p] [8] [n]
6"_%[n]+[ﬁ] }1( n]+[ﬁ])2 ‘lu 1+[8]?’

then we get

[0 = £ @, < 2 =l + 00l )

Finally, one can observe that if we take the infimum of both side above inequality for the function g € C?[0, 1],
we can find

[Rigesi0 - £, < 2K 00

O

3. The r — th Order Generalization of the Operators R:’f

By C'[0,1] (r = 0,1,2,...) we denote the set of functions f having continuous r-th derivatives f" (f°(x) =
f(x)) on the segment [0, 1] (see [4] and [13]).
We consider the following generalization of the positive linear operators szf; defined by (6).

. _ [+l y;

(x nj+
R (= 3 5 () — L | g en

k=0 | i=0

where by, x(g; x) is given by (2), f € C"[0,1] (r = 0,1,2,...) and n € IN. We call the operators (24) the r-th order
of the operators Rffg . Taking r = 0, we get the sequence Rffg defined by (6).

Theorem 3.1. Let f) € Lipy(@) and f € C"[0,1]. We have
| M

a+r
ol _(r 1)'a+ (ls g
here B(a, v) is Beta function r,n € IN.

)“C[O,H

Ryt (i) = f @),
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Proof. By (24), we get

FOO) =Ry (f;)
[kl+[a] \;

Z fo) = Zf (’)([g:ﬁ ) . @W ]bn,k(q;x)'

It is known from Taylor’s formula that

(x — [k]+Ft]] )i
() ( +lal [n+]p
f) - Ezf (M%ﬂ) i
EII
[n]+[B
= (:I 1L f —2)"!
0
r ( [K+lal _ [K+[al o [ [K+lal
<[ (B} + 20 B - 0 (o=
Because of f® € Lippi(a), one can get
(r) | Il+la] _ IK+[a] () | Il+la]
f ([n]+[ﬁ] T ] ) f ( [/ﬂ])

[kl+al |*
[n1+[B]

Mz

IN

X —

From the well known expansion of the Beta function, we can write

1
f( —2) 2%z = Ba + 1,7) = —B(a r).
0

Now, by using (28) and (27) in (26), we conclude that

() [ Ik +a n+1p

() - Zf () —
M [k+[a] |**"

r-Diarro@n -

Taking into consideration (29) and (25), we have the desired result. [

Now consider the function g € C[0, 1] defined by

|a+r

g(s) =ls—x

Since g(x) = 0, Theorem 1 yields

nq(g,x)”

hm |
clo,1]

So, it follows from above Theorem that, for all f € C" [0, 1] such that f® € Lippi(a), we have

R (i) = F ()|

lim [|R |
n C[0,1]

1157

(25)

(26)

(27)

(28)

(29)

(30)
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4. The Rates of Statistical Convergence

At this point, let us recall the concept of statistical convergence.

The statistical convergence which was introduced by Fast [8] in 1951, is an important research area in ap-
proximation theory. In [9], Gadjiev and Orhan used the concept of statistical convergence in approximation
theory. They proved a Bohman-Korovkin type theorem for statistical convergence.

Recently, statistical approximation properties of many operators are investigated (see for instance,
[1,6,7,15]).

A sequence x = (x) is said to be statistically convergent to a number L if for every € > 0,

O0lkeIN:|xx—L|>¢}=0,

where 6(K) is the natural density of the set K C IN.
The density of subset K c IN is defined by

O(K) := lim % {the number k <n : k € K}
n

whenever the limit is exists (see [17]).
For instance, 5(N) = 1, 6{2k: k€ N} = 1 and 6 {k2 ke ]N} = (0. To emphasize the importance of the
statistical convergence, one can give the following example: The sequence

— Ll; ifk:m2 3
x"_{ L ifkzm? M=123.)

is statistically convergent to L, but not convergent in ordinary sense when L; # L,. We note that any
convergent sequence is statistically convergent but not conversely. Details can be found in [5] and [6].
Now, we consider a sequence g := (g,) satisfying the following expressions:

st —limg, =1 and st — limg), =a. (31)

Gadjiev and Orhan [9] gave the below theorem for linear positive operators which is about statistically
Korovkin type theorem. Now, we recall this theorem.

Theorem 4.1. If the sequence of linear positive operators A, : Cp [a,b] — Cg [a, b] satisfies the conditions
st = lim |4, (ey; ) = eyllegopy = O,
fore,(t)=t",v=0,1,2, then for any f € C|[a,b], we get

st = lm||A,(f;.) = |y, = O

Finally, we investigate the rates of statistical convergence of Rzg operators. So we give the below
theorem.

Theorem 4.2. Let q := (g,4), 0 < g, < 1 be a sequence satisfying (31) conditions. For any monotone increasing
continuous function f defined on [0, 1], we have

Ry (Fgi) = 1. =0. (32)

st — lim ‘
n Cl[o,1]

Proof. We know that R;f:g” is a positive linear operator. Here, we need to show that

st —1lim |[R%(e,, g5 ) — ey =0, forv=0,1,2. (33)
g \Evs 4 |

clo1
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Forv =0, we get

szqﬂ(eol Gn; =) = 60” =0

st — lim |
n C[o,1]

Forv =1, we have

el al,

ap oy —
Rn,q (e1,qn; x) —e1(x) = [n],, +[ﬁ]qn [n]q”‘F[ﬁ]q” .

If we take the maximum of both side for x € [0, 1], we obtain

Now, we define the sets

wf o\ < Lo+ (6],
Rijg(@1,ui-) el(x)”qo,l] = I+, 54)

T := {k : ”Rz’f(el,qk; ) - 61||C > s},

[0,1]
[“]mﬁ[ﬁ]z
Ty :=1k: k > ¢
1 { [n]qk+[ﬁ]qk

for ¢ > 0. From the inequality (34), we have T C T;. So, we write

5 {k <n: | Ryp(er i) - el”cm = E}
. [a]qk"'[ﬁ]q
< 6{ksn‘m2€ ' )

From the conditions (31), we get

[ ]rz
sf — lim(L[ﬁ]ﬁ"

n [y, +[B],, )=0.

From the definition of density, we see that

é{k < Sl g} -0

. [”]qk+[ﬁ]qk -
and from (35), we find
st — lirrln | RZ,’S(EL%; ) - el||c[0,1] =0.
Finally, for the case v = 2, we get
ap - ) — M
| Rn,q (621 Qn, ) eZ(x)”C[O,l] < ([”]qn"’[ﬁ]q,, 2
+@lal,, +2[f], + 2yt (36)
[04 qn ﬁ In 4 ([n]%*'[’g]qn)z.
If we choose
o - [41.,
SO (TS [ IR
= @lal, +2[f], + 2
P = n p @ 47 (I, +[B], %
[al?

qn

L P 1 W
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then from (31), we have
st —lima, = st —limfB, = st —limy, = 0. (37)
n n n

Now, for ¢ > 0, we define

| || N >}
u: {k.”Rk’q(ez,qk,.) 62||C[o,1]_€ ,

U, := {k:ak2§},
&
U2:={k:ﬁk2§},

&
U3 :={k:yk25}.

From the inequality (36), we observe that U € U; U U, U Us. Hence, one can write
. a,p D) . £
6{k <n: ”Rk/q (e2, g1 -) eZ”C[o,l] > 8} < 6{k <n:ap> 3}

+(S{k§n:ﬁk2§}+6{k3n:yk2g}.

Since the right hand side of above inequality is zero, we get

szqﬁ(ezl Gn;-) — 62” =0

st — lim |
n Cl[o,1]

This gives the proof. [
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