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Abstract. Let K : [0,T0) → F be a locally integrable function, and C : X → X a bounded linear operator
on a Banach space X over the field F(=R or C). In this paper, we will deduce some basic properties of
a nondegenerate local K-convoluted C-cosine function on X and some generation theorems of local K-
convoluted C-cosine functions on X with or without the nondegeneracy, which can be applied to obtain
some equivalence relations between the generation of a nondegenerate local K-convoluted C-cosine function
on X with subgenerator A and the unique existence of solutions of the abstract Cauchy problem: u′′(t) =
Au(t) + f (t) for a.e. t ∈ (0,T0), u(0) = x, u′(0) = y when K is a kernel on [0,T0), C : X → X an injection,
and A : D(A) ⊂ X → X a closed linear operator in X such that CA ⊂ AC. Here 0 < T0 ≤ ∞, x, y ∈ X, and
f ∈ L1

loc([0,T0),X).

1. Introduction

Let X be a Banach space over the field F(=R or C) with norm ‖ · ‖, and let L(X) denote the family of
all bounded linear operators from X into itself. For each 0 < T0 ≤ ∞, we consider the following abstract
Cauchy problem:

ACP(A, f , x, y)
{

u′′(t) = Au(t) + f (t) for a.e. t ∈ (0,T0),
u(0) = x,u′(0) = y,

where x, y ∈ X, A : D(A) ⊂ X→ X is a closed linear operator, and f ∈ L1
loc([0,T0),X). A function u is called a

(strong) solution of ACP(A, f , x, y) if u ∈ C1([0,T0),X) satisfies ACP(A, f , x, y) (that is u(0) = x, u′(0) = y and
for a.e. t ∈ (0,T0), u′(t) is differentiable and u(t) ∈ D(A), and u′′(t)=Au(t)+ f (t) for a.e. t ∈ (0,T0)). For each
C ∈ L(X) and K ∈ L1

loc([0,T0),F), a subfamily C(·)(= {C(t) | 0 ≤ t < T0}) of L(X) is called a local K-convoluted
C-cosine function on X if C(·) is strongly continuous, C(·)C = CC(·), and satisfies

2C(t)C(s)x =

(∫ t+s

0
−

∫ t

0
−

∫ s

0

)
K(t + s − r)C(r)Cxdr +

∫ t

|t−s|
K(s − t + r)C(r)Cxdr

+

∫ s

|t−s|
K(t − s + r)C(r)Cxdr +

∫
|t−s|

0
K(|t − s| + r)C(r)Cxdr
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for all 0 ≤ t, s, t + s < T0 and x ∈ X (see [8]). In particular, C(·) is called a local (0-times integrated) C-cosine
function on X if K = j−1(the Dirac measure at 0) or equivalently, it is strongly continuous, C(·)C = CC(·), and
satisfies

2C(t)C(s)x = C(t + s)Cx + C(|t − s|)Cx for all 0 ≤ t, s, t + s < T0 and x ∈ X

(see [4,6,19,21]). Moreover, we say that C(·) is nondegenerate, if x = 0 whenever C(t)x = 0 for all 0 ≤ t < T0.
The nondegeneracy of a local K-convoluted C-cosine function C(·) on X implies that

C(0) = C if K = j−1, and C(0) = 0 (the zero operator on X) otherwise,

and the (integral) generator A : D(A) ⊂ X→ X of C(·) is a closed linear operator in X defined by

D(A) = {x ∈ X | there exists a yx ∈ X such that C(·)x − K0(·)Cx = S̃(·)yx on [0,T0)}

and Ax = yx for all x ∈ D(A). Here Kβ(t) = K ∗ jβ(t) =
∫ t

0 K(t − s) jβ(s)ds for β > −1 with jβ(t) = tβ
Γ(β+1) and the

Gamma function Γ(·), S(s)z =
∫ s

0 C(r)zdr, and S̃(t)z =
∫ t

0 S(s)zds. In general, a local K-convoluted C-cosine
function on X is called a K-convoluted C-cosine function on X if T0 = ∞; a (local) K-convoluted C-cosine
function on X is called a (local) K-convoluted cosine function on X if C = I(the identity operator on X) or a
(local) α-times integrated C-cosine function on X if K = jα−1 for some α ≥ 0 (see [12-14,16]); a (local) α-times
integrated C-cosine function on X is called a (local) α-times integrated cosine function on X if C = I (see
[15]); and a (local) C-cosine function on X is called a cosine function on X if C = I (see [1,5]). Moreover, a
local α-times integrated cosine function on X is not necessarily extendable to an α-times integrated cosine
function on X except for α = 0 (see [5]), the nondegeneracy of a local α-times integrated C-cosine function
on X does not imply the injectivity of C except for T0 = ∞ (see [12]), and the injectivity of C does not imply
the nondegeneracy of a local α-times integrated C-cosine function on X except for α = 0 (see [19]). Some
basic properites of a nondegenerate (local) α-times integrated C-cosine function on X have been established
by many authors in [11,22] when α = 0, in [7,17-18,23-24] when α ∈N, in [12] when α > 0 is arbitrary with
T0 = ∞ and in [16] for the general case 0 < T0 ≤ ∞, which can be applied to deduce some equivalence
relations between the generation of a nondegenerate (local) α-times integrated C-cosine function on X with
subgenerator A (see Definition 2.4 below) and the unique existence of strong or weak solutions of the
abstract Cauchy problem ACP(A, f , x, y) (see the results in [7,12] for the case T0 = ∞ and in [13-14,16] for
the general case 0 < T0 ≤ ∞). The purpose of this paper is to investigate the following basic properties of
a nondegenerate local K-convoluted C-cosine function C(·) on X when C is injective and some additional
conditions are taken into consideration.

C−1AC = A; (1)

S̃(t)x ∈ D(A) and AS̃(t)x = C(t)x − K0(t)Cx for all x ∈ X and 0 ≤ t < T0; (2)

C(t)x ∈ D(A) and AC(t)x = C(t)Ax for all x ∈ D(A) and 0 ≤ t < T0; (3)

and

C(t)C(s) = C(s)C(t) for all 0 ≤ t, s, t + s < T0 (4)

(see Theorems 2.7 and 2.11, and Corollary 2.12 below). We then deduce some equivalence relations between
the generation of a nondegenerate local K-convoluted C-cosine function on X with subgenerator A and the
unique existence of strong solutions of ACP(A, f , x, y) in section 3 just as results in [16] concerning some
equivalence relations between the generation of a nondegenerate local α-times C-cosine function on X with
subgenerator A and the unique existence of strong solutions of ACP(A, f , x, y). To do these, we will prove an
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important lemma which shows that a strongly continuous subfamily C(·) of L(X) is a local K-convoluted C-
cosine function on X is equivalent to say that S̃(·) is a local K1-convoluted C-cosine function on X (see Lemma
2.1 below), and then show that a strongly continuous subfamily C(·) of L(X) which commutes with C on X
is a local K-convoluted C-cosine function on X is equivalent to say that S̃(t)[C(s)−K0(s)C]=[C(t)−K0(t)C]S̃(s)
for all 0 ≤ t, s, t + s < T0 (see Theorem 2.2 below). In order, we show that a ∗ C(·) is a local a ∗ K-convoluted
C-cosine function on X if C(·) is a local K-convoluted C-cosine function on X and a ∈ L1

loc([0,T0),F). In
particular, jβ ∗ C(·) is a local Kβ-convoluted C-cosine function on X if C(·) is a local K-convoluted C-cosine

function on X and β > −1 (see Proposition 2.3 below), where f ∗ C(t)x =
∫ t

0 f (t − s)C(s)xds for all x ∈ X and
f ∈ L1

loc([0,T0),F). We also show that a strongly continuous subfamily C(·) of L(X) which commutes with C
on X is a local K-convoluted C-cosine function on X when C(·) has a subgenerator (see Theorem 2.5 below),
which had been proven in [8] by another method similar to that already employed in [12] in the case that
C(·) has a closed subgenerator and C is injective; and the generator of a nondegenerate local K-convoluted
C-cosine function C(·) on X is the unique subgenerator of C(·) which contains all subgenerators of C(·) and
each subgenerator of C(·) is closable and its closure is also a subgenerator of C(·) when C(·) has a subgenerator
(see Theorems 2.7 and 2.11, and Corollary 2.12 below). This can be applied to show that CA ⊂ AC and C(·)
is a nondegenerate local K-convoluted C-cosine function on X with generator C−1AC when C is injective,
K0 a kernel on [0,T0) (that is, f = 0 on [0,T0) whenever f ∈ C([0,T0),F) with

∫ t

0 K0(t − s) f (s)ds = 0 for all
0 ≤ t < T0) and C(·) a strongly continuous subfamily of L(X) with closed subgenerator A. In this case,
C−1A0C is the generator of C(·) for each subgenerator A0 of C(·) (see Theorem 2.13 below). Some illustrative
examples concerning these theorems are also presented in the final part of paper.

2. Basic Properties of Local K-Convoluted C-Cosine Functions

We will deduce an important lemma which can be applied to obtain an equivalence relation between
the generation of a local K-convoluted C-cosine function C(·) on X and the equation

S̃(t)[C(s) − K0(s)C] = [C(t) − K0(t)C]S̃(s) for all 0 ≤ t, s, t + s < T0, (5)

(see a result in [16] for the case of local α-times integrated C-cosine function and a corresponding statement
in [9] for the case of (a, k)-regularized (C1,C2)-existence and uniqueness family). Lemma 2.1 Let C(·) be a
strongly continuous subfamily of L(X). Then C(·) is a local K-convoluted C-cosine function on X if and only if S̃(·) is
a local K1-convoluted C-cosine function on X.

Proof. We will show that

d
dt

[(∫ t+s

0
−

∫ t

0
−

∫ s

0

)
K1(t + s − r)S̃(r)Cxdr +

∫ t

|t−s|
K1(s − t + r)S̃(r)Cxdr

+

∫ s

|t−s|
K1(t − s + r)S̃(r)Cxdr +

∫
|t−s|

0
K1(|t − s| + r)S̃(r)Cxdr

]
=

(∫ t+s

0
−

∫ t

0
−

∫ s

0

)
K0(t + s − r)S̃(r)Cxdr + s1n(s − t)

∫ t

|t−s|
K0(s − t + r)S̃(r)Cxdr

+ s1n(t − s)
∫ s

|t−s|
K0(t − s + r)S̃(r)Cxdr +

∫
|t−s|

0
K0(|t − s| + r)S̃(r)Cxdr

(6)

and

d2

dt2

[(∫ t+s

0
−

∫ t

0
−

∫ s

0

)
K1(t + s − r)S̃(r)Cxdr +

∫ t

|t−s|
K1(s − t + r)S̃(r)Cxdr +

∫ s

|t−s|
K1(t − s + r)S̃(r)Cxdr

+

∫
|t−s|

0
K1(|t − s| + r)S̃(r)Cxdr

]
+ 2K0(s)S̃(t)Cx
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=

(∫ t+s

0
−

∫ t

0
−

∫ s

0

)
K(t + s − r)S̃(r)Cxdr +

∫ t

|t−s|
K(s − t + r)S̃(r)Cxdr +

∫ s

|t−s|
K(t − s + r)S̃(r)Cxdr

+

∫
|t−s|

0
K(|t − s| + r)S̃(r)Cxdr (7)

for all x ∈ X and 0 ≤ t, s, t + s < T0, where s1n(t) = 1 if 0 < t, s1n(0) = 0, and s1n(t) = −1 if t < 0. Indeed, for
0 ≤ s ≤ t < T0 with t + s < T0, we have

d
dt

[(∫ t+s

0
−

∫ t

0
−

∫ s

0

)
K1(t + s − r)S̃(r)Cxdr +

∫ t

t−s
K1(s − t + r)S̃(r)Cxdr +

∫ s

0
K1(t − s + r)S̃(r)Cxdr

]
=

[(∫ t+s

0
−

∫ t

0
−

∫ s

0

)
K0(t + s − r)S̃(r)Cxdr − K1(s)S̃(t)Cx

]
+

[
K1(s)S̃(t)Cx −

∫ t

t−s
K0(s − t + r)S̃(r)Cxdr

]
+

∫ s

0
K0(t − s + r)S̃(r)Cxdr

=

(∫ t+s

0
−

∫ t

0
−

∫ s

0

)
K0(t + s − r)S̃(r)Cxdr

+ s1n(s − t)
∫ t

|t−s|
K0(s − t + r)S̃(r)Cxdr + s1n(t − s)

∫ s

|t−s|
K0(t − s + r)S̃(r)Cxdr

+

∫
|t−s|

0
K0(|t − s| + r)S̃(r)Cxdr

and

d
dt

[(∫ t+s

0
−

∫ t

0
−

∫ s

0

)
K0(t + s − r)S̃(r)Cxdr −

∫ t

t−s
K0(s − t + r)S̃(r)Cxdr +

∫ s

0
K0(t − s + r)S̃(r)Cxdr

]
+ 2K0(s)S̃(t)Cx

=

(∫ t+s

0
−

∫ t

0
−

∫ s

0

)
K(t + s − r)S̃(r)Cxdr − 2K0(s)S̃(t)Cx +

∫ t

t−s
K(s − t + r)S̃(r)Cxdr

+

∫ s

0
K(t − s + r)S̃(r)Cxdr + 2K0(s)S̃(t)Cx

=

(∫ t+s

0
−

∫ t

0
−

∫ s

0

)
K(t + s − r)S̃(r)Cxdr +

∫ t

t−s
K(s − t + r)S̃(r)Cxdr +

∫ s

0
K(t − s + r)S̃(r)Cxdr

=

(∫ t+s

0
−

∫ t

0
−

∫ s

0

)
K(t + s − r)S̃(r)Cxdr +

∫ t

|t−s|
K(s − t + r)S̃(r)Cxdr

+

∫ s

|t−s|
K(t − s + r)S̃(r)Cxdr +

∫
|t−s|

0
K(|t − s| + r)S̃(r)Cxdr.

That is, (6) and (7) both hold for all 0 ≤ s ≤ t < T0 with t + s < T0. Similarly, we can show that (6) and (7)
both also hold when 0 ≤ t ≤ s < T0 with t + s < T0. Clearly, the right-hand side of (7) is symmetric in t, s
with 0 ≤ t, s, t + s < T0. It follows that

d2

ds2

[(∫ t+s

0
−

∫ t

0
−

∫ s

0

)
K1(t + s − r)S̃(r)Cxdr +

∫ t

|t−s|
K1(s − t + r)S̃(r)Cxdr

+

∫ s

|t−s|
K1(t − s + r)S̃(r)Cxdr +

∫
|t−s|

0
K1(|t − s| + r)S̃(r)Cxdr

]
+ 2K0(t)S̃(s)Cx
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=

(∫ t+s

0
−

∫ t

0
−

∫ s

0

)
K(t + s − r)S̃(r)Cxdr +

∫ t

|t−s|
K(s − t + r)S̃(r)Cxdr

+

∫ s

|t−s|
K(t − s + r)S̃(r)Cxdr +

∫
|t−s|

0
K(|t − s| + r)S̃(r)Cxdr (8)

for all x ∈ X and 0 ≤ t, s, t + s < T0. Using integration by parts twice, we obtain(∫ t+s

0
−

∫ t

0
−

∫ s

0

)
K(t + s − r)S̃(r)Cxdr +

∫ t

|t−s|
K(s − t + r)S̃(r)Cxdr

+

∫ s

|t−s|
K(t − s + r)S̃(r)Cxdr +

∫
|t−s|

0
K(|t − s| + r)S̃(r)Cxdr

=

(∫ t+s

0
−

∫ t

0
−

∫ s

0

)
K1(t + s − r)C(r)Cxdr +

∫ t

|t−s|
K1(s − t + r)C(r)Cxdr

+

∫ s

|t−s|
K1(t − s + r)C(r)Cxdr +

∫
|t−s|

0
K1(|t − s| + r)C(r)Cxdr

+ 2K0(t)S̃(s)Cx + 2K0(s)S̃(t)Cx

(9)

for all x ∈ X and 0 ≤ t, s, t + s < T0. Suppose that S̃(·) is a local K1-convoluted C-cosine function on X. Then
we have by (8)-(9) that

2S̃(t)C(s)x = 2
d2

ds2 S̃(t)S̃(s)x

=(
∫ t+s

0
−

∫ t

0
−

∫ s

0
)K1(t + s − r)C(r)Cxdr

+

∫ t

|t−s|
K1(s − t + r)C(r)Cxdr +

∫ s

|t−s|
K1(t − s + r)C(r)Cxdr

+

∫
|t−s|

0
K1(|t − s| + r)C(r)Cxdr + 2K0(s)S̃(t)Cx

for all x ∈ X and 0 ≤ t, s, t + s < T0, so that

2C(t)C(s)x =2
d2

dt2 S̃(t)C(s)x

=

(∫ t+s

0
−

∫ t

0
−

∫ s

0

)
K(t + s − r)C(r)Cxdr +

∫ t

|t−s|
K(s − t + r)C(r)Cxdr

+

∫ s

|t−s|
K(t − s + r)C(r)Cxdr +

∫
|t−s|

0
K(|t − s| + r)C(r)Cxdr

(10)

for all x ∈ X and 0 ≤ t, s, t + s < T0. Hence, C(·) is a local K-convoluted C-cosine function on X. Conversely,
let C(·) be a local K-convoluted C-cosine function on X. We will apply Fubini’s theorem for double integrals
twice to obtain

2C(t)S̃(s)x =

[(∫ t+s

0
−

∫ t

0
−

∫ s

0

)
K1(t + s − r)C(r)Cxdr +

∫ t

|t−s|
K1(s − t + r)C(r)Cxdr

+

∫ s

|t−s|
K1(t − s + r)C(r)Cxdr +

∫
|t−s|

0
K1(|t − s| + r)C(r)Cxdr

]
+ 2K0(t)S̃(s)Cx

(11)
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for all x ∈ X and 0 ≤ t, s, t + s < T0. Let x ∈ X be given, then for 0 ≤ t, s, t + s < T0 with t ≥ s, we have∫ τ

0

∫ t+λ

t
K(t + λ − r)C(r)Cxdrdλ

=

∫ t+τ

t

∫ τ

r−t
K(t + λ − r)C(r)Cxdλdr

=

∫ t+τ

t
K0(t + τ − r)C(r)Cxdr,

(12)

∫ τ

0

∫ λ

0
K(t + λ − r)C(r)Cxdrdλ

=

∫ τ

0

∫ τ

r
K(t + λ − r)C(r)Cxdλdr

=

∫ τ

0
K0(t + τ − r)C(r)Cxdr − K0(t)S(τ)Cx,

(13)

∫ τ

0

∫ t

t−λ
K(λ − t + r)C(r)Cxdrdλ

=

∫ t

t−τ

∫ τ

t−r
K(λ − t + r)C(r)Cxdλdr

=

∫ t

t−τ
K0(τ − t + r)C(r)Cxdr,

(14)

and ∫ τ

0

∫ λ

0
K(t − λ + r)C(r)Cxdrdλ

=

∫ τ

0

∫ τ

r
K(t − λ + r)C(r)Cxdλdr

=K0(t)S(τ)Cx −
∫ τ

0
K0(t − τ + r)C(r)Cxdr

(15)

for all 0 ≤ τ ≤ s. Observe that (12)-(15) also imply∫ s

0

∫ t+τ

t
K0(t + τ − r)C(r)Cxdrdτ =

∫ t+s

t
K1(t + s − r)C(r)Cxdr, (16)

∫ s

0

[∫ τ

0
K0(t + τ − r)C(r)Cxdr − K0(t)S(τ)Cx

]
dτ

=

[∫ s

0
K1(t + s − r)C(r)Cxdr − K1(t)S(s)Cx

]
− K0(t)S̃(s)Cx,

(17)

∫ s

0

∫ t

t−τ
K0(τ − t + r)C(r)Cxdrdτ =

∫ t

t−s
K1(s − t + r)C(r)Cxdr, (18)
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and ∫ s

0
[K0(t)S(τ)Cx −

∫ τ

0
K0(t − τ + r)C(r)Cxdr]dτ

=K0(t)S̃(s)Cx + [
∫ s

0
K1(t − s + r)C(r)Cxdr − K1(t)S(s)Cx].

(19)

Combining (16)-(17), we obtain (11) for all 0 ≤ t, s, t + s < T0 with t ≥ s. Similarly, we can show that (11) also
holds when 0 ≤ t, s, t + s < T0 with s ≥ t. By (7), (9) and (11), we have

2C(t)S̃(s)x

=
d2

dt2 [(
∫ t+s

0
−

∫ t

0
−

∫ s

0
)K1(t + s − r)S̃(r)Cxdr

+

∫ t

|t−s|
K1(s − t + r)S̃(r)Cxdr +

∫ s

|t−s|
K1(t − s + r)S̃(r)Cxdr

+

∫
|t−s|

0
K1(|t − s| + r)S̃(r)Cxdr]

for all x ∈ X and 0 ≤ t, s, t + s < T0. Combining this and (6) with t = 0, we conclude that S̃(·) is a local
K1-convoluted C-cosine function on X.

Theorem 2.2 Let C(·) be a strongly continuous subfamily of L(X) which commutes with C on X. Then C(·) is a local
K-convoluted C-cosine function on X if and only if S̃(t)[ C(s)−K0(s)C ]=[ C(t)−K0(t)C ]S̃(s) for all 0 ≤ t, s, t+s < T0.

Proof. Let C(·) be a local K-convoluted C-cosine function on X. By (7) and (8), we have 2C(t)S̃(s)x +

2K0(s)S̃(t)Cx = 2S̃(t)C(s)x + 2K0(t)S̃(s)Cx for all x ∈ X and 0 ≤ t, s, t + s < T0 or equivalently, S̃(t)[C(s) −
K0(s)C]=[C(t)−K0(t)C]S̃(s) for all 0 ≤ t, s, t+s < T0. Conversely, suppose that (5) holds for all 0 ≤ t, s, t+s < T0.
Then S̃(t)C(s)x − C(t)S̃(s)x = K0(s)S̃(t)Cx − K0(t)S̃(s)Cx for all x ∈ X and 0 ≤ t, s, t + s < T0. Fix x ∈ X and
0 ≤ t, s, t + s < T0 with t ≥ s. Then we have

S̃(t + s − r)C(r)x − C(t + s − r)S̃(r)x

=K0(r)S̃(t + s − r)Cx − K0(t + s − r)S̃(r)Cx
(20)

for all 0 ≤ r ≤ t, and

S̃(s − t + r)C(r)x − C(s − t + r)S̃(r)x

=K0(r)S̃(s − t + r)Cx − K0(s − t + r)S̃(r)Cx
(21)

for all t − s ≤ r ≤ t. Using integration by parts to left-hand sides of the integrations of (20)-(21) and change
of variables to right-hand sides of the integrations of (20)-(21), we obtain

S̃(s)S(t)x + S(s)S̃(t)x =

(∫ t+s

0
−

∫ t

0
−

∫ s

0

)
K0(t + s − r)S̃(r)Cxdr

and

S̃(s)S(t)x − S(s)S̃(t)x =

∫ s

0
K0(t − s + r)S̃(r)Cxdr −

∫ t

t−s
K0(s − t + r)S̃(r)Cxdr,
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so that

2S̃(s)S(t)x =

(∫ t+s

0
−

∫ t

0
−

∫ s

0

)
K0(t + s − r)S̃(r)Cxdr

−

∫ t

t−s
K0(s − t + r)S̃(r)Cxdr +

∫ s

0
K0(t − s + r)S̃(r)Cxdr.

Hence,

2S̃(s)C(t)x =

(∫ t+s

0
−

∫ t

0
−

∫ s

0

)
K(t + s − r)S̃(r)Cxdr +

∫ t

t−s
K(s − t + r)S̃(r)Cxdr

+

∫ s

0
K(t − s + r)S̃(r)Cxdr − 2K0(s)S̃(t)Cx,

which implies that

2S̃(s)C(t)x + 2K0(s)S̃(t)Cx =

(∫ t+s

0
−

∫ t

0
−

∫ s

0

)
K(t + s − r)S̃(r)Cxdr

+

∫ t

|t−s|
K(s − t + r)S̃(r)Cxdr +

∫ s

|t−s|
K(t − s + r)S̃(r)Cxdr

+

∫
|t−s|

0
K(|t − s| + r)S̃(r)Cxdr.

(22)

Similarly, we can show that (22) also holds when x ∈ X and 0 ≤ t, s, t + s < T0 with s ≥ t. Combining this
with (7), we have

2S̃(s)C(t)x =
d2

dt2

[(∫ t+s

0
−

∫ t

0
−

∫ s

0

)
K1(t + s − r)S̃(r)Cxdr +

∫ t

|t−s|
K1(s − t + r)S̃(r)Cxdr

+

∫ s

|t−s|
K1(t − s + r)S̃(r)Cxdr +

∫
|t−s|

0
K1(|t − s| + r)S̃(r)Cxdr

]
.

for all x ∈ X and 0 ≤ t, s, t + s < T0. Consequently, S̃(·) is a local K1-convoluted C-cosine function on X.
Combining this with Lemma 2.1, we get that C(·) is a local K-convoluted C-cosine function on X.

By slightly modifying the proof of [16, Proposition 2.3], the next result concerning local K-convoluted
C-cosine functions on X is also attained.
Proposition 2.3 Let C(·) be a local K-convoluted C-cosine function on X and a ∈ L1

loc([0,T0),F). Then a ∗ C(·) is a
local a ∗K-convoluted C-cosine function on X. In particular, for each β > −1 jβ ∗C(·) is a local Kβ-convoluted C-cosine
function on X. Moreover, C(·) is a local K-convoluted C-cosine function on X if it is a strongly continuous subfamily
of L(X) such that S(·) is a local K0-convoluted C-cosine function on X.
Definition 2.4 Let C(·) be a strongly continuous subfamily of L(X). A linear operator A in X is called a subgenerator
of C(·) if

C(t)x − K0(t)Cx =

∫ t

0

∫ s

0
C(r)Axdrds (23)

for all x ∈ D(A) and 0 ≤ t < T0, and∫ t

0

∫ s

0
C(r)xdrds ∈ D(A) and A

∫ t

0

∫ s

0
C(r)xdrds = C(t)x − K0(t)Cx (24)
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for all x ∈ X and 0 ≤ t < T0. A subgenerator A of C(·) is called the maximal subgenerator of C(·) if it is an extension
of each subgenerator of C(·) to D(A).

Applying Theorem 2.2, we can obtain the next result concerning the generation of a local K-convoluted
C-cosine function C(·) on X, which had been proven in [8] by another method similar to that already
employed in [12] in the case that C(·) has a closed subgenerator and C is injective.
Theorem 2.5 Let C(·) be a strongly continuous subfamily of L(X) which commutes with C on X. Assume that C(·)
has a subgenerator. Then C(·) is a local K-convoluted C-cosine function on X. Moreover, C(·) is nondegenerate if the
injectivity of C is added and K0 is a non-zero function on [0,T0).

Proof. Let A be a subgenerator of C(·). By (24), we have

[C(t) − K0(t)C]S̃(·)x = S̃(t)AS̃(·)x = S̃(t)[C(·) − K0(·)C]x

on [0,T0 − t) for all x ∈ X and 0 ≤ t < T0. Applying Theorem 2.2, we get that C(·) is a local K-convoluted
C-cosine function on X. Suppose that C is injective, K0 is a non-zero function, x ∈ X and C(t)x = 0,
t ∈ [0,T0). By (24), we have K0(·)Cx = 0 on [0,T0), and so Cx = 0. Hence, x = 0, which implies that C(·) is
nondegenerate.

Lemma 2.6 Let A be a closed subgenerator of a strongly continuous subfamily C(·) of L(X), and K0 a kernel on [0, t0)
(or equivalently, K is a kernel on [0, t0)) for some 0 < t0 ≤ T0. Assume that C is injective and u ∈ C([0, t0),X) satisfies
u(·) = Aj1 ∗ u(·) on [0, t0). Then u = 0 on [0, t0).

Proof. We observe from (23) and (24) that A
∫ t

0

∫ s

0 C(r)xdrds =
∫ t

0

∫ s

0 C(r)Axdrds for all x ∈ D(A) and 0 ≤ t < T0.
Combining this with the closedness of A, we have C(t)Ax = AC(t)x for all x ∈ D(A) and 0 ≤ t < T0, and
so

∫ t

0 C(t − s)u(s)ds =
∫ t

0 C(t − s)Aj1 ∗ u(s)ds =
∫ t

0 AC(t − s) j1 ∗ u(s)ds = A
∫ t

0 C(t − s) j1 ∗ u(s)ds = AS̃ ∗ u(t) =∫ t

0 C(t − s)u(s)ds − C
∫ t

0 K0(t − s)u(s)ds for all 0 ≤ t < t0. Hence,
∫ t

0 K0(t − s)u(s)ds = 0 for all 0 ≤ t < t0, which
implies that u(t) = 0 for all 0 ≤ t < t0.

Theorem 2.7 Let C(·) be a nondegenerate local K-convoluted C-cosine function on X with generator A. Assume that
C(·) has a subgenerator. Then A is the maximal subgenerator of C(·), and each subgenerator of C(·) is closable and its
closure is also a subgenerator of C(·). Moreover, if C is injective. Then (1)-(3) hold, and (4) also holds when K0 is a
kernel on [0,T0) or T0 = ∞.

Proof. Let B be a subgenerator of C(·). Clearly, B ⊂ A. It follows that C(t)z − K0(t)Cz = B
∫ t

0

∫ s

0 C(r)zdrds =

A
∫ t

0

∫ s

0 C(r)zdrds for all z ∈ X and 0 ≤ t < T0, which together with the definition of A implies that A
is also a subgenerator of C(·). To show that each subgenerator of C(·) is closable and its closure is also
a subgenerator of C(·). We will show that B is closable. Let xk ∈ D(B), xk → 0, and Bxk → y in X.
Then xk ∈ D(A) and Axk = Bxk → y. By the closedness of A, we have y = 0. In order to show that B
is a subgenerator of C(·). Let x ∈ D(B) be given, then xk → x and Bxk → Bx in X for sequence {xk}

∞

k=1

in D(B). By (23), we have C(t)xk − K0(t)Cxk =
∫ t

0

∫ s

0 C(r)Bxkdrds for all k ∈ N and 0 ≤ t < T0. Letting

k → ∞, we get that C(t)x − K0(t)Cx =
∫ t

0

∫ s

0 C(r)Bxdrds for all 0 ≤ t < T0. Since B ⊂ B, we also have

C(t)z − K0(t)Cz = B
∫ t

0

∫ s

0 C(r)zdrds = B
∫ t

0

∫ s

0 C(r)zdrds for all z ∈ X and 0 ≤ t < T0. Consequently, the
closure of B is a subgenerator of C(·). To show that A is the maximal subgenerator of C(·). We will apply
Zorn’s lemma to show that C(·) has a subgenerator which does not have a proper extension that is still
a subgenerator of C(·). To do this. Let F be the family of all subgenerators of C(·). We define a partial
order ”⊂” on F by f ⊂ 1 if 1 is an extension of f to D(1). Suppose that A is a chain of F . Define
A0 : D(A0) ⊂ X → X by D(A0) = ∪ f∈AD( f ) and A0x = f x whenever x ∈ D(A0) with x ∈ D( f ) for some
f ∈ A, then A0 is well-defined and a subgenerator of C(·), and so A0 is an upper bound of A in (F ,⊂). By
Zorn’s lemma, (F ,⊂) has a maximal element B which is a subgenerator of C(·), and does not have a proper
extension that is still a subgenerator of C(·). In particular, B ⊂ A. Similarly, we can show that B is the
maximal subgenerator of C(·), which implies that A ⊂ B. Clearly, (2) and (3) both hold because A is the
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maximal subgenerator of C(·). To show that (1) holds when C is injective, we will show that A ⊂ C−1AC or
equivalently, CA ⊂ AC. Let x ∈ D(A) be given, then K2(t)Cx = S̃(t)x − j1 ∗ S̃(t)Ax ∈ D(A) and

AK2(t)Cx =AS̃(t)x − Aj1 ∗ S̃(t)Ax

=AS̃(t)x − [S̃(t)Ax − K2(t)CAx]
=K2(t)CAx

for all 0 ≤ t < T0, so that CAx = ACx. Hence, CA ⊂ AC. In order to show that C−1AC ⊂ A. Let x ∈ D(C−1AC)
be given, then Cx ∈ D(A) and ACx ∈ R(C). By the definition of generator and the commutativity of C with
C(·), we have C[C(t)x−K0(t)Cx] = C(t)Cx−K0(t)C2x =

∫ t

0 S(r)ACxdr =
∫ t

0 S(r)CC−1ACxdr = C
∫ t

0 S(r)C−1ACxdr.
Since C is injective, we have x ∈ D(A) and Ax = C−1ACx. Consequently, A ⊂ C−1AC. Finally, we will show
that (4) holds when K0 is a kernel on [0,T0). Clearly, it suffices to show that S̃(t)S̃(s)x=S̃(s)S̃(t)x for all x ∈ X
and 0 ≤ t, s < T0. Let x ∈ X and 0 ≤ s < T0 be given. By (3) and the closedness of A, we have

S̃(·)S̃(s)x − Aj1 ∗ S̃(·)S̃(s)x =K2(·)CS̃(s)x

=S̃(s)K2(·)Cx

=S̃(s)[S̃(·)x − Aj1 ∗ S̃(·)x]

=S̃(s)S̃(·)x − S̃(s)Aj1 ∗ S̃(·)x

=S̃(s)S̃(·)x − Aj1 ∗ S̃(s)S̃(·)x

on [0,T0), and so [S̃(·)S̃(s)x − S̃(s)S̃(·)x] =Aj1 ∗ [S̃(·)S̃(s)x − S̃(s)S̃(·)x] on [0,T0). Hence, S̃(·)S̃(s)x = S̃(s)S̃(·)x on
[0,T0), which implies that S̃(t)S̃(s)x=S̃(s)S̃(t)x for all 0 ≤ t, s < T0.

Lemma 2.8 Let C(·) be a local K-convoluted C-cosine function on X, and 0 ∈ suppK0 (the support of K0). Assume
that C(·)x = 0 on [0, t0) for some x ∈ X and 0 < t0 < T0. Then CC(·)x = 0 on [0,T0). In particular, C(t)x = 0 for all
0 ≤ t < T0 if the injectivity of C is added.

Proof. Let 0 ≤ t < T0 be given, then t + s < T0 and K0(s) is nonzero for some 0 < s < t0, so that
S̃(s)C(t)x=C(t)S̃(s)x=0, C(s)S̃(t)x=S̃(t)C(s)x=0 and S̃(s)K0(t)Cx=K0(t)CS̃(s)x= 0. By Theorem 2.2, we have
K0(s)S̃(t)Cx=K0(s)CS̃(t)x = 0. Hence, S̃(t)Cx = 0. Since 0 ≤ t < T0 is arbitrary, we have CC(t)x = C(t)Cx = 0
for all 0 ≤ t < T0. In particular, C(t)x = 0 for all 0 ≤ t < T0 if the injectivity of C is added.

Theorem 2.9 Let C(·) be a local K-convoluted C-cosine function on X, and 0 ∈ suppK0. Assume that C is injective.
Then C(·) is nondegenerate if and only if it has a subgenerator.

Proof. By Theorem 2.5, we need only to show that A is a subgenerator of C(·) when C(·) is a nondegenerate
local K-convoluted C-cosine function on X with generator A and 0 ∈ suppK0. Observe (23)-(24) and the
definition of A, we need only to show that (23) holds. Let 0 ≤ t0 < T0 be fixed. Then for each x ∈ X and
0 ≤ s < T0, we set y = S̃(t0)x. By Theorem 2.2, we have

S̃(r)[C(s) − K0(s)C]y =[C(r) − K0(r)C]S̃(s)y

=S̃(s)[C(r) − K0(r)C]y

=S̃(s)([C(r) − K0(r)C]S̃(t0)x)

=S̃(s)(S̃(r)[C(t0) − K0(t0)C]x)

=[S̃(s)S̃(r)][C(t0) − K0(t0)C]x

=S̃(r)S̃(s)[C(t0) − K0(t0)C]x
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for all 0 ≤ r < T0 with r + s, r + t0 < T0 or equivalently, C(r)[C(s) − K0(s)C]y = C(r)S̃(s)[C(t0) − K0(t0)C]x
for all 0 ≤ r < T0 with r + s, r + t0 < T0. It follows from Lemma 2.8 and the nondegeneracy of C(·) that
we have [C(s) − K0(s)C]y = S̃(s)[C(t0) − K0(t0)C]x. Since 0 ≤ s < T0 is arbitrary, we have y ∈ D(A) and
Ay = [C(t0) − K0(t0)C]x. Since 0 ≤ t0 < T0 is arbitrary, we conclude that (23) holds.

By slightly modifying the proof of Theorem 2.9, we can obtain the next result concerning nondegenerate
K-convoluted C-cosine functions.
Theorem 2.10 Let C(·) be a nondegenerate K-convoluted C-cosine function on X. Then C is injective, and C(·) has a
subgenerator.

Combining Theorem 2.10 with Theorem 2.7, the next result concerning nondegenerate K-convoluted
C-cosine functions is also obtained.
Theorem 2.11 Let C(·) be a nondegenerate K-convoluted C-cosine function on X with generator A. Then A is the
maximal subgenerator of C(·), and each subgenerator of C(·) is closable and its closure is also a subgenerator of C(·).
Moreover, (1)-(4) hold.

Since 0 ∈ suppK0 implies that K0 is a kernel on [0,T0), we can apply Theorems 2.7 and 2.9 to obtain the
next corollary.
Corollary 2.12 Let C(·) be a nondegenerate local K-convoluted C-cosine function on X with generator A, and
0 ∈ suppK0. Assume that C is injective. Then A is the maximal subgenerator of C(·), and each subgenerator of C(·) is
closable and its closure is also a subgenerator of C(·). Moreover, (1)-(4) hold.
Theorem 2.13 Let A be a closed subgenerator of a strongly continuous sufamily C(·) of L(X), and K0 a kernel on
[0,T0). Assume that C is injective. Then CA ⊂ AC, and C(·) is a nondegenerate local K-convoluted C-cosine function
on X with generator C−1AC. In particular, C−1A0C is the generator of C(·) for each subgenerator A0 of C(·).

Proof. To show that C(·) is a nondegenerate local K-convoluted C-cosine function on X. By Theorem 2.5,
we need only to show that CC(·) = C(·)C or equivalently, CS̃(·) = S̃(·)C. Just as in the proof of Theorem
2.7, we have CA ⊂ AC and [S̃(·)Cx − CS̃(·)x] =Aj1 ∗ [S̃(·)Cx − CS̃(·)x] on [0,T0). By Lemma 2.6, we also have
S̃(·)Cx = CS̃(·)x on [0,T0). We will prove that C−1AC is the generator of C(·). Let B denote the generator of
C(·). By Theorem 2.7, we have A ⊂ B. By (1), we also have C−1AC ⊂ C−1BC = B. Conversely, let x ∈ D(B) be
given, then K2(t)Cx = S̃(t)x − j1 ∗ S̃(t)Bx ∈ D(A) for all 0 ≤ t < T0, so that Cx ∈ D(A) and

AK2(·)Cx =AS̃(·)x − Aj1 ∗ S̃(·)Bx

=AS̃(·)x − [S̃(·)Bx − K2(·)CBx]

=AS̃(·)x − [BS̃(·)x − K2(·)CBx]
=K2(·)CBx

on [0,T0). Hence, ACx = CBx ∈ R(C), which implies that x ∈ D(C−1AC) and C−1ACx = Bx. Consequently,
B ⊂ C−1AC.

Corollary 2.14 Let C(·) be a nondegenerate local K-convoluted C-cosine function on X, and 0 ∈ suppK0. Assume
that C is injective. Then C−1A0C is the generator of C(·) for each subgenerator A0 of C(·).
Remark 2.15 Let C(·) be a local K-convoluted C-cosine function on X. Then

(i) C(·) is nondegenerate if and only if S(·) is;
(ii) A is the generator of C(·) if and only if it is the generator of S(·);

(iii) A is a closed subgenerator of C(·) if and only if it is a closed subgenerator of S(·).

Remark 2.16 A strongly continuous subfamily of L(X) may not have a subgenerator; a local K-convoluted C-cosine
function on X is degenerate when it has a subgenerator but does not have a maximal subgenerator; and a closed linear
operator in X generates at most one nondegenerate local K-convoluted C-cosine function on X when C is injective and
K0 a kernel on [0,T0).
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3. Abstract Cauchy Problems

In the following, we always assume that C ∈ L(X) is injective, K0 a kernel on [0,T0), and A a closed
linear operator in X such that CA ⊂ AC. We also note some basic properties concerning the strong solutions
of ACP(A, f , x, y) just results in [12] when A is the generator of a nondegenerate (local) α-times integrated
C-cosine function on X.
Proposition 3.1. Let A be a subgenerator of a nondegenerate local K0-convoluted C-cosine function C(·) on X. Then
for each x ∈ D(A) C(·)x is the unique solution of ACP(A,K(·)Cx, 0, 0) in C([0,T0), [D(A)]). Here [D(A)] denotes
the Banach space D(A) equipped with the graph norm |x|A = ‖x‖ + ‖Ax‖ for x ∈ D(A).
Proposition 3.2. Let A be a subgenerator of a nondegenerate local K-convoluted C-cosine function C(·) on X and
C1 = {x ∈ X

∣∣∣ C(·)x is continuously differentiable on (0,T0)}. Then

(i) for each x ∈ C1 S(t)x ∈ D(A) for a.e. t ∈ (0,T0);
(ii) for each x ∈C1 S(·)x is the unique solution of ACP(A,K(·)Cx, 0, 0);

(iii) for each x ∈ D(A) S(·)x is the unique solution of ACP(A,K(·)Cx, 0, 0)
in C1([0,T0), [D(A)]).

Proposition 3.3. Let A be the generator of a nondegenerate local K-convoluted C-cosine function C(·) on X and
x ∈ X. Assume that C(t)x ∈ R(C) for all 0 ≤ t < T0, and C−1C(·)x ∈ C([0,T0),X) is differentiable a.e. on (0,T0).
Then C−1S(t)x ∈ D(A) for a.e. t ∈ (0,T0), and C−1S(·)x is the unique solution of ACP(A,K(·)x, 0, 0).

Proof. Clearly, S(·)x ∈ C1([0,T0),X), and C(·)x = CC−1C(·)x is differentiable a.e. on (0,T0). By Theorem 2.11,
we have C d2

dt2 C−1S(t)x = d2

dt2 S(t)x = AS(t)x + K(t)Cx = ACC−1S(t)x + K(t)Cx for a.e. t ∈ (0,T0), so that for
a.e. t ∈ (0,T0), C−1S(t)x ∈ D(C−1AC) = D(A) and d2

dt2 C−1S(t)x = (C−1AC)C−1S(t)x + K(t)x = AC−1S(t)x + K(t)x.
Hence, C−1S(·)x is a solution of ACP(A,K(·)x, 0, 0).

Applying Theorem 2.13, we can prove an important result concerning the relation between the gener-
ation of a nondegenerate local K-convoluted C-cosine function on X with subgenerator A and the unique
existence of strong solutions of ACP(A, f , x, y), which has been established by the author in [15] when
K = jα−1, in [12] when K = jα−1 with T0 = ∞, and in [11] when K = j−1 and T0 = ∞.
Theorem 3.4. The following statements are equivalent :

(i) A is a subgenerator of a nondegenerate local K-convoluted C-cosine function C(·) on X;
(ii) for each x ∈ X and 1 ∈ L1

loc([0,T0),X) the problem ACP(A,K0(·)Cx + K0 ∗ C1(·), 0, 0) has a unique solution in
C2([0,T0),X) ∩ C([0,T0), [D(A)]);

(iii) for each x ∈ X the problem ACP(A,K0(·)Cx, 0, 0) has a unique solution in
C2([0,T0),X) ∩ C([0,T0), [D(A)]);

(vi) for each x ∈ X the integral equation v(·)=Aj1 ∗ v(·) + K0(·)Cx has a unique solution v(·; x) in C([0,T0),X).

In this case, S̃(·)x + S̃ ∗ 1(·) is the unique solution of ACP(A,K0(·)Cx + K0 ∗ C1(·), 0, 0) and v(·; x) = C(·)x.

Proof. We will prove that (i) implies (ii). Let x ∈ X and 1 ∈ L1
loc([0,T0),X) be given. We set u(·) = S̃(·)x+ S̃∗1(·),

then u ∈ C2([0,T0),X) ∩ C([0,T0), [D(A)]), u(0) = u′(0) = 0, and

Au(t) =AS̃(t)x + A
∫ t

0
S̃(t − s)1(s)ds

=C(t)x − K0(t)Cx +

∫ t

0
[C(t − s) − K0(t − s)C]1(s)ds

=C(t)x +

∫ t

0
C(t − s)1(s)ds − [K0(t)Cx + K0 ∗ C1(t)]

=u′′(t) − [K0(t)Cx + K0 ∗ C1(t)]
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for all 0 ≤ t < T0. Hence, u is a solution of ACP(A,K0(·)Cx+K0 ∗C1(·), 0, 0) in C2([0,T0),X)∩C([0,T0), [D(A)]).
The uniqueness of solutions for ACP(A,K0(·)Cx + K0 ∗ C1(·), 0, 0) follows directly from the uniqueness of
solutions for ACP(A, 0, 0, 0). Clearly, ”(ii)⇒ (iii)” holds, and (iii) and (iv) both are equivalent. We remain
only to show that ”(iv) ⇒ (i)” holds. Let C(t) : X → X be defined by C(t)x = v(t; x) for all x ∈ X and
0 ≤ t < T0. Clearly, C(·) is strongly continuous, and satisfies (24). Combining the uniqueness of solutions
for the integral equation v(·)=Aj1 ∗v(·)+K0(·)Cx with the assumption CA ⊂ AC, we have v(·; Cx) = Cv(·; x) for
each x ∈ X, which implies that C(t) for 0 ≤ t < T0 are linear, and commute with C. Let {tk}

∞

k=1 be an increasing
sequence in (0,T0) such that tk → T0, and C([0,T0),X) a Frechet space with the quasi-norm | · | defined by

|v| =
∞∑

k=1

‖v‖k
2k(1+‖v‖k) for v ∈ C([0,T0),X). Here ‖v‖k = max

t∈[0,tk]
‖v(t)‖ for all k ∈ N. To show that C(·) is a subfamily

of L(X), we need only to show that the linear map η : X→ C([0,T0),X) defined by η(x) = v(·; x) for x ∈ X, is
continuous or equivalently, η : X → C([0,T0),X) is a closed linear operator. Let {xk}

∞

k=1 be a sequence in X
such that xk → x in X and η(xk)→ v in C([0,T0),X), then v(·; xk)=Aj1 ∗v(·; xk)+K0(·)Cxk on [0,T0). Combining
the closedness of A with the uniform convergence of {η(xk)}∞k=1 on [0, tk], we have v(·)=Aj1 ∗ v(·) + K0(·)Cx
on [0,T0). By the uniqueness of solutions for integral equations, we have v(·)=v(·; x)=η(x). Consequently,
η : X→ C([0,T0),X) is a closed linear operator. To show that A is a subgenerator of C(·), we remain only to
show that S̃(t)A ⊂ AS̃(t) for all 0 ≤ t < T0. Let x ∈ D(A) be given, then S̃(t)x−K2(t)Cx=Aj1 ∗ S̃(t)x= j1 ∗AS̃(t)x
for all 0 ≤ t < T0, and so

S̃(t)Ax − Aj1 ∗ S̃(t)Ax =K2(t)CAx
=AK2(t)Cx

=AS̃(t)x − Aj1 ∗ S̃(t)Ax

for all 0 ≤ t < T0. Hence, Aj1 ∗ [S̃(·)Ax−AS̃(·)x]=S̃(·)Ax−AS̃(·)x on [0,T0). By the uniqueness of solutions for
ACP(A, 0, 0, 0), we have S̃(·)Ax=AS̃(·)x on [0,T0). Applying Theorem 2.5, we get that C(·) is a nondegenerate
local K-convoluted C-cosine function on X with subgenerator A.

By slightly modifying the proof of [15, Theorem 3.5], we can apply Theorem 3.4 to obtain the next result.
Theorem 3.5. Assume that R(C) ⊂ R(λ − A) for some λ ∈ F, and ACP(A,K(·)x, 0, 0) has a unique solution in
C([0,T0), [D(A)]) for each x ∈ D(A) with (λ − A)x ∈ R(C). Then A is a subgenerator of a nondegenerate local
K0-convoluted C-cosine function on X.

Proof. Clearly, it suffices to show that for each x ∈ X the integral equation

v(·) = A
∫
·

0

∫ s

0
v(r)drds + K1(·)Cx (25)

has a (unique) solution v(·; x) in C([0,T0),X). Let x ∈ X be given, then there exists a yx ∈ D(A) such that
(λ − A)yx = Cx. By hypothesis, ACP(A,K(·)yx, 0, 0) has a unique solution u(·; yx) in C([0,T0), [D(A)]). In
particular, u′′(·; yx) = Au(·; yx)+K(·)yx ∈ L1

loc([0,T0),X). By the closedness of A and the continuity of Au(·; yx),

we have
∫ t

0

∫ s

0 u(r; yx)drds ∈ D(A) and

A
∫ t

0

∫ s

0
u(r; yx)drds =

∫ t

0

∫ s

0
Au(r; yx)drds = u(t; yx) − K1(t)yx ∈ D(A)

for all 0 ≤ t < T0, so that

(λ − A)u(t; yx) =(λ − A)[A
∫ t

0

∫ s

0
u(r; yx)drds + K1(t)yx]

=A
∫ t

0

∫ s

0
(λ − A)u(r; yx)drds + K1(t)Cx

(26)

for all 0 ≤ t < T0. Hence, v(·; x) = (λ − A)u(·; yx) is a solution of (25) in C([0,T0),X).
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Combining Theorem 3.4 with Theorem 3.5, the next theorem is also attained.
Theorem 3.6. Assume that R(C) ⊂ R(λ − A) for some λ ∈ F, and ACP(A,K(·)x, 0, 0) has a unique solution in
C1([0,T0), [D(A)]) for each x ∈ D(A) with (λ − A)x ∈ R(C). Then A is a subgenerator of a nondegenerate local
K-convoluted C-cosine function on X.

Proof. Let x ∈ X be given, and let u(·; yx) and v(·; x) be given as in the proof of Theorem 3.5. By hypothesis,
v(·; x) is continuously differentiable on [0,T0) and v′(t; x) = (λ−A)u′(t; yx) for all 0 ≤ t < T0. By (26), we also
have v′(t; x) = A

∫ t

0 v(r; x)dr + K0(t)Cx for all 0 ≤ t < T0. In particular, v′(0; x) = 0, and so v′(·; x)=Aj1 ∗ v′(·; x) +
K0(·)Cx on [0,T0). Hence, v′(·; x) is a (unique) solution of the integral equation v(·)=Aj1 ∗ v(·) + K0(·)Cx in
C([0,T0),X).

Since C−1AC = A and R((λ − A)−1C) = C(D(A)) if ρ(A) , ∅, we can apply Proposition 3.1, Theorem 3.5
and Theorem 3.6 to obtain the next two corollaries.
Corollary 3.7. Assume that the resolvent set of A is nonempty. Then A is the generator of a nondegenerate local
K0-convoluted C-cosine function on X if and only if for each x ∈ D(A) ACP(A,K(·)Cx, 0, 0) has a unique solution in
C([0,T0), [D(A)]).
Corollary 3.8. Assume that the resolvent set of A is nonempty. Then A is the generator of a nondegenerate local
K-convoluted C-cosine function on X if and only if for each x ∈ D(A) ACP(A,K(·)Cx, 0, 0) has a unique solution in
C1([0,T0), [D(A)]).

Just as in [15, Theorems 3.9 and 3.10], we can apply Theorem 3.4 to obtain the next two wellposed theo-
rems. The wellposedness of abstract fractional Cauchy problems and abstract Cauchy problems associated
with various classes of Volterra integro-differential equations in locally convex spaces have been recently
considered in [10].
Theorem 3.9. Assume that A is densely defined. Then the following are equivalent :

(i) A is a subgenerator of a nondegenerate local K0-convoluted C-cosine function S(·) on X;
(ii) for each x ∈ D(A) ACP(A,K(·)Cx, 0, 0) has a unique solution u(·; Cx) in

C([0,T0), [D(A)]) which depends continuously on x. That is, if {xn}
∞

n=1 is a Cauchy sequence in (D(A), ‖ · ‖),
then {u(·; Cxn)}∞n=1 converges uniformly on compact subsets of [0,T0).

Proof. (i)⇒(ii). It is easy to see from the definition of a subgenerator of S(·) that S(·)x is the unique solution
of ACP(A,K(·)Cx, 0, 0) in C([0,T0), [D(A)]) which depends continuously on x ∈ D(A). (ii)⇒(i). In view of
Theorem 3.4, we need only to show that for each x ∈ X (25) has a unique solution v(·; x) in C([0,T0),X). Let
x ∈ X be given. By the denseness of D(A), we have xm → x in X for some sequence {xm}

∞

m=1 in D(A). We set
u(·; Cxm) to denote the unique solution of ACP(A,K(·)Cxm, 0, 0) in C([0,T0), [D(A)]). Then u(·; Cxm) → u(·)
uniformly on compact subsets of [0,T0) for some u ∈ C([0,T0),X), and so

∫
·

0

∫ s

0 u(r; Cxm)drds→
∫
·

0

∫ s

0 u(r)drds
uniformly on compact subsets of [0,T0). Since u′′(·; Cxm) = Au(·; Cxm) + K(·)Cxm a.e. on (0,T0), we have

A
∫
·

0

∫ s

0
u(r; Cxm)drds =

∫
·

0

∫ s

0
Au(r; Cxm)drds = u(·; Cxm) − K1(·)Cxm (27)

on [0,T0) for all m ∈ N. Clearly, the right-hand side of the last equality of (27) converges uniformly to
u(·)−K1(·)Cx on compact subsets of [0,T0). It follows from the closedness of A that

∫ t

0

∫ s

0 u(r)drds ∈ D(A) for

all 0 ≤ t < T0 and A
∫
·

0

∫ s

0 u(r)drds=u(·) − K1(·)Cx on [0,T0), which implies that u(·) is a (unique) solution of
(25) in C([0,T0),X).

Theorem 3.10. Assume that A is densely defined. Then the following are equivalent :

(i) A is a subgenerator of a nondegenerate local K-convoluted C-cosine function C(·) on X;
(ii) for each x ∈ D(A) ACP(A,K(·)Cx, 0, 0) has a unique solution u(·; Cx) in

C1([0,T0), [D(A)]) which depends continuously differentiable on x. That is, if {xn}
∞

n=1 is a Cauchy sequence in
(D(A), ‖ · ‖), then {u(·; Cxn)}∞n=1 and
{u′(·; Cxn)}∞n=1 both converge uniformly on compact subsets of [0,T0).
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Proof. (i)⇒(ii). For each 0 ≤ t < T0 and x ∈ D(A), we set S(t)x =
∫ t

0 C(r)xdr. Then S(·)x is the unique
solution of ACP(A,K(·)Cx, 0, 0) in C1([0,T0), [D(A)]). Let {xn}

∞

n=1 be a Cauchy sequence in (D(A), ‖ · ‖). We
set u(·; Cxn) = S(·)xn for n ∈ N, then {u(·; Cxn)}∞n=1 and {u′(·; Cxn)}∞n=1 both converge uniformly on compact
subsets of [0,T0). (ii)⇒(i). For each x ∈ X and 0 ≤ t < T0, we define u(t) = lim

n→∞
u(t; Cxn) whenever {xn}

∞

n=1

is a sequence in D(A) which converges to x in X. By hypothesis, u(·; Cxm) → u(·) and u′(·; Cxm) → u′(·)
uniformly on compact subsets of [0,T0) for some u ∈ C1([0,T0),X). Just as in the proof of Theorem 3.9, we
have

A
∫ t

0

∫ s

0
u′(r; Cxm)drds = A

∫ t

0
u(s; Cxm)ds = u′(·; Cxm) − K0(·)Cxm

on [0,T0) for all m ∈N. Similarly, we also have A
∫
·

0

∫ s

0 u′(r)drds=u′(·)−K0(·)Cx on [0,T0), which implies that
u′(·) is a solution of the integral equation v(·)=Aj1 ∗v(·)+K0(·)Cx in C([0,T0),X). The uniqueness of solutions
for the integral equation v(·)=Aj1 ∗ v(·) + K0(·)Cx in C([0,T0),X) follows from the uniqueness of solutions for
the integral equation (3.1) in C([0,T0),X).

We end this paper with several illustrative examples.
Example 1. Let X = Cb(R), and C(t) for t ≥ 0 be bounded linear operators on X defined by C(t) f (x) = 1

2 [ f (x +

t) + f (x − t)] for all x ∈ R. Then for each K ∈ L1
loc([0,T0),F) and β > −1, Kβ ∗ C(·) = {Kβ ∗ C(t)|0 ≤ t < T0} is

local a Kβ-convoluted cosine function on X which is also nondegenerate with a closed subgenerator d2

dx2 acting with
its maximal distributional domain when K0 is not the zero function on [0,T0) (or equivalently, K is not the zero in
L1

loc([0,T0),F)), but K ∗ C(·) may not be a local K-convoluted cosine function on X except for K ∈ L1
loc([0,T0),F) so

that K ∗ C(·) is a strongly continuous family in L(X) for which d2

dx2 is a closed subgenerator of K ∗ C(·) when K0 is not
the zero function on [0,T0). Moreover, (1)-(4) hold and d2

dx2 is its generator and maximal subgenerator when K0 is a
kernel on [0,T0). In this case, d2

dx2 = A0 for each subgenerator A0 of C(·).
Example 2. Let k be a fixed nonnegative integer and K0 a kernel on [0,∞), and let C(t) for t ≥ 0 and C be
bounded linear operators on c0 (the family of all convergent sequences in F with limit 0) defined by C(t)x =

{xn(n − k)e−n
∫ t

0 K(t − s) cosh nsds}∞n=1 and Cx = {xn(n − k)e−n
}
∞

n=1 for all x = {xn}
∞

n=1 ∈ c0, then {C(t)|0 ≤ t < 1}
is a local K-convoluted C-cosine function on c0 which is degenerate except for k = 0 and generator A defined by
Ax = {n2xn}

∞

n=1 for all x = {xn}
∞

n=1 ∈ c0 with {n2xn}
∞

n=1 ∈ c0, and for each r > 1 {C(t)|0 ≤ t < r} is not a local
K-convoluted C-cosine function on c0. Suppose that k ∈N. Then Aa : c0 → c0 for a ∈ F defined by Aax = {n2yn}

∞

n=1
for all x = {xn}

∞

n=1 ∈ c0 with {n2xn}
∞

n=1 ∈ c0, are subgenerators of {C(t)|0 ≤ t < 1} which do not have proper extensions
that are still subgenerators of {C(t)|0 ≤ t < 1}. Here yn = ak2xk if n = k, and yn = n2xn otherwise. Consequently,
{C(t)|0 ≤ t < 1} does not have a maximal subgenerator when k ∈N.

Example 3. Let X = Cb(R)(or L∞(R)), and A be the maximal differential operator in X defined by Au =
k∑

j=0
a jD ju on

R for all u ∈ D(A), then UCb(R) (or C0(R)) = D(A). Here a0, a1, · · · , ak ∈ C and D ju(x) = u( j)(x) for all x ∈ R. It is
shown in [2, Theorem 6.7] that {C(t)|0 ≤ t < T0} defined by (C(t) f )(x) = 1

√
2π

∫ t

0

∫
∞

−∞
K(t − s)φ̃s(x − y) f (y)dyds for

all f ∈ X and 0 ≤ t < T0, is a norm continuous local K0-convoluted cosine function on X with closed subgenerator A

if the real-valued polynomial p(x) =
k∑

j=0
a j(ix) j satisfies sup

x∈R
p(x) < ∞, and K ∈ L1

loc([0,T0),F) is not the zero function

on [0,T0). Here φ̃t denotes the inverse Fourier transform of φt with φt(x) =
∫ t

0 cosh(
√

p(x)s)ds for all t ≥ 0. Suppose
that K0 is a kernel on [0,T0). Then A is its generator and maximal subgenerator. Applying Theorem 3.4, we get that
for each f ∈ X and continuous function 1 on [0,T0) ×R with

∫ t

0 sup
x∈R
|1(s, x)|ds < ∞ for all 0 ≤ t < T0, the function

u on [0,T0) × R defined by u(t, x) = 1
√

2π

∫ t

0

∫
∞

−∞
K1(t − s)φ̃s(x − y) f (y)dyds + 1

√
2π

∫ t

0

∫ t−r

0

∫
∞

−∞
K1(t − r − s)φ̃s(x −
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y)1(r, y)dydsdr for all 0 ≤ t < T0 and x ∈ R, is the unique solution of

∂2u(t, x)
∂t2

=

k∑
j=0

a j(
∂
∂x

) ju(t, x) + K1(t) f (x) +

∫ t

0
K1(t − s)1(s, x)ds for t ∈ (0,T0) and a.e. x ∈ R,

u(0, x) = 0 and
∂u
∂t

(0, x) = 0 for a.e. x ∈ R

in C2([0,T0),X) ∩ C([0,T0), [D(A)]).
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