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Abstract. In this paper we introduce a new algorithm based on viscosity approximation method for
solving the generalized multiple-set split feasibility problem (GMSSFP)in an infinite dimensional Hilbert
spaces . We establish the strong convergence for the algorithm to find a unique solution of the variational
inequality which is the optimality condition for the minimization problem.

1. Introduction

The problem of finding a point in the intersection of closed and convex subsets of a Hilbert space is
a frequently appearing problem in diverse areas of mathematics and physical sciences. This problem is
commonly referred to as the convex feasibility problem (CFP). There is a considerable investigation on
(CFP) in the framework of Hilbert spaces which captures applications in various disciplines such as image
restoration, computer tomograph and radiation therapy treatment planning [11].

LetH andK be real Hilbert spaces,A : H → K , be a bounded linear operator and let {Ci}
p
i=1 be a family

of nonempty closed convex subsets inH and {Qi}
r
i=1 be a family of nonempty closed convex subsets in K .

The multiple-set split feasibility problem (MSSFP) was recently introduced in [? ] and is formulated as
finding a point x? with the property:

x? ∈
p⋂

i=1

Ci and Ax? ∈
r⋂

i=1

Qi.

The multiple-set split feasibility problem with p = r = 1 is known as the split feasibility problem (SEP)
which is formulated as finding a point x? with the property:

x? ∈ C and Ax? ∈ Q,

where C and Q are nonempty closed convex subsets ofH andK , respectively.
In 1994, the SFP was first introduced by Censor and Elfving [7], in finite-dimensional Hilbert spaces,

for modeling inverse problems which arise from phase retrievals and in medical image reconstruction. A
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number of image reconstruction problems can be formulated as the SFP; see, e.g., [3] and the references
therein. Recently, it has been found that the SFP can also be applied to study intensity-modulated radiation
therapy; see, e.g., [6, 8, 10] and the references therein. In the recent past, a wide variety of iterative methods
have been used in signal processing and image reconstruction and for solving the SFP and MSSPP; see, e.g.,
[1-19] and the references therein.

The original algorithm given in [7] involves the computation of the inverse A−1(assuming the existence
of the inverse of A) and thus has not become popular. A seemingly more popular algorithm that solves the
SFP is the CQ algorithm of Byrne [2, 3] which is found to be a gradient-projection method (GPM) in convex
minimization. It is also a special case of the proximal forward-backward splitting method [12]. The CQ
algorithm starts with any x1 ∈ H and generates a sequence {xn} through the iteration

xn+1 = PC(I − λA∗(I − PQ)A)xn

where λ ∈ (0, 2
‖A)‖2 ),A∗ is the adjoint ofA, PC and PQ are the metric projections onto C and Q respectively.

Very recently, Xu [22] gave a continuation of the study on the CQ algorithm and its convergence. Xu
[22] transformed SFP to the fixed point problem of the operator PC(I − λA∗(I − PQ)) and shown that a point
x? solves SFP if and only if x? = PC(I − λA∗(I − PQ)A)x?. He applied Mann’s algorithm to the SFP and
proposed an averaged CQ algorithm which was proved to be weakly convergent to a solution of the SFP.
Xu [22] also proposed the regularized method

xn+1 = PC(I − λn(A∗(I − PQ)A + αnI))xn

and proved that the sequence {xn} converges strongly to a minimum norm solution of SFP(1) provided the
parameters {αn} and {λn} verify some suitable conditions. Further recent work also appeared in literature,
see, for example [5, 9, 16]. In [20], Wang and Xu gave a Cyclic algorithm to solve MSSFP:

xn+1 = PC[n](xn + γA∗(PQ[n] − I)Axn),

where [n] := n(mod p), (mod function take values in {1, 2, ..., p}), and γ ∈ (0, 2
‖A‖2

). They show that the
sequence {xn} convergence weakly to a solution of MSSFP whenever its solution set in nonempty. Now we
consider the multiple-set split feasibility problem for a finite family of operators:

Definition 1.1. Let H and K be real Hilbert spaces, Ak : H → K , (k = 1, 2, ....,m) be a family of bounded linear
operators and let {Ci}

p
i=1 be a family of nonempty closed convex subsets in H and {Qi}

r
i=1 be a family of nonempty

closed convex subsets in K . Generalized multiple-set split feasibility problem (GMSSFP) is to find a point x∗

such that

x? ∈
p⋂

i=1

Ci and Akx? ∈
r⋂

i=1

Qi, k=1,2,...,m. (1)

We denote Ω the solution set of GMSSFP.

In this paper we introduce a new algorithm based on viscosity approximation method for solving the
generalized multiple-set split feasibility problem (GMSSFP)in an infinite dimensional Hilbert spaces. We
establish the strong convergence for the algorithm to find a unique solution of the variational inequality
which is the optimality condition for the minimization problem.

2. Preliminaries

We use the following notion in the sequel:
•⇀ for weak convergence and→ for strong convergence.
It is known that a Hilbert spaceH satisfies Opial’s condition, i.e., for any sequence {xn}with xn ⇀ x, the

inequality
lim inf

n→∞
‖xn − x‖ < lim inf

n→∞
‖xn − y‖
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holds for every y ∈ H with y , x.
Let C be a nonempty closed convex subset of a real Hilbert space H . Recall that the nearest point or

metric projection from H onto C, denoted PC, assigns, to each x ∈ H , the unique point PCx ∈ C with the
property

‖x − PCx‖ = in f {‖x − y‖ ∀y ∈ C}.

Recall that a mapping T : H →H is called nonexpansive if

‖Tx − Ty‖ ≤ ‖x − y‖, ∀x, y ∈ H .

It is well known that the metric projection PC of H onto C has the following basic properties: • PC is a
nonexpansive,
• 〈y − PC(x), x − PC(x)〉 ≤ 0, ∀x ∈ H , y ∈ C.

Definition 2.1. A bounded linear operator B onH is called strongly positive if there exists γ > 0 such that

〈Bx, x〉 ≥ γ‖x‖2, (x ∈ H).

For a nonexpansive mapping T from a nonempty subset C ofH into itself a typical problem is to minimize
the quadratic function

min
x∈F(T)

1
2
〈Bx, x〉 − 〈x, b〉, (2)

over the set of all fixed points F(T) of T (see [18]).

Lemma 2.2. ([18]). Let B be a self-adjoint strongly positive bounded linear operator on a Hilbert space H with
coefficient γ > 0 and 0 < ρ ≤ ‖B‖−1. Then ‖I − ρB‖ ≤ 1 − ργ.

Lemma 2.3. [14] Let H be a Hilbert space and xi ∈ H, (1 ≤ i ≤ m). Then for any given {λi}
m
i=1 ⊂ (0, 1) with∑m

i=1 λi = 1 and for any positive integer k, j with 1 ≤ k < j ≤ m,

‖

m∑
i=1

λixi‖
2
≤

m∑
i=1

λi‖xi‖
2
− λkλ j‖xk − x j‖

2.

Lemma 2.4. [21] Assume that {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1 − ϑn)an + ϑnδn, n ≥ 0,

where {ϑn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(i)
∑
∞

n=1 ϑn = ∞,
(ii) lim supn→∞ δn ≤ 0 or

∑
∞

n=1 |ϑnδn| < ∞.

Then limn→∞ an = 0.

Lemma 2.5. ([17]) Let {tn} be a sequence of real numbers such that there exists a subsequence {ni} of {n} such that
tni < tni+1 for all i ∈N. Then there exists a nondecreasing sequence {τ(n)} ⊂N such that τ(n)→∞ and the following
properties are satisfied by all (sufficiently large ) numbers n ∈N:

tτ(n) ≤ tτ(n)+1, tn ≤ tτ(n)+1.

In fact
τ(n) = max{k ≤ n : tk < tk+1}.
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3. The Results

In this section we introduce our algorithm for solving GMSSFP (1).

Theorem 3.1. Let H and K be real Hilbert spaces, Ak : H → K , k = 1, 2 be two bounded linear operator and
let {Ci}

r
i=1 be a family of nonempty closed convex subsets in H and {Qi}

r
i=1 be a family of nonempty closed convex

subsets in K . Assume that GMSSFP has a nonempty solution set Ω. Suppose h be a contraction of H into itself
with constant b ∈ (0, 1) and B be a strongly positive bounded linear self-adjoint operator onH with coefficient γ and
0 < γ < γ

b . Let {xn} be a sequence generated by x0 ∈ H and byyn = αnxn +
∑r

i=1 βn,iPCi (I − λn,iA
∗

1(I − PQi )A1)xn +
∑r

i=1 γn,iPCi (I − λn,iA
∗

2(I − PQi )A2)xn,

xn+1 = θnγh(xn) + (I − θnB)yn, ∀n ≥ 0,
(3)

where αn +
∑r

i=1 βn,i +
∑r

i=1 γn,i = 1 and the sequences {αn}, {βn,i}, {γn,i}, {θn} and {λn,i} satisfy the following conditions:

(i) lim infn αnβn,i > 0 and lim infn αnγn,i > 0, for each 1 ≤ i ≤ r,
(ii) limn→∞ θn = 0 and

∑
∞

n=0 θn = ∞,
(iii) for each 1 ≤ i ≤ r, 0 < λn,i < min{ 2

‖A1‖
2 ,

2
‖A2‖

2 } and

0 < lim inf
n→∞

λn,i ≤ lim sup
n→∞

λn,i < min{
2

‖A1‖
2 ,

2
‖A2‖

2 }.

Then, the sequences {xn} converges strongly to x? ∈ Ω which solves the variational inequality;

〈(B − γh)x?, x − x?〉 ≥ 0, ∀x ∈ Ω. (4)

Proof. First, we note that the solution set Ω is closed and convex. Indeed, since 0 < λn,i < min{ 2
‖A1‖

2 ,
2

‖A2‖
2 }

we have the operators PCi (I−λn,iA
∗

1(I−PQi )A1) and PCi (I−λn,iA
∗

2(I−PQi )A2) are nonexpansive (see [22] for
details). Note that a point x? solves GMSSFP if and only if x? = PCi (I − λn,iA

∗

k(I − PQi )Ak)x? for all 1 ≤ i ≤ r
and k = 1, 2. Now since the fixed point set of nonexpansive operators is closed and convex, the solution set
Ω is closed and convex. So the projection onto the solution set Ω is well defined whenever Ω , ∅.Next, we
assert that PΩ(I − B + γh) is a contraction fromH into itself. As a matter of fact, for any x, y ∈ H we have

‖PΩ(I − B + γh)(x) − PΩ(I − B + γh)(y)‖ ≤ ‖(I − B + γh)(x) − (I − B + γh)(y)‖

≤ ‖(I − B)x − (I − B)y‖ + γ‖hx − hy‖

≤ (1 − γ)‖x − y‖ + γb‖x − y‖

≤ (1 − (γ − γb)‖x − y‖.

So, by the Banach contraction principle there exists a unique element x? ∈ H such that x? = P Ω(I−B+γh)x?.
Since limn→∞ θn = 0, we can assume that θn ∈ (0, ‖B‖−1), for all n ≥ 0. By Lemma 2.2 we have ‖I − θnB‖ ≤

1 − θnγ. Now, we show that {xn} is bounded. In fact, using the nonexpansive property of the operators
PCi (I − λn,iA∗(I − PQi )A) we have

‖yn − x?‖ = ‖αnxn +
∑r

i=1 βn,iPCi (I − λn,iA
∗

1(I − PQi )A1)xn

+
∑r

i=1 γn,iPCi (I − λn,iA
∗

2(I − PQi )A2)xn − x?‖

≤ αn‖xn − x?‖ +
∑r

i=1 βn,i‖PCi (I − λn,iA
∗

1(I − PQi )A1)xn − x?‖

+
∑r

i=1 γn,i‖PCi (I − λn,iA
∗

2(I − PQi )A2)xn − x?‖

≤ αn‖xn − x?‖ +
∑r

i=1 βn,i‖xn − x?‖ +
∑r

i=1 γn,i‖xn − x?‖

= ‖xn − x?‖,
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and hence

‖xn+1 − x?‖ = ‖θn(γh(xn) − Bx?) + (I − θnB)(yn − x?‖

≤ θn‖γh(xn) − Bx?‖ + ‖I − θnB‖‖yn − x?‖

≤ θn‖γh(xn) − Bx?‖ + (1 − θnγ)‖xn − x?‖

≤ θnγ‖h(xn) − hx?‖ + θn‖γhx? − Bx?‖ + (1 − θn)γ‖xn − x?‖

≤ θnγb‖xn − x?‖ + θn‖γhx? − Bx?‖ + (1 − θn)γ‖xn − x?‖

≤ (1 − θn(γ − γb))‖xn − x?‖ + θn‖γhz − Bz‖

= (1 − θn(γ − γb))‖xn − x?‖ + θn(γ − γb) ‖γhx?−Bx?‖
γ−γb

≤ max{‖xn − x?‖, ‖γhx?−Bx?‖
γ−γb }

...

≤ max{‖x0 − x?‖, ‖γhx?−Bx?‖
γ−γb }.

This indicates that {xn} is bounded. It is easily to deduce that {yn} and {h(xn)} are also bounded. Next, we
show that for each 1 ≤ i ≤ r and k = 1, 2,

lim
n→∞
‖PCi (I − λn,iA

∗

k(I − PQi )Ak)xn − xn‖ = 0.

Applying Lemma 2.3, we get that

‖yn − x?‖2 = ‖αnxn +
∑r

i=1 βn,iPCi (I − λn,iA
∗

1(I − PQi )A1)xn

+
∑r

i=1 γn,iPCi (I − λn,iA
∗

2(I − PQi )A2)xn − x?‖2

≤ αn‖xn − x?‖2 +
∑r

i=1 βn,i‖PCi (I − λn,iA
∗

1(I − PQi )A1)xn − x?‖2

+
∑r

i=1 γn,i‖PCi (I − λn,iA
∗

2(I − PQi )A2)xn − x?‖2

− αnβn,i‖PCi (I − λn,iA
∗

1(I − PQi )A1)xn − xn‖
2

− αnγn,i‖PCi (I − λn,iA
∗

2(I − PQi )A2)xn − xn‖
2

≤ αn‖xn − x?‖2 +
∑r

i=1 βn,i‖xn − x?‖2 +
∑r

i=1 γn,i‖xn − x?‖2

− αnβn,i‖PCi (I − λn,iA
∗

1(I − PQi )A1)xn − xn‖
2

− αnγn,i‖PCi (I − λn,iA
∗

2(I − PQi )A2)xn − xn‖
2

= ‖xn − x?‖2 − αnβn,i‖PCi (I − λn,iA
∗

1(I − PQi )A1)xn − xn‖
2

− αnγn,i‖PCi (I − λn,iA
∗

2(I − PQi )A2)xn − xn‖
2.

Consequently,

‖xn+1 − x?‖2 = ‖θn(γh(xn) − Bx? + (I − θnB)(yn − x?‖2

≤ θ2
n‖γh(xn) − Bx?‖2 + (1 − θnγ)2

‖yn − x?‖2 + 2θn(1 − θnγ)‖γh(xn) − Bx?‖‖yn − x?‖

≤ θ2
n‖γh(xn) − Bx?‖2 + (1 − θnγ)2

‖xn − x?‖2 + 2θn(1 − θnγ)‖γh(xn) − Bx?‖‖xn − x?‖

− (1 − θnγ)2αnβn,i‖PCi (I − λn,iA
∗

1(I − PQi )A1)xn − xn‖
2

− (1 − θnγ)2αnγn,i‖PCi (I − λn,iA
∗

2(I − PQi )A2)xn − xn‖
2,
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which hence implies that

(1 − θnγ)2αnβn,i‖PCi (I − λn,iA
∗

1(I − PQi )A1)xn − xn‖
2
≤ ‖xn − x?‖2 − ‖xn+1 − x?‖2

+ 2θn(1 − θnγ)‖γh(xn) − Bx?‖‖xn − x?‖ + θ2
n‖γh(xn) − Bx?‖2. (5)

We finally analyze the inequality (5) by considering the following two cases.
Case 1. Assume that {‖xn−x?‖} is a monotone sequence. In other words, for n0 large enough, {‖xn−x?‖}n≥n0

is either nondecreasing or nonincreasing. Since {‖xn−x?‖} is bounded, it is convergent. Since limn→∞ θn = 0
and {h(xn)} and {xn} are bounded, from (5) we deduce

lim
n→∞

αnβn,i‖PCi (I − λn,iA
∗

1(I − PQi )A1)xn − xn‖
2 = 0.

By our assumption that lim infn αnβn,i > 0, we get that

lim
n→∞
‖PCi (I − λn,iA

∗

1(I − PQi )A1)xn − xn‖ = 0, 1 ≤ i ≤ r. (6)

By similar argument we can obtain that

lim
n→∞
‖PCi (I − λn,iA

∗

2(I − PQi )A2)xn − xn‖ = 0, 1 ≤ i ≤ r. (7)

Next, we show that
lim supn→∞〈(B − γh)x?, x? − xn〉 ≤ 0.

To show this inequality, We can choose a subsequence {xnl } of {xn} such that

lim
l→∞

(〈B − γh)x?, x? − xnl〉 = lim supn→∞〈(B − γh)x?, x? − xn〉.

Since {xnl } is bounded, there exists a subsequence {xnl j
} of {xnl } which converges weakly to z. Without loss

of generality, we can assume that xnl ⇀ z and λn,i → λi ∈ (0,min{ 2
‖A1‖

2 ,
2

‖A2‖
2 }) for each 1 ≤ i ≤ r. From (7)

for k = 1, 2, we have

‖PCi (I − λiA
∗

k(I − PQi )Ak)xn − xn‖ ≤ ‖PCi (I − λiA
∗

k(I − PQi )Ak)xn − PCi (I − λn,iA
∗

k(I − PQi )Ak)xn‖

+ ‖PCi (I − λn,iA
∗

k(I − PQi )Ak)xn − xn‖

≤ ‖(I − λiA
∗

k(I − PQi )A2)xn − (I − λn,iA
∗

k(I − PQi )Ak)xn‖

+ ‖PCi (I − λn,iA
∗

k(I − PQi )Ak) − xn‖

≤ |λi − λn,i| ‖A
∗

k(I − PQi )Ak)xn‖

+ ‖PCi (I − λn,iA
∗

k(I − PQi )Ak)xn − xn‖ → 0 as n→∞.

Notice that, since λi ∈ (0,min{ 2
‖A1‖

2 ,
2

‖A2‖
2 }) we have PCi (I − λn,iA

∗

k(I − PQi )Ak) is nonexpansive. Thus

‖xnl − PCi (I − λiA
∗

k(I − PQi )Ak)z‖ ≤ ‖xnl − PCi (I − λiA
∗

k(I − PQi )Ak)xnl‖

+ ‖PCi (I − λiA
∗

k(I − PQi )Ak)xnl − PCi (I − λiA
∗

k(I − PQi )Ak)z‖

≤ ‖xnl − PCi (I − λiA
∗

k(I − PQi )Ak)xnl‖ + ‖xnl − z‖.

This implies that
lim sup

n→∞
‖xnl − PCi (I − λiA

∗

k(I − PQi )Ak)z‖ ≤ lim sup
n→∞

‖xnl − z‖.

By the Opial property of the Hilbert space H we obtain that PCi (I − λiA
∗

k(I − PQi )Ak)z = z, for all1 ≤ i ≤ r
and k = 1, 2, hence z ∈ Ω. Since x? = P Ω(I − B + γh)x? and z ∈ Ω, we have

lim supn→∞〈(B − γh)x?, x? − xn〉 = lim
i→∞

(〈B − γh)x?, x? − xnl〉 = (〈B − γh)x?, x? − z〉 ≤ 0.
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It is known that in a Hilbert spaceH

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉, ∀x, y ∈ H .

From this and since
xn+1 − x? = θn(γh(xn) − Bx?) + (I − θnB)(yn − x?),

we conclude that

‖xn+1 − x?‖2 ≤ ‖(I − θnB)(yn − x?)‖2 + 2θn〈γh(xn) − Bx?, xn+1 − x?〉

≤ (1 − θnγ)2
‖xn − x?‖2 + 2θnγ〈h(xn) − h(x?), xn+1 − x?〉

+ 2θn〈γh(x?) − Bx?, xn+1 − x?〉

≤ (1 − θnγ)2
‖xn − x?‖2 + 2θnbγ‖xn − x?‖‖xn+1 − x?‖

+ 2θn〈γh(x?) − Bx?, xn+1 − x?〉

≤ (1 − θnγ)2
‖xn − x?‖2 + θnbγ(‖xn − x?‖2 + ‖xn+1 − x?‖2)

+ 2θn〈γh(x?) − Bx?, xn+1 − x?〉

≤ ((1 − θnγ)2 + θnbγ)‖xn − x?‖2 + θnγb‖xn+1 − x?‖2

+ 2θn〈γh(x?) − Bx?, xn+1 − x?〉.

This implies that

‖xn+1 − x?‖2 ≤
1−2θnγ+(θnγ)2+θnγb

1−θnγb ‖xn − x?‖2 + 2θn
1−θnγb 〈γh(x?) − Bx?, xn+1 − x?〉

= (1 − 2(γ−γb)θn

1−θnγb )‖xn − x?‖2 +
(θnγ)2

1−θnγb‖xn − x?‖2

+ 2θn
1−θnγb 〈γh(x?) − Bx?, xn+1 − x?〉

≤ (1 − 2(γ−γb)θn

1−θnγb )‖xn − x?‖2 +
2(γ−γb)θn

1−θnγb ( (θnγ
2)L

2(γ−γb)

+ 1
γ−γb 〈γh(x?) − Bx?, xn+1 − x?〉)

= (1 − ϑn)‖xn − x?‖2 + ϑnδn,

where

L = sup{‖xn − x?‖2 : n ≥ 0}, ϑn =
2(γ − γk)θn

1 − θnγb
,

and

δn =
(θnγ

2)L
2(γ − γb)

+
1

γ − γb
〈γhx? − Bx?, xn+1 − x?〉.

It is easy to see that ϑn → 0,
∑
∞

n=1 ϑn = ∞ and lim supn→∞ δn ≤ 0. Hence, all conditions of Lemma 2.4 are
satisfied. Therefore, we immediately deduce that xn → x?.

Case 2. Assume that {‖xn − x?‖} is not a monotone sequence. Then, we can define an integer sequence
{τ(n)} for all n ≥ n0 (for some n0 large enough) by

τ(n) := max{k ∈N; k ≤ n : ‖xk − x?‖ < ‖xk+1 − x?‖}.

Clearly, τ is a nondecreasing sequence such that τ(n)→∞ as n→∞ and for all n ≥ n0,

‖xτ(n) − x?‖ ≤ ‖xτ(n)+1 − x?‖.

From (5) we obtain that

lim
n→∞
‖PCi (I − λτ(n),iA

∗

1(I − PQi )A1)xτ(n) − xτ(n)‖ = 0, 1 ≤ i ≤ r. (8)
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Following an argument similar to that in Case 1 we have

‖xτ(n)+1 − x?‖2 ≤ (1 − ϑτ(n))‖xτ(n) − x?‖2 + ϑτ(n)δτ(n),

where ϑτ(n) → 0,
∑
∞

n=1 ϑτ(n) = ∞ and lim supn→∞ δτ(n) ≤ 0. Hence, by Lemma 2.4, we obtain limn→∞ ‖xτ(n) −

x?‖ = 0 and limn→∞ ‖xτ(n)+1 − x?‖ = 0. Now Lemma 2.5 implies

0 ≤ ‖xn − x?‖ ≤ max{‖xτ(n) − x?‖, ‖xn − x?‖} ≤ ‖xτ(n)+1 − x?‖.

Therefore {xn} converges strongly to x? = P Ω(I − B + γh)x?. This complete the proof.

Setting B = I and γ = 1 in Theorem 3.1 we obtain the following result.

Theorem 3.2. Let H and K be real Hilbert spaces, Ak : H → K , k = 1, 2 be two bounded linear operator and
let {Ci}

r
i=1 be a family of nonempty closed convex subsets in H and {Qi}

r
i=1 be a family of nonempty closed convex

subsets inK . Assume that GMSSFP has a nonempty solution set Ω. Suppose h be a contraction ofH into itself with
constant b ∈ (0, 1). Let {xn} be a sequence generated by x0 ∈ H and byyn = αnxn +

∑r
i=1 βn,iPCi (I − λn,iA

∗

1(I − PQi )A1)xn +
∑r

i=1 γn,iPCi (I − λn,iA
∗

2(I − PQi )A2)xn,

xn+1 = θnh(xn) + (1 − θn)yn, ∀n ≥ 0,

where αn +
∑r

i=1 βn,i +
∑r

i=1 γn,i = 1 and the sequences {αn}, {βn,i}, {γn,i}, {θn} and {λn,i} satisfy the following conditions:

(i) lim infn αnβn,i > 0 and lim infn αnγn,i > 0, for each 1 ≤ i ≤ r,
(ii) limn→∞ θn = 0 and

∑
∞

n=0 θn = ∞,
(iii) for each 1 ≤ i ≤ r, 0 < λn,i < min{ 2

‖A1‖
2 ,

2
‖A2‖

2 } and

0 < lim inf
n→∞

λn,i ≤ lim sup
n→∞

λn,i < min{
2

‖A1‖
2 ,

2
‖A2‖

2 }.

Then, the sequences {xn} converges strongly to x? ∈ Ω which solves the variational inequality;

〈(x? − hx?, x − x?〉 ≥ 0, ∀x ∈ Ω.

Putting f (x) = u and similar argument as in Theorem 3.1, we can obtain the following result.

Theorem 3.3. LetH andK be real Hilbert spaces,Ak : H → K , k = 1, 2 be two bounded linear operator and let C
be a nonempty closed convex subsets inH and Q be a nonempty closed convex subsets inK . Assume that GSFP has
a nonempty solution set Ω. Let u ∈ H and {xn} be a sequence generated by x0 ∈ C and by

xn+1 = αnxn + βnu + γnPC(I − λnA
∗

1(I − PQ)A1)xn + θnPC(I − λnA
∗

2(I − PQ)A2)xn,

where αn + βn + γn + θn = 1 and the sequences {αn}, {βn}, {γn} , {θn} and {λn} satisfy the following conditions:

(i) lim infn αnθn > 0 and lim infn αnγn > 0,
(ii) limn→∞ βn = 0 and

∑
∞

n=0 βn = ∞,
(iii) 0 < λn < min{ 2

‖A1‖
2 ,

2
‖A2‖

2 } and 0 < lim infn→∞ λn ≤ lim supn→∞ λn < min{ 2
‖A1‖

2 ,
2

‖A2‖
2 }.

Then, the sequences {xn} converges strongly to PΩu.

When the point u in the above theorem is taken to be 0, we see that the limit point x? of the sequence {xn}

is the unique minimum norm solution of GSFP, that is,

‖x?‖ = min{‖x‖ : x ∈ Ω}

.
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Corollary 3.4. Let H and K be real Hilbert spaces, A : H → K be a bounded linear operator and let {Ci}
r
i=1 be

a family of nonempty closed convex subsets in H and {Qi}
r
i=1 be a family of nonempty closed convex subsets in K .

Assume that MSSFP has a nonempty solution set Ω. Suppose h be a contraction of H into itself with constant
b ∈ (0, 1) and B be a strongly positive bounded linear self-adjoint operator on H with coefficient γ and 0 < γ < γ

b .
Let {xn} be a sequence generated by x0 ∈ H and byyn = αnxn +

∑r
i=1 βn,iPCi (I − λn,iA

∗(I − PQi )A)xn,

xn+1 = θnγh(xn) + (I − θnB)yn, ∀n ≥ 0,

where αn +
∑r

i=1 βn,i = 1 and the sequences {αn}, {βn,i}, {θn} and {λn,i} satisfy the following conditions:

(i) lim infn αnβn,i > 0,
(ii) limn→∞ θn = 0 and

∑
∞

n=0 θn = ∞,
(iii) for each 1 ≤ i ≤ r, 0 < λn,i < 2

‖A‖2
and 0 < lim infn→∞ λn,i ≤ lim supn→∞ λn,i < 2

‖A‖2
.

Then, the sequences {xn} converges strongly to x? ∈ Ω which solves the variational inequality;

〈(B − γh)x?, x − x?〉 ≥ 0, ∀x ∈ Ω.
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