Filomat 30:9 (2016), 2583–2598 DOI 10.2298/FIL1609583K

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Local K-Convoluted C-Cosine Functions and Abstract Cauchy Problems

Chung-Cheng Kuo^a

^aDepartment of Mathematics, Fu Jen University, New Taipei City, Taiwan 24205

Abstract. Let $K : [0, T_0) \to \mathbb{F}$ be a locally integrable function, and $C : X \to X$ a bounded linear operator on a Banach space X over the field $\mathbb{F}(=\mathbb{R} \text{ or } \mathbb{C})$. In this paper, we will deduce some basic properties of a nondegenerate local K-convoluted C-cosine function on X and some generation theorems of local Kconvoluted C-cosine functions on X with or without the nondegeneracy, which can be applied to obtain some equivalence relations between the generation of a nondegenerate local K-convoluted C-cosine function on X with subgenerator A and the unique existence of solutions of the abstract Cauchy problem: u''(t) =Au(t) + f(t) for a.e. $t \in (0, T_0)$, u(0) = x, u'(0) = y when K is a kernel on $[0, T_0)$, $C : X \to X$ an injection, and $A : D(A) \subset X \to X$ a closed linear operator in X such that $CA \subset AC$. Here $0 < T_0 \le \infty$, $x, y \in X$, and $f \in L_{loc}^1([0, T_0), X)$.

1. Introduction

Let *X* be a Banach space over the field $\mathbb{F}(=\mathbb{R} \text{ or } \mathbb{C})$ with norm $\|\cdot\|$, and let L(X) denote the family of all bounded linear operators from *X* into itself. For each $0 < T_0 \leq \infty$, we consider the following abstract Cauchy problem:

$$ACP(A, f, x, y) \qquad \begin{cases} u''(t) = Au(t) + f(t) & \text{ for a.e. } t \in (0, T_0), \\ u(0) = x, u'(0) = y, \end{cases}$$

where $x, y \in X, A : D(A) \subset X \to X$ is a closed linear operator, and $f \in L^1_{loc}([0, T_0), X)$. A function u is called a (strong) solution of ACP(A, f, x, y) if $u \in C^1([0, T_0), X$) satisfies ACP(A, f, x, y) (that is u(0) = x, u'(0) = y and for a.e. $t \in (0, T_0), u'(t)$ is differentiable and $u(t) \in D(A)$, and u''(t) = Au(t) + f(t) for a.e. $t \in (0, T_0)$). For each $C \in L(X)$ and $K \in L^1_{loc}([0, T_0), \mathbb{F})$, a subfamily $C(\cdot)(= \{C(t) \mid 0 \le t < T_0\})$ of L(X) is called a local K-convoluted C-cosine function on X if $C(\cdot)$ is strongly continuous, $C(\cdot)C = CC(\cdot)$, and satisfies

$$2C(t)C(s)x = \left(\int_0^{t+s} -\int_0^t -\int_0^s\right) K(t+s-r)C(r)Cxdr + \int_{|t-s|}^t K(s-t+r)C(r)Cxdr + \int_{|t-s|}^s K(t-s+r)C(r)Cxdr + \int_0^{|t-s|} K(|t-s|+r)C(r)Cxdr\right)$$

²⁰¹⁰ Mathematics Subject Classification. 2010 Mathematics Subject Classification: 47D60, 47D62

Keywords. Local *K*-convoluted *C*-cosine function, subgenerator, generator, abstract Cauchy problem Received: 11 March 2014; Accepted: 02 May 2015

Communicated by Dragan S. Djordjević

This research was partially supported by the National Science Council of Taiwan

Email address: cckuo@math.fju.edu.tw (Chung-Cheng Kuo)

for all $0 \le t, s, t + s < T_0$ and $x \in X$ (see [8]). In particular, $C(\cdot)$ is called a local (0-times integrated) *C*-cosine function on *X* if $K = j_{-1}$ (the Dirac measure at 0) or equivalently, it is strongly continuous, $C(\cdot)C = CC(\cdot)$, and satisfies

$$2C(t)C(s)x = C(t+s)Cx + C(|t-s|)Cx$$
 for all $0 \le t, s, t+s < T_0$ and $x \in X$

(see [4,6,19,21]). Moreover, we say that $C(\cdot)$ is nondegenerate, if x = 0 whenever C(t)x = 0 for all $0 \le t < T_0$. The nondegeneracy of a local *K*-convoluted *C*-cosine function $C(\cdot)$ on *X* implies that

C(0) = C if $K = j_{-1}$, and C(0) = 0 (the zero operator on X) otherwise,

and the (integral) generator $A : D(A) \subset X \to X$ of $C(\cdot)$ is a closed linear operator in X defined by

 $D(A) = \{x \in X \mid \text{ there exists a } y_x \in X \text{ such that } C(\cdot)x - K_0(\cdot)Cx = \widetilde{S}(\cdot)y_x \text{ on } [0, T_0)\}$

and $Ax = y_x$ for all $x \in D(A)$. Here $K_{\beta}(t) = K * j_{\beta}(t) = \int_0^t K(t-s)j_{\beta}(s)ds$ for $\beta > -1$ with $j_{\beta}(t) = \frac{t^{\beta}}{\Gamma(\beta+1)}$ and the Gamma function $\Gamma(\cdot)$, $S(s)z = \int_0^s C(r)zdr$, and $\widetilde{S}(t)z = \int_0^t S(s)zds$. In general, a local *K*-convoluted *C*-cosine function on *X* is called a *K*-convoluted *C*-cosine function on *X* if $T_0 = \infty$; a (local) *K*-convoluted *C*-cosine function on X is called a (local) K-convoluted cosine function on X if C = I (the identity operator on X) or a (local) α -times integrated C-cosine function on X if $K = i_{\alpha-1}$ for some $\alpha \ge 0$ (see [12-14,16]); a (local) α -times integrated C-cosine function on X is called a (local) α -times integrated cosine function on X if C = I (see [15]); and a (local) C-cosine function on X is called a cosine function on X if C = I (see [1,5]). Moreover, a local α -times integrated cosine function on X is not necessarily extendable to an α -times integrated cosine function on X except for $\alpha = 0$ (see [5]), the nondegeneracy of a local α -times integrated C-cosine function on *X* does not imply the injectivity of *C* except for $T_0 = \infty$ (see [12]), and the injectivity of *C* does not imply the nondegeneracy of a local α -times integrated C-cosine function on X except for $\alpha = 0$ (see [19]). Some basic properites of a nondegenerate (local) α -times integrated C-cosine function on X have been established by many authors in [11,22] when $\alpha = 0$, in [7,17-18,23-24] when $\alpha \in \mathbb{N}$, in [12] when $\alpha > 0$ is arbitrary with $T_0 = \infty$ and in [16] for the general case $0 < T_0 \le \infty$, which can be applied to deduce some equivalence relations between the generation of a nondegenerate (local) α -times integrated C-cosine function on X with subgenerator A (see Definition 2.4 below) and the unique existence of strong or weak solutions of the abstract Cauchy problem ACP(A, f, x, y) (see the results in [7,12] for the case $T_0 = \infty$ and in [13-14,16] for the general case $0 < T_0 \le \infty$). The purpose of this paper is to investigate the following basic properties of a nondegenerate local K-convoluted C-cosine function $C(\cdot)$ on X when C is injective and some additional conditions are taken into consideration.

$$C^{-1}AC = A; \tag{1}$$

$$\widetilde{S}(t)x \in D(A)$$
 and $A\widetilde{S}(t)x = C(t)x - K_0(t)Cx$ for all $x \in X$ and $0 \le t < T_0$; (2)

$$C(t)x \in D(A) \quad \text{and} \ AC(t)x = C(t)Ax \quad \text{for all } x \in D(A) \quad \text{and} \ 0 \le t < T_0; \tag{3}$$

and

$$C(t)C(s) = C(s)C(t) \quad \text{for all } 0 \le t, s, t+s < T_0 \tag{4}$$

(see Theorems 2.7 and 2.11, and Corollary 2.12 below). We then deduce some equivalence relations between the generation of a nondegenerate local *K*-convoluted *C*-cosine function on *X* with subgenerator *A* and the unique existence of strong solutions of ACP(A, f, x, y) in section 3 just as results in [16] concerning some equivalence relations between the generation of a nondegenerate local α -times *C*-cosine function on *X* with subgenerator on *X* with subgenerator *A* and the unique existence of strong solutions of ACP(A, f, x, y) in section 3 just as results in [16] concerning some equivalence relations between the generation of a nondegenerate local α -times *C*-cosine function on *X* with subgenerator *A* and the unique existence of strong solutions of ACP(A, f, x, y). To do these, we will prove an

important lemma which shows that a strongly continuous subfamily $C(\cdot)$ of L(X) is a local K-convoluted Ccosine function on X is equivalent to say that $S(\cdot)$ is a local K_1 -convoluted C-cosine function on X (see Lemma 2.1 below), and then show that a strongly continuous subfamily $C(\cdot)$ of L(X) which commutes with C on X is a local K-convoluted C-cosine function on X is equivalent to say that $S(t)[C(s) - K_0(s)C] = [C(t) - K_0(t)C]S(s)$ for all $0 \le t, s, t + s < T_0$ (see Theorem 2.2 below). In order, we show that $a * C(\cdot)$ is a local a * K-convoluted *C*-cosine function on *X* if $C(\cdot)$ is a local *K*-convoluted *C*-cosine function on *X* and $a \in L^1_{loc}([0, T_0), \mathbb{F})$. In particular, $j_{\beta} * C(\cdot)$ is a local K_{β} -convoluted C-cosine function on X if $C(\cdot)$ is a local K-convoluted C-cosine function on X and $\beta > -1$ (see Proposition 2.3 below), where $f * C(t)x = \int_0^t f(t-s)C(s)xds$ for all $x \in X$ and $f \in L^1_{loc}([0, T_0), \mathbb{F})$. We also show that a strongly continuous subfamily $C(\cdot)$ of L(X) which commutes with C on X is a local K-convoluted C-cosine function on X when $C(\cdot)$ has a subgenerator (see Theorem 2.5 below), which had been proven in [8] by another method similar to that already employed in [12] in the case that $C(\cdot)$ has a closed subgenerator and C is injective; and the generator of a nondegenerate local K-convoluted C-cosine function $C(\cdot)$ on X is the unique subgenerator of $C(\cdot)$ which contains all subgenerators of $C(\cdot)$ and each subgenerator of $C(\cdot)$ is closable and its closure is also a subgenerator of $C(\cdot)$ when $C(\cdot)$ has a subgenerator (see Theorems 2.7 and 2.11, and Corollary 2.12 below). This can be applied to show that $CA \subset AC$ and $C(\cdot)$ is a nondegenerate local K-convoluted C-cosine function on X with generator $C^{-1}AC$ when C is injective, K_0 a kernel on $[0, T_0)$ (that is, f = 0 on $[0, T_0)$ whenever $f \in C([0, T_0), \mathbb{F})$ with $\int_0^t K_0(t-s)f(s)ds = 0$ for all $0 \le t < T_0$ and $C(\cdot)$ a strongly continuous subfamily of L(X) with closed subgenerator A. In this case, $C^{-1}\overline{A_0}C$ is the generator of $C(\cdot)$ for each subgenerator A_0 of $C(\cdot)$ (see Theorem 2.13 below). Some illustrative examples concerning these theorems are also presented in the final part of paper.

2. Basic Properties of Local K-Convoluted C-Cosine Functions

We will deduce an important lemma which can be applied to obtain an equivalence relation between the generation of a local *K*-convoluted *C*-cosine function $C(\cdot)$ on *X* and the equation

$$S(t)[C(s) - K_0(s)C] = [C(t) - K_0(t)C]S(s) \quad \text{for all } 0 \le t, s, t + s < T_0,$$
(5)

(see a result in [16] for the case of local α -times integrated *C*-cosine function and a corresponding statement in [9] for the case of (a, k)-regularized (C_1, C_2) -existence and uniqueness family). **Lemma 2.1** Let $C(\cdot)$ be a strongly continuous subfamily of L(X). Then $C(\cdot)$ is a local *K*-convoluted *C*-cosine function on *X* if and only if $\widetilde{S}(\cdot)$ is a local K_1 -convoluted *C*-cosine function on *X*.

Proof. We will show that

$$\frac{d}{dt} \left[\left(\int_{0}^{t+s} - \int_{0}^{t} - \int_{0}^{s} \right) K_{1}(t+s-r)\widetilde{S}(r)Cxdr + \int_{|t-s|}^{t} K_{1}(s-t+r)\widetilde{S}(r)Cxdr + \int_{|t-s|}^{s} K_{1}(t-s+r)\widetilde{S}(r)Cxdr + \int_{0}^{|t-s|} K_{1}(|t-s|+r)\widetilde{S}(r)Cxdr \right] \\
= \left(\int_{0}^{t+s} - \int_{0}^{t} - \int_{0}^{s} \right) K_{0}(t+s-r)\widetilde{S}(r)Cxdr + sgn(s-t) \int_{|t-s|}^{t} K_{0}(s-t+r)\widetilde{S}(r)Cxdr + sgn(t-s) \int_{|t-s|}^{s} K_{0}(t-s+r)\widetilde{S}(r)Cxdr + \int_{0}^{|t-s|} K_{0}(|t-s|+r)\widetilde{S}(r)Cxdr + sgn(t-s) \int_{|t-s|}^{s} K_{0}(t-s+r)\widetilde{S}(r)Cxdr + \int_{0}^{|t-s|} K_{0}(|t-s|+r)\widetilde{S}(r)Cxdr + sgn(t-s) \int_{|t-s|}^{s} K_{0}(t-s+r)\widetilde{S}(r)Cxdr + \int_{0}^{|t-s|} K_{0}(|t-s|+r)\widetilde{S}(r)Cxdr + Sgn(t-s+r)\widetilde{S}(r)Cxdr + \int_{0}^{|t-s|} K_{0}(|t-s|+r)\widetilde{S}(r)Cxdr + Sgn(t-s+r)\widetilde{S}(r)Cxdr + Sgn(t-s+r)\widetilde{$$

and

$$\begin{aligned} \frac{d^2}{dt^2} \left[\left(\int_0^{t+s} - \int_0^t - \int_0^s \right) K_1(t+s-r) \widetilde{S}(r) Cx dr + \int_{|t-s|}^t K_1(s-t+r) \widetilde{S}(r) Cx dr + \int_{|t-s|}^s K_1(t-s+r) \widetilde{S}(r) Cx dr \\ + \int_0^{|t-s|} K_1(|t-s|+r) \widetilde{S}(r) Cx dr \right] + 2K_0(s) \widetilde{S}(t) Cx \end{aligned}$$

C. C. Kuo / Filomat 30:9 (2016), 2583-2598

$$= \left(\int_{0}^{t+s} - \int_{0}^{t} - \int_{0}^{s}\right) K(t+s-r)\widetilde{S}(r)Cxdr + \int_{|t-s|}^{t} K(s-t+r)\widetilde{S}(r)Cxdr + \int_{|t-s|}^{s} K(t-s+r)\widetilde{S}(r)Cxdr + \int_{0}^{|t-s|} K(|t-s|+r)\widetilde{S}(r)Cxdr + \int_{0}^{t} K(|t-s|+r)\widetilde{S}(r)Cxdr +$$

for all $x \in X$ and $0 \le t, s, t + s < T_0$, where sgn(t) = 1 if 0 < t, sgn(0) = 0, and sgn(t) = -1 if t < 0. Indeed, for $0 \le s \le t < T_0$ with $t + s < T_0$, we have

$$\begin{aligned} &\frac{d}{dt} \left[\left(\int_{0}^{t+s} - \int_{0}^{t} - \int_{0}^{s} \right) K_{1}(t+s-r)\widetilde{S}(r)Cxdr + \int_{t-s}^{t} K_{1}(s-t+r)\widetilde{S}(r)Cxdr + \int_{0}^{s} K_{1}(t-s+r)\widetilde{S}(r)Cxdr \right] \\ &= \left[\left(\int_{0}^{t+s} - \int_{0}^{t} - \int_{0}^{s} \right) K_{0}(t+s-r)\widetilde{S}(r)Cxdr - K_{1}(s)\widetilde{S}(t)Cx \right] + \left[K_{1}(s)\widetilde{S}(t)Cx - \int_{t-s}^{t} K_{0}(s-t+r)\widetilde{S}(r)Cxdr \right] \\ &+ \int_{0}^{s} K_{0}(t-s+r)\widetilde{S}(r)Cxdr \\ &= \left(\int_{0}^{t+s} - \int_{0}^{t} - \int_{0}^{s} \right) K_{0}(t+s-r)\widetilde{S}(r)Cxdr + sgn(t-s) \int_{|t-s|}^{s} K_{0}(t-s+r)\widetilde{S}(r)Cxdr \\ &+ sgn(s-t) \int_{|t-s|}^{t} K_{0}(s-t+r)\widetilde{S}(r)Cxdr + sgn(t-s) \int_{|t-s|}^{s} K_{0}(t-s+r)\widetilde{S}(r)Cxdr \\ &+ \int_{0}^{|t-s|} K_{0}(|t-s|+r)\widetilde{S}(r)Cxdr \end{aligned}$$

and

$$\begin{aligned} &\frac{d}{dt} \left[\left(\int_{0}^{t+s} - \int_{0}^{t} - \int_{0}^{s} \right) K_{0}(t+s-r) \widetilde{S}(r) Cx dr - \int_{t-s}^{t} K_{0}(s-t+r) \widetilde{S}(r) Cx dr + \int_{0}^{s} K_{0}(t-s+r) \widetilde{S}(r) Cx dr \right. \\ &+ 2K_{0}(s) \widetilde{S}(t) Cx \\ &= \left(\int_{0}^{t+s} - \int_{0}^{t} - \int_{0}^{s} \right) K(t+s-r) \widetilde{S}(r) Cx dr - 2K_{0}(s) \widetilde{S}(t) Cx + \int_{t-s}^{t} K(s-t+r) \widetilde{S}(r) Cx dr \\ &+ \int_{0}^{s} K(t-s+r) \widetilde{S}(r) Cx dr + 2K_{0}(s) \widetilde{S}(t) Cx \\ &= \left(\int_{0}^{t+s} - \int_{0}^{t} - \int_{0}^{s} \right) K(t+s-r) \widetilde{S}(r) Cx dr + \int_{t-s}^{t} K(s-t+r) \widetilde{S}(r) Cx dr + \int_{0}^{s} K(t-s+r) \widetilde{S}(r) Cx dr \\ &= \left(\int_{0}^{t+s} - \int_{0}^{t} - \int_{0}^{s} \right) K(t+s-r) \widetilde{S}(r) Cx dr + \int_{t-s}^{t} K(s-t+r) \widetilde{S}(r) Cx dr + \int_{0}^{s} K(t-s+r) \widetilde{S}(r) Cx dr \\ &= \left(\int_{0}^{t+s} - \int_{0}^{t} - \int_{0}^{s} \right) K(t+s-r) \widetilde{S}(r) Cx dr + \int_{|t-s|}^{t} K(s-t+r) \widetilde{S}(r) Cx dr \\ &+ \int_{|t-s|}^{s} K(t-s+r) \widetilde{S}(r) Cx dr + \int_{0}^{|t-s|} K(|t-s|+r) \widetilde{S}(r) Cx dr. \end{aligned}$$

That is, (6) and (7) both hold for all $0 \le s \le t < T_0$ with $t + s < T_0$. Similarly, we can show that (6) and (7) both also hold when $0 \le t \le s < T_0$ with $t + s < T_0$. Clearly, the right-hand side of (7) is symmetric in t, s with $0 \le t, s, t + s < T_0$. It follows that

$$\frac{d^2}{ds^2} \left[\left(\int_0^{t+s} - \int_0^t - \int_0^s \right) K_1(t+s-r)\widetilde{S}(r)Cxdr + \int_{|t-s|}^t K_1(s-t+r)\widetilde{S}(r)Cxdr + \int_{|t-s|}^s K_1(t-s+r)\widetilde{S}(r)Cxdr + \int_0^{|t-s|} K_1(|t-s|+r)\widetilde{S}(r)Cxdr \right] + 2K_0(t)\widetilde{S}(s)Cx$$

$$= \left(\int_{0}^{t+s} - \int_{0}^{t} - \int_{0}^{s}\right) K(t+s-r)\widetilde{S}(r)Cxdr + \int_{|t-s|}^{t} K(s-t+r)\widetilde{S}(r)Cxdr + \int_{|t-s|}^{s} K(t-s+r)\widetilde{S}(r)Cxdr + \int_{0}^{|t-s|} K(|t-s|+r)\widetilde{S}(r)Cxdr$$

$$\tag{8}$$

for all $x \in X$ and $0 \le t, s, t + s < T_0$. Using integration by parts twice, we obtain

$$\left(\int_{0}^{t+s} - \int_{0}^{t} - \int_{0}^{s} \right) K(t+s-r)\widetilde{S}(r)Cxdr + \int_{|t-s|}^{t} K(s-t+r)\widetilde{S}(r)Cxdr + \int_{|t-s|}^{s} K(t-s+r)\widetilde{S}(r)Cxdr + \int_{0}^{|t-s|} K(|t-s|+r)\widetilde{S}(r)Cxdr = \left(\int_{0}^{t+s} - \int_{0}^{t} - \int_{0}^{s} \right) K_{1}(t+s-r)C(r)Cxdr + \int_{|t-s|}^{t} K_{1}(s-t+r)C(r)Cxdr + \int_{|t-s|}^{s} K_{1}(t-s+r)C(r)Cxdr + \int_{0}^{|t-s|} K_{1}(|t-s|+r)C(r)Cxdr + 2K_{0}(t)\widetilde{S}(s)Cx + 2K_{0}(s)\widetilde{S}(t)Cx$$
(9)

for all $x \in X$ and $0 \le t, s, t + s < T_0$. Suppose that $\widetilde{S}(\cdot)$ is a local K_1 -convoluted C-cosine function on X. Then we have by (8)-(9) that

$$\begin{split} & 2\widetilde{S}(t)C(s)x = 2\frac{d^2}{ds^2}\widetilde{S}(t)\widetilde{S}(s)x \\ = & (\int_0^{t+s} -\int_0^t -\int_0^s)K_1(t+s-r)C(r)Cxdr \\ & +\int_{|t-s|}^t K_1(s-t+r)C(r)Cxdr + \int_{|t-s|}^s K_1(t-s+r)C(r)Cxdr \\ & +\int_0^{|t-s|} K_1(|t-s|+r)C(r)Cxdr + 2K_0(s)\widetilde{S}(t)Cx \end{split}$$

for all $x \in X$ and $0 \le t, s, t + s < T_0$, so that

$$2C(t)C(s)x = 2\frac{d^2}{dt^2}\widetilde{S}(t)C(s)x$$

= $\left(\int_0^{t+s} -\int_0^t -\int_0^s\right)K(t+s-r)C(r)Cxdr + \int_{|t-s|}^t K(s-t+r)C(r)Cxdr$
+ $\int_{|t-s|}^s K(t-s+r)C(r)Cxdr + \int_0^{|t-s|} K(|t-s|+r)C(r)Cxdr$ (10)

for all $x \in X$ and $0 \le t, s, t + s < T_0$. Hence, $C(\cdot)$ is a local *K*-convoluted *C*-cosine function on *X*. Conversely, let $C(\cdot)$ be a local *K*-convoluted *C*-cosine function on *X*. We will apply Fubini's theorem for double integrals twice to obtain

$$2C(t)\widetilde{S}(s)x = \left[\left(\int_{0}^{t+s} - \int_{0}^{t} - \int_{0}^{s} \right) K_{1}(t+s-r)C(r)Cxdr + \int_{|t-s|}^{t} K_{1}(s-t+r)C(r)Cxdr + \int_{|t-s|}^{s} K_{1}(t-s+r)C(r)Cxdr + \int_{0}^{|t-s|} K_{1}(|t-s|+r)C(r)Cxdr \right] + 2K_{0}(t)\widetilde{S}(s)Cx$$

$$(11)$$

for all $x \in X$ and $0 \le t, s, t + s < T_0$. Let $x \in X$ be given, then for $0 \le t, s, t + s < T_0$ with $t \ge s$, we have

$$\int_{0}^{\tau} \int_{t}^{t+\lambda} K(t+\lambda-r)C(r)Cxdrd\lambda$$

$$= \int_{t}^{t+\tau} \int_{r-t}^{\tau} K(t+\lambda-r)C(r)Cxd\lambda dr$$

$$= \int_{t}^{t+\tau} K_{0}(t+\tau-r)C(r)Cxdr,$$
(12)

$$\int_{0}^{\tau} \int_{0}^{\lambda} K(t + \lambda - r)C(r)Cxdrd\lambda$$

$$= \int_{0}^{\tau} \int_{r}^{\tau} K(t + \lambda - r)C(r)Cxd\lambda dr$$

$$= \int_{0}^{\tau} K_{0}(t + \tau - r)C(r)Cxdr - K_{0}(t)S(\tau)Cx,$$
(13)

$$\int_{0}^{\tau} \int_{t-\lambda}^{t} K(\lambda - t + r)C(r)Cxdrd\lambda$$

$$= \int_{t-\tau}^{t} \int_{t-r}^{\tau} K(\lambda - t + r)C(r)Cxd\lambda dr$$

$$= \int_{t-\tau}^{t} K_{0}(\tau - t + r)C(r)Cxdr,$$
(14)

and

$$\int_{0}^{\tau} \int_{0}^{\lambda} K(t - \lambda + r)C(r)Cxdrd\lambda$$

=
$$\int_{0}^{\tau} \int_{r}^{\tau} K(t - \lambda + r)C(r)Cxd\lambda dr$$
(15)
=
$$K_{0}(t)S(\tau)Cx - \int_{0}^{\tau} K_{0}(t - \tau + r)C(r)Cxdr$$

for all $0 \le \tau \le s$. Observe that (12)-(15) also imply

$$\int_{0}^{s} \int_{t}^{t+\tau} K_{0}(t+\tau-r)C(r)Cxdrd\tau = \int_{t}^{t+s} K_{1}(t+s-r)C(r)Cxdr,$$
(16)

$$\int_{0}^{s} \left[\int_{0}^{\tau} K_{0}(t+\tau-r)C(r)Cxdr - K_{0}(t)S(\tau)Cx \right] d\tau$$

$$= \left[\int_{0}^{s} K_{1}(t+s-r)C(r)Cxdr - K_{1}(t)S(s)Cx \right] - K_{0}(t)\widetilde{S}(s)Cx,$$
(17)

$$\int_{0}^{s} \int_{t-\tau}^{t} K_{0}(\tau - t + r)C(r)Cxdrd\tau = \int_{t-s}^{t} K_{1}(s - t + r)C(r)Cxdr,$$
(18)

and

$$\int_{0}^{s} [K_{0}(t)S(\tau)Cx - \int_{0}^{\tau} K_{0}(t - \tau + r)C(r)Cxdr]d\tau$$

$$= K_{0}(t)\widetilde{S}(s)Cx + [\int_{0}^{s} K_{1}(t - s + r)C(r)Cxdr - K_{1}(t)S(s)Cx].$$
(19)

Combining (16)-(17), we obtain (11) for all $0 \le t, s, t + s < T_0$ with $t \ge s$. Similarly, we can show that (11) also holds when $0 \le t, s, t + s < T_0$ with $s \ge t$. By (7), (9) and (11), we have

$$2C(t)S(s)x$$

$$=\frac{d^2}{dt^2}\left[\left(\int_0^{t+s} -\int_0^t -\int_0^s\right)K_1(t+s-r)\widetilde{S}(r)Cxdr$$

$$+\int_{|t-s|}^t K_1(s-t+r)\widetilde{S}(r)Cxdr + \int_{|t-s|}^s K_1(t-s+r)\widetilde{S}(r)Cxdr$$

$$+\int_0^{|t-s|} K_1(|t-s|+r)\widetilde{S}(r)Cxdr\right]$$

for all $x \in X$ and $0 \le t, s, t + s < T_0$. Combining this and (6) with t = 0, we conclude that $\widetilde{S}(\cdot)$ is a local K_1 -convoluted *C*-cosine function on *X*.

Theorem 2.2 Let $C(\cdot)$ be a strongly continuous subfamily of L(X) which commutes with C on X. Then $C(\cdot)$ is a local K-convoluted C-cosine function on X if and only if $\widetilde{S}(t)[C(s) - K_0(s)C] = [C(t) - K_0(t)C]\widetilde{S}(s)$ for all $0 \le t, s, t + s < T_0$.

Proof. Let $C(\cdot)$ be a local *K*-convoluted *C*-cosine function on *X*. By (7) and (8), we have $2C(t)\widetilde{S}(s)x + 2K_0(s)\widetilde{S}(t)Cx = 2\widetilde{S}(t)C(s)x + 2K_0(t)\widetilde{S}(s)Cx$ for all $x \in X$ and $0 \le t, s, t + s < T_0$ or equivalently, $\widetilde{S}(t)[C(s) - K_0(s)C] = [C(t) - K_0(t)C]\widetilde{S}(s)$ for all $0 \le t, s, t + s < T_0$. Conversely, suppose that (5) holds for all $0 \le t, s, t + s < T_0$. Then $\widetilde{S}(t)C(s)x - C(t)\widetilde{S}(s)x = K_0(s)\widetilde{S}(t)Cx - K_0(t)\widetilde{S}(s)Cx$ for all $x \in X$ and $0 \le t, s, t + s < T_0$. Fix $x \in X$ and $0 \le t, s, t + s < T_0$. Fix $x \in X$ and $0 \le t, s, t + s < T_0$. With $t \ge s$. Then we have

$$\widetilde{S}(t+s-r)C(r)x - C(t+s-r)\widetilde{S}(r)x$$

$$=K_0(r)\widetilde{S}(t+s-r)Cx - K_0(t+s-r)\widetilde{S}(r)Cx$$
(20)

for all $0 \le r \le t$, and

$$\widetilde{S}(s-t+r)C(r)x - C(s-t+r)\widetilde{S}(r)x$$

$$=K_0(r)\widetilde{S}(s-t+r)Cx - K_0(s-t+r)\widetilde{S}(r)Cx$$
(21)

for all $t - s \le r \le t$. Using integration by parts to left-hand sides of the integrations of (20)-(21) and change of variables to right-hand sides of the integrations of (20)-(21), we obtain

$$\widetilde{S}(s)S(t)x + S(s)\widetilde{S}(t)x = \left(\int_0^{t+s} - \int_0^t - \int_0^s \right) K_0(t+s-r)\widetilde{S}(r)Cxdr$$

and

$$\widetilde{S}(s)S(t)x - S(s)\widetilde{S}(t)x = \int_0^s K_0(t-s+r)\widetilde{S}(r)Cxdr - \int_{t-s}^t K_0(s-t+r)\widetilde{S}(r)Cxdr,$$

so that

$$2\widetilde{S}(s)S(t)x = \left(\int_0^{t+s} -\int_0^t -\int_0^s\right) K_0(t+s-r)\widetilde{S}(r)Cxdr -\int_{t-s}^t K_0(s-t+r)\widetilde{S}(r)Cxdr + \int_0^s K_0(t-s+r)\widetilde{S}(r)Cxdr.$$

Hence,

$$\begin{split} 2\widetilde{S}(s)C(t)x = & \left(\int_0^{t+s} - \int_0^t - \int_0^s\right) K(t+s-r)\widetilde{S}(r)Cxdr + \int_{t-s}^t K(s-t+r)\widetilde{S}(r)Cxdr \\ & + \int_0^s K(t-s+r)\widetilde{S}(r)Cxdr - 2K_0(s)\widetilde{S}(t)Cx, \end{split}$$

which implies that

$$2\widetilde{S}(s)C(t)x + 2K_0(s)\widetilde{S}(t)Cx = \left(\int_0^{t+s} -\int_0^t -\int_0^s\right)K(t+s-r)\widetilde{S}(r)Cxdr + \int_{|t-s|}^t K(s-t+r)\widetilde{S}(r)Cxdr + \int_{|t-s|}^s K(t-s+r)\widetilde{S}(r)Cxdr + \int_0^{|t-s|}K(|t-s|+r)\widetilde{S}(r)Cxdr.$$

$$(22)$$

Similarly, we can show that (22) also holds when $x \in X$ and $0 \le t, s, t + s < T_0$ with $s \ge t$. Combining this with (7), we have

$$\begin{split} 2\widetilde{S}(s)C(t)x = & \frac{d^2}{dt^2} \left[\left(\int_0^{t+s} - \int_0^t - \int_0^s \right) K_1(t+s-r)\widetilde{S}(r)Cxdr + \int_{|t-s|}^t K_1(s-t+r)\widetilde{S}(r)Cxdr \\ & + \int_{|t-s|}^s K_1(t-s+r)\widetilde{S}(r)Cxdr + \int_0^{|t-s|} K_1(|t-s|+r)\widetilde{S}(r)Cxdr \right]. \end{split}$$

for all $x \in X$ and $0 \le t, s, t + s < T_0$. Consequently, $\widetilde{S}(\cdot)$ is a local K_1 -convoluted *C*-cosine function on *X*. Combining this with Lemma 2.1, we get that $C(\cdot)$ is a local *K*-convoluted *C*-cosine function on *X*.

By slightly modifying the proof of [16, Proposition 2.3], the next result concerning local *K*-convoluted *C*-cosine functions on X is also attained.

Proposition 2.3 Let $C(\cdot)$ be a local K-convoluted C-cosine function on X and $a \in L^1_{loc}([0, T_0), \mathbb{F})$. Then $a * C(\cdot)$ is a local a * K-convoluted C-cosine function on X. In particular, for each $\beta > -1$ $j_{\beta} * C(\cdot)$ is a local K_{β} -convoluted C-cosine function on X. Moreover, $C(\cdot)$ is a local K-convoluted C-cosine function on X if it is a strongly continuous subfamily of L(X) such that $S(\cdot)$ is a local K₀-convoluted C-cosine function on X.

Definition 2.4 *Let* $C(\cdot)$ *be a strongly continuous subfamily of* L(X)*. A linear operator* A *in* X *is called a subgenerator of* $C(\cdot)$ *if*

$$C(t)x - K_0(t)Cx = \int_0^t \int_0^s C(r)Axdrds$$
(23)

for all $x \in D(A)$ and $0 \le t < T_0$, and

$$\int_0^t \int_0^s C(r)x dr ds \in D(A) \quad and \ A \int_0^t \int_0^s C(r)x dr ds = C(t)x - K_0(t)Cx$$
(24)

for all $x \in X$ and $0 \le t < T_0$. A subgenerator A of $C(\cdot)$ is called the maximal subgenerator of $C(\cdot)$ if it is an extension of each subgenerator of $C(\cdot)$ to D(A).

Applying Theorem 2.2, we can obtain the next result concerning the generation of a local *K*-convoluted *C*-cosine function $C(\cdot)$ on *X*, which had been proven in [8] by another method similar to that already employed in [12] in the case that $C(\cdot)$ has a closed subgenerator and *C* is injective.

Theorem 2.5 Let $C(\cdot)$ be a strongly continuous subfamily of L(X) which commutes with C on X. Assume that $C(\cdot)$ has a subgenerator. Then $C(\cdot)$ is a local K-convoluted C-cosine function on X. Moreover, $C(\cdot)$ is nondegenerate if the injectivity of C is added and K_0 is a non-zero function on $[0, T_0)$.

Proof. Let *A* be a subgenerator of $C(\cdot)$. By (24), we have

$$[C(t) - K_0(t)C]\widetilde{S}(\cdot)x = \widetilde{S}(t)A\widetilde{S}(\cdot)x = \widetilde{S}(t)[C(\cdot) - K_0(\cdot)C]x$$

on $[0, T_0 - t)$ for all $x \in X$ and $0 \le t < T_0$. Applying Theorem 2.2, we get that $C(\cdot)$ is a local *K*-convoluted *C*-cosine function on *X*. Suppose that *C* is injective, K_0 is a non-zero function, $x \in X$ and C(t)x = 0, $t \in [0, T_0)$. By (24), we have $K_0(\cdot)Cx = 0$ on $[0, T_0)$, and so Cx = 0. Hence, x = 0, which implies that $C(\cdot)$ is nondegenerate. \Box

Lemma 2.6 Let A be a closed subgenerator of a strongly continuous subfamily $C(\cdot)$ of L(X), and K_0 a kernel on $[0, t_0)$ (or equivalently, K is a kernel on $[0, t_0)$) for some $0 < t_0 \le T_0$. Assume that C is injective and $u \in C([0, t_0), X)$ satisfies $u(\cdot) = Aj_1 * u(\cdot)$ on $[0, t_0)$. Then u = 0 on $[0, t_0)$.

Proof. We observe from (23) and (24) that $A \int_0^t \int_0^s C(t)x dt ds = \int_0^t \int_0^s C(t)Ax dt ds$ for all $x \in D(A)$ and $0 \le t < T_0$. Combining this with the closedness of A, we have C(t)Ax = AC(t)x for all $x \in D(A)$ and $0 \le t < T_0$, and so $\int_0^t C(t-s)u(s)ds = \int_0^t C(t-s)Aj_1 * u(s)ds = \int_0^t AC(t-s)j_1 * u(s)ds = A \int_0^t C(t-s)j_1 * u(s)ds = A\widetilde{S} * u(t) = \int_0^t C(t-s)u(s)ds - C \int_0^t K_0(t-s)u(s)ds$ for all $0 \le t < t_0$. Hence, $\int_0^t K_0(t-s)u(s)ds = 0$ for all $0 \le t < t_0$, which implies that u(t) = 0 for all $0 \le t < t_0$.

Theorem 2.7 Let $C(\cdot)$ be a nondegenerate local K-convoluted C-cosine function on X with generator A. Assume that $C(\cdot)$ has a subgenerator. Then A is the maximal subgenerator of $C(\cdot)$, and each subgenerator of $C(\cdot)$ is closable and its closure is also a subgenerator of $C(\cdot)$. Moreover, if C is injective. Then (1)-(3) hold, and (4) also holds when K_0 is a kernel on $[0, T_0)$ or $T_0 = \infty$.

Proof. Let *B* be a subgenerator of $C(\cdot)$. Clearly, $B \subset A$. It follows that $C(t)z - K_0(t)Cz = B \int_0^t \int_0^s C(r)z dr ds =$ $A \int_0^t \int_0^s C(r)z dr ds$ for all $z \in X$ and $0 \le t < T_0$, which together with the definition of A implies that A is also a subgenerator of $C(\cdot)$. To show that each subgenerator of $C(\cdot)$ is closable and its closure is also a subgenerator of $C(\cdot)$. We will show that B is closable. Let $x_k \in D(B)$, $x_k \to 0$, and $Bx_k \to y$ in X. Then $x_k \in D(A)$ and $Ax_k = Bx_k \to y$. By the closedness of A, we have y = 0. In order to show that \overline{B} is a subgenerator of $C(\cdot)$. Let $x \in D(\overline{B})$ be given, then $x_k \to x$ and $Bx_k \to \overline{B}x$ in X for sequence $\{x_k\}_{k=1}^{\infty}$ in D(B). By (23), we have $C(t)x_k - K_0(t)Cx_k = \int_0^t \int_0^s C(r)Bx_k dr ds$ for all $k \in \mathbb{N}$ and $0 \le t < T_0$. Letting $k \to \infty$, we get that $C(t)x - K_0(t)Cx = \int_0^t \int_0^s C(r)\overline{B}x dr ds$ for all $0 \le t < T_0$. Since $B \subset \overline{B}$, we also have $C(t)z - K_0(t)Cz = B \int_0^t \int_0^s C(r)z dr ds = \overline{B} \int_0^t \int_0^s C(r)z dr ds$ for all $z \in X$ and $0 \le t < T_0$. Consequently, the closure of *B* is a subgenerator of $C(\cdot)$. To show that *A* is the maximal subgenerator of $C(\cdot)$. We will apply Zorn's lemma to show that $C(\cdot)$ has a subgenerator which does not have a proper extension that is still a subgenerator of $C(\cdot)$. To do this. Let \mathcal{F} be the family of all subgenerators of $C(\cdot)$. We define a partial order " \subset " on \mathcal{F} by $f \subset g$ if g is an extension of f to D(g). Suppose that \mathcal{A} is a chain of \mathcal{F} . Define $A_0 : D(A_0) \subset X \to X$ by $D(A_0) = \bigcup_{f \in \mathcal{A}} D(f)$ and $A_0x = fx$ whenever $x \in D(A_0)$ with $x \in D(f)$ for some $f \in \mathcal{A}$, then A_0 is well-defined and a subgenerator of $C(\cdot)$, and so A_0 is an upper bound of \mathcal{A} in (\mathcal{F}, \subset) . By Zorn's lemma, (\mathcal{F}, \subset) has a maximal element *B* which is a subgenerator of $C(\cdot)$, and does not have a proper extension that is still a subgenerator of $C(\cdot)$. In particular, $B \subset A$. Similarly, we can show that B is the maximal subgenerator of $C(\cdot)$, which implies that $A \subset B$. Clearly, (2) and (3) both hold because A is the maximal subgenerator of $C(\cdot)$. To show that (1) holds when *C* is injective, we will show that $A \subset C^{-1}AC$ or equivalently, $CA \subset AC$. Let $x \in D(A)$ be given, then $K_2(t)Cx = \widetilde{S}(t)x - j_1 * \widetilde{S}(t)Ax \in D(A)$ and

$$AK_{2}(t)Cx = A\overline{S}(t)x - Aj_{1} * \overline{S}(t)Ax$$
$$= A\overline{S}(t)x - [\overline{S}(t)Ax - K_{2}(t)CAx]$$
$$= K_{2}(t)CAx$$

for all $0 \le t < T_0$, so that CAx = ACx. Hence, $CA \subset AC$. In order to show that $C^{-1}AC \subset A$. Let $x \in D(C^{-1}AC)$ be given, then $Cx \in D(A)$ and $ACx \in R(C)$. By the definition of generator and the commutativity of C with $C(\cdot)$, we have $C[C(t)x-K_0(t)Cx] = C(t)Cx-K_0(t)C^2x = \int_0^t S(r)ACxdr = \int_0^t S(r)CC^{-1}ACxdr = C \int_0^t S(r)C^{-1}ACxdr$. Since C is injective, we have $x \in D(A)$ and $Ax = C^{-1}ACx$. Consequently, $A \subset C^{-1}AC$. Finally, we will show that (4) holds when K_0 is a kernel on $[0, T_0)$. Clearly, it suffices to show that $\widetilde{S}(t)\widetilde{S}(s)x=\widetilde{S}(s)\widetilde{S}(t)x$ for all $x \in X$ and $0 \le t, s < T_0$. Let $x \in X$ and $0 \le s < T_0$ be given. By (3) and the closedness of A, we have

$$\begin{split} \widetilde{S}(\cdot)\widetilde{S}(s)x - Aj_1 * \widetilde{S}(\cdot)\widetilde{S}(s)x = & K_2(\cdot)C\widetilde{S}(s)x \\ = & \widetilde{S}(s)K_2(\cdot)Cx \\ = & \widetilde{S}(s)[\widetilde{S}(\cdot)x - Aj_1 * \widetilde{S}(\cdot)x] \\ = & \widetilde{S}(s)\widetilde{S}(\cdot)x - \widetilde{S}(s)Aj_1 * \widetilde{S}(\cdot)x \\ = & \widetilde{S}(s)\widetilde{S}(\cdot)x - Aj_1 * \widetilde{S}(s)\widetilde{S}(\cdot)x \end{split}$$

on $[0, T_0)$, and so $[\widetilde{S}(\cdot)\widetilde{S}(s)x - \widetilde{S}(s)\widetilde{S}(\cdot)x] = Aj_1 * [\widetilde{S}(\cdot)\widetilde{S}(s)x - \widetilde{S}(s)\widetilde{S}(\cdot)x]$ on $[0, T_0)$. Hence, $\widetilde{S}(\cdot)\widetilde{S}(s)x = \widetilde{S}(s)\widetilde{S}(\cdot)x$ on $[0, T_0)$, which implies that $\widetilde{S}(t)\widetilde{S}(s)x = \widetilde{S}(s)\widetilde{S}(t)x$ for all $0 \le t, s < T_0$. \Box

Lemma 2.8 Let $C(\cdot)$ be a local K-convoluted C-cosine function on X, and $0 \in \text{supp}K_0$ (the support of K_0). Assume that $C(\cdot)x = 0$ on $[0, t_0)$ for some $x \in X$ and $0 < t_0 < T_0$. Then $CC(\cdot)x = 0$ on $[0, T_0)$. In particular, C(t)x = 0 for all $0 \le t < T_0$ if the injectivity of C is added.

Proof. Let $0 \le t < T_0$ be given, then $t + s < T_0$ and $K_0(s)$ is nonzero for some $0 < s < t_0$, so that $\widetilde{S}(s)C(t)x=C(t)\widetilde{S}(s)x=0$, $C(s)\widetilde{S}(t)x=\widetilde{S}(t)C(s)x=0$ and $\widetilde{S}(s)K_0(t)Cx=K_0(t)C\widetilde{S}(s)x=0$. By Theorem 2.2, we have $K_0(s)\widetilde{S}(t)Cx=K_0(s)C\widetilde{S}(t)x=0$. Hence, $\widetilde{S}(t)Cx=0$. Since $0 \le t < T_0$ is arbitrary, we have CC(t)x = C(t)Cx = 0 for all $0 \le t < T_0$. In particular, C(t)x=0 for all $0 \le t < T_0$ if the injectivity of C is added. \Box

Theorem 2.9 *Let* $C(\cdot)$ *be a local* K*-convoluted* C*-cosine function on* X*, and* $0 \in suppK_0$ *. Assume that* C *is injective. Then* $C(\cdot)$ *is nondegenerate if and only if it has a subgenerator.*

Proof. By Theorem 2.5, we need only to show that *A* is a subgenerator of $C(\cdot)$ when $C(\cdot)$ is a nondegenerate local *K*-convoluted *C*-cosine function on *X* with generator *A* and $0 \in \text{supp}K_0$. Observe (23)-(24) and the definition of *A*, we need only to show that (23) holds. Let $0 \le t_0 < T_0$ be fixed. Then for each $x \in X$ and $0 \le s < T_0$, we set $y = \widetilde{S}(t_0)x$. By Theorem 2.2, we have

$$\begin{split} \widetilde{S}(r)[C(s) - K_0(s)C]y &= [C(r) - K_0(r)C]\widetilde{S}(s)y \\ &= \widetilde{S}(s)[C(r) - K_0(r)C]y \\ &= \widetilde{S}(s)([C(r) - K_0(r)C]\widetilde{S}(t_0)x) \\ &= \widetilde{S}(s)(\widetilde{S}(r)[C(t_0) - K_0(t_0)C]x) \\ &= [\widetilde{S}(s)\widetilde{S}(r)][C(t_0) - K_0(t_0)C]x \\ &= \widetilde{S}(r)\widetilde{S}(s)[C(t_0) - K_0(t_0)C]x \end{split}$$

for all $0 \le r < T_0$ with $r + s, r + t_0 < T_0$ or equivalently, $C(r)[C(s) - K_0(s)C]y = C(r)\widetilde{S}(s)[C(t_0) - K_0(t_0)C]x$ for all $0 \le r < T_0$ with $r + s, r + t_0 < T_0$. It follows from Lemma 2.8 and the nondegeneracy of $C(\cdot)$ that we have $[C(s) - K_0(s)C]y = \widetilde{S}(s)[C(t_0) - K_0(t_0)C]x$. Since $0 \le s < T_0$ is arbitrary, we have $y \in D(A)$ and $Ay = [C(t_0) - K_0(t_0)C]x$. Since $0 \le t_0 < T_0$ is arbitrary, we conclude that (23) holds. \Box

By slightly modifying the proof of Theorem 2.9, we can obtain the next result concerning nondegenerate *K*-convoluted *C*-cosine functions.

Theorem 2.10 *Let* $C(\cdot)$ *be a nondegenerate K*-convoluted *C*-cosine function on *X. Then C is injective, and* $C(\cdot)$ *has a subgenerator.*

Combining Theorem 2.10 with Theorem 2.7, the next result concerning nondegenerate *K*-convoluted *C*-cosine functions is also obtained.

Theorem 2.11 Let $C(\cdot)$ be a nondegenerate K-convoluted C-cosine function on X with generator A. Then A is the maximal subgenerator of $C(\cdot)$, and each subgenerator of $C(\cdot)$ is closable and its closure is also a subgenerator of $C(\cdot)$. Moreover, (1)-(4) hold.

Since $0 \in \text{supp}K_0$ implies that K_0 is a kernel on $[0, T_0)$, we can apply Theorems 2.7 and 2.9 to obtain the next corollary.

Corollary 2.12 Let $C(\cdot)$ be a nondegenerate local K-convoluted C-cosine function on X with generator A, and $0 \in suppK_0$. Assume that C is injective. Then A is the maximal subgenerator of $C(\cdot)$, and each subgenerator of $C(\cdot)$ is closable and its closure is also a subgenerator of $C(\cdot)$. Moreover, (1)-(4) hold.

Theorem 2.13 Let A be a closed subgenerator of a strongly continuous sufamily $C(\cdot)$ of L(X), and K_0 a kernel on $[0, T_0)$. Assume that C is injective. Then $CA \subset AC$, and $C(\cdot)$ is a nondegenerate local K-convoluted C-cosine function on X with generator $C^{-1}AC$. In particular, $C^{-1}\overline{A_0}C$ is the generator of $C(\cdot)$ for each subgenerator A_0 of $C(\cdot)$.

Proof. To show that $C(\cdot)$ is a nondegenerate local *K*-convoluted *C*-cosine function on *X*. By Theorem 2.5, we need only to show that $CC(\cdot) = C(\cdot)C$ or equivalently, $C\widetilde{S}(\cdot) = \widetilde{S}(\cdot)C$. Just as in the proof of Theorem 2.7, we have $CA \subset AC$ and $[\widetilde{S}(\cdot)Cx - C\widetilde{S}(\cdot)x] = Aj_1 * [\widetilde{S}(\cdot)Cx - C\widetilde{S}(\cdot)x]$ on $[0, T_0)$. By Lemma 2.6, we also have $\widetilde{S}(\cdot)Cx = C\widetilde{S}(\cdot)x$ on $[0, T_0)$. We will prove that $C^{-1}AC$ is the generator of $C(\cdot)$. Let *B* denote the generator of $C(\cdot)$. By Theorem 2.7, we have $A \subset B$. By (1), we also have $C^{-1}AC \subset C^{-1}BC = B$. Conversely, let $x \in D(B)$ be given, then $K_2(t)Cx = \widetilde{S}(t)x - j_1 * \widetilde{S}(t)Bx \in D(A)$ for all $0 \le t < T_0$, so that $Cx \in D(A)$ and

$$AK_{2}(\cdot)Cx = A\widetilde{S}(\cdot)x - Aj_{1} * \widetilde{S}(\cdot)Bx$$
$$= A\widetilde{S}(\cdot)x - [\widetilde{S}(\cdot)Bx - K_{2}(\cdot)CBx]$$
$$= A\widetilde{S}(\cdot)x - [B\widetilde{S}(\cdot)x - K_{2}(\cdot)CBx]$$
$$= K_{2}(\cdot)CBx$$

on $[0, T_0)$. Hence, $ACx = CBx \in R(C)$, which implies that $x \in D(C^{-1}AC)$ and $C^{-1}ACx = Bx$. Consequently, $B \subset C^{-1}AC$. \Box

Corollary 2.14 Let $C(\cdot)$ be a nondegenerate local K-convoluted C-cosine function on X, and $0 \in suppK_0$. Assume that C is injective. Then $C^{-1}\overline{A_0}C$ is the generator of $C(\cdot)$ for each subgenerator A_0 of $C(\cdot)$. **Remark 2.15** Let $C(\cdot)$ be a local K-convoluted C-cosine function on X. Then

- (i) $C(\cdot)$ is nondegenerate if and only if $S(\cdot)$ is;
- (ii) A is the generator of $C(\cdot)$ if and only if it is the generator of $S(\cdot)$;
- (iii) *A* is a closed subgenerator of $C(\cdot)$ if and only if it is a closed subgenerator of $S(\cdot)$.

Remark 2.16 *A* strongly continuous subfamily of L(X) may not have a subgenerator; a local K-convoluted C-cosine function on X is degenerate when it has a subgenerator but does not have a maximal subgenerator; and a closed linear operator in X generates at most one nondegenerate local K-convoluted C-cosine function on X when C is injective and K_0 a kernel on $[0, T_0)$.

3. Abstract Cauchy Problems

In the following, we always assume that $C \in L(X)$ is injective, K_0 a kernel on $[0, T_0)$, and A a closed linear operator in X such that $CA \subset AC$. We also note some basic properties concerning the strong solutions of ACP(A, f, x, y) just results in [12] when A is the generator of a nondegenerate (local) α -times integrated C-cosine function on X.

Proposition 3.1. Let A be a subgenerator of a nondegenerate local K_0 -convoluted C-cosine function $C(\cdot)$ on X. Then for each $x \in D(A)$ $C(\cdot)x$ is the unique solution of $ACP(A, K(\cdot)Cx, 0, 0)$ in $C([0, T_0), [D(A)])$. Here [D(A)] denotes the Banach space D(A) equipped with the graph norm $|x|_A = ||x|| + ||Ax||$ for $x \in D(A)$.

Proposition 3.2. Let A be a subgenerator of a nondegenerate local K-convoluted C-cosine function $C(\cdot)$ on X and $C^1 = \{x \in X \mid C(\cdot)x \text{ is continuously differentiable on } (0, T_0)\}$. Then

- (i) for each $x \in C^1$ $S(t)x \in D(A)$ for a.e. $t \in (0, T_0)$;
- (ii) for each $x \in C^1$ $S(\cdot)x$ is the unique solution of $ACP(A, K(\cdot)Cx, 0, 0)$;
- (iii) for each $x \in D(A)$ $S(\cdot)x$ is the unique solution of $ACP(A, K(\cdot)Cx, 0, 0)$ in $C^{1}([0, T_{0}), [D(A)])$.

Proposition 3.3. Let A be the generator of a nondegenerate local K-convoluted C-cosine function $C(\cdot)$ on X and $x \in X$. Assume that $C(t)x \in R(C)$ for all $0 \le t < T_0$, and $C^{-1}C(\cdot)x \in C([0, T_0), X)$ is differentiable a.e. on $(0, T_0)$. Then $C^{-1}S(t)x \in D(A)$ for a.e. $t \in (0, T_0)$, and $C^{-1}S(\cdot)x$ is the unique solution of $ACP(A, K(\cdot)x, 0, 0)$.

Proof. Clearly, $S(\cdot)x \in C^{1}([0, T_{0}), X)$, and $C(\cdot)x = CC^{-1}C(\cdot)x$ is differentiable a.e. on $(0, T_{0})$. By Theorem 2.11, we have $C\frac{d^{2}}{dt^{2}}C^{-1}S(t)x = \frac{d^{2}}{dt^{2}}S(t)x = AS(t)x + K(t)Cx = ACC^{-1}S(t)x + K(t)Cx$ for a.e. $t \in (0, T_{0})$, so that for a.e. $t \in (0, T_{0})$, $C^{-1}S(t)x \in D(C^{-1}AC) = D(A)$ and $\frac{d^{2}}{dt^{2}}C^{-1}S(t)x = (C^{-1}AC)C^{-1}S(t)x + K(t)x = AC^{-1}S(t)x + K(t)x$. Hence, $C^{-1}S(\cdot)x$ is a solution of ACP($A, K(\cdot)x, 0, 0$). □

Applying Theorem 2.13, we can prove an important result concerning the relation between the generation of a nondegenerate local *K*-convoluted *C*-cosine function on *X* with subgenerator *A* and the unique existence of strong solutions of ACP(*A*, *f*, *x*, *y*), which has been established by the author in [15] when $K = j_{\alpha-1}$, in [12] when $K = j_{\alpha-1}$ with $T_0 = \infty$, and in [11] when $K = j_{-1}$ and $T_0 = \infty$. **Theorem 3.4.** *The following statements are equivalent :*

- (*i*) A is a subgenerator of a nondegenerate local K-convoluted C-cosine function $C(\cdot)$ on X;
- (*ii*) for each $x \in X$ and $g \in L^1_{loc}([0, T_0), X)$ the problem $ACP(A, K_0(\cdot)Cx + K_0 * Cg(\cdot), 0, 0)$ has a unique solution in $C^2([0, T_0), X) \cap C([0, T_0), [D(A)])$;
- (iii) for each $x \in X$ the problem $ACP(A, K_0(\cdot)Cx, 0, 0)$ has a unique solution in $C^2([0, T_0), X) \cap C([0, T_0), [D(A)]);$
- (vi) for each $x \in X$ the integral equation $v(\cdot) = Aj_1 * v(\cdot) + K_0(\cdot)Cx$ has a unique solution $v(\cdot; x)$ in $C([0, T_0), X)$.

In this case, $\widetilde{S}(\cdot)x + \widetilde{S} * g(\cdot)$ is the unique solution of $ACP(A, K_0(\cdot)Cx + K_0 * Cg(\cdot), 0, 0)$ and $v(\cdot; x) = C(\cdot)x$.

Proof. We will prove that (*i*) implies (*ii*). Let $x \in X$ and $g \in L^1_{loc}([0, T_0), X)$ be given. We set $u(\cdot) = \widetilde{S}(\cdot)x + \widetilde{S} * g(\cdot)$, then $u \in C^2([0, T_0), X) \cap C([0, T_0), [D(A)])$, u(0) = u'(0) = 0, and

$$Au(t) = A\widetilde{S}(t)x + A \int_0^t \widetilde{S}(t-s)g(s)ds$$

= $C(t)x - K_0(t)Cx + \int_0^t [C(t-s) - K_0(t-s)C]g(s)ds$
= $C(t)x + \int_0^t C(t-s)g(s)ds - [K_0(t)Cx + K_0 * Cg(t)]$
= $u''(t) - [K_0(t)Cx + K_0 * Cg(t)]$

for all $0 \le t < T_0$. Hence, *u* is a solution of ACP(*A*, $K_0(\cdot)Cx + K_0 * Cg(\cdot), 0, 0$) in $C^2([0, T_0), X) \cap C([0, T_0), [D(A)])$. The uniqueness of solutions for ACP($A, K_0(\cdot)Cx + K_0 * Cg(\cdot), 0, 0$) follows directly from the uniqueness of solutions for ACP(A, 0, 0, 0). Clearly, "(ii) \Rightarrow (iii)" holds, and (iii) and (iv) both are equivalent. We remain only to show that "(iv) \Rightarrow (i)" holds. Let $C(t) : X \rightarrow X$ be defined by C(t)x = v(t;x) for all $x \in X$ and $0 \le t < T_0$. Clearly, $C(\cdot)$ is strongly continuous, and satisfies (24). Combining the uniqueness of solutions for the integral equation $v(\cdot) = Aj_1 * v(\cdot) + K_0(\cdot)Cx$ with the assumption $CA \subset AC$, we have $v(\cdot; Cx) = Cv(\cdot; x)$ for each $x \in X$, which implies that C(t) for $0 \le t < T_0$ are linear, and commute with C. Let $\{t_k\}_{k=1}^{\infty}$ be an increasing sequence in $(0, T_0)$ such that $t_k \to T_0$, and $C([0, T_0), X)$ a Frechet space with the quasi-norm $|\cdot|$ defined by $|v| = \sum_{k=1}^{\infty} \frac{\|v\|_k}{2^k(1+\|v\|_k)}$ for $v \in C([0, T_0), X)$. Here $\|v\|_k = \max_{t \in [0, t_k]} \|v(t)\|$ for all $k \in \mathbb{N}$. To show that $C(\cdot)$ is a subfamily of L(X), we need only to show that the linear map $\eta : X \to C([0, T_0), X)$ defined by $\eta(x) = v(\cdot; x)$ for $x \in X$, is continuous or equivalently, $\eta : X \to C([0, T_0), X)$ is a closed linear operator. Let $\{x_k\}_{k=1}^{\infty}$ be a sequence in X such that $x_k \to x$ in X and $\eta(x_k) \to v$ in C([0, T_0), X), then $v(\cdot; x_k) = Aj_1 * v(\cdot; x_k) + K_0(\cdot)Cx_k$ on [0, T_0). Combining the closedness of A with the uniform convergence of $\{\eta(x_k)\}_{k=1}^{\infty}$ on $[0, t_k]$, we have $v(\cdot) = Aj_1 * v(\cdot) + K_0(\cdot)Cx$ on $[0, T_0)$. By the uniqueness of solutions for integral equations, we have $v(\cdot)=v(\cdot; x)=\eta(x)$. Consequently, $\eta: X \to C([0, T_0), X)$ is a closed linear operator. To show that A is a subgenerator of $C(\cdot)$, we remain only to show that $S(t)A \subset AS(t)$ for all $0 \le t < T_0$. Let $x \in D(A)$ be given, then $S(t)x - K_2(t)Cx = Aj_1 * S(t)x = j_1 * AS(t)x$ for all $0 \le t < T_0$, and so

$$S(t)Ax - Aj_1 * S(t)Ax = K_2(t)CAx$$
$$= AK_2(t)Cx$$
$$= A\widetilde{S}(t)x - Aj_1 * \widetilde{S}(t)Ax$$

for all $0 \le t < T_0$. Hence, $Aj_1 * [\widetilde{S}(\cdot)Ax - A\widetilde{S}(\cdot)x] = \widetilde{S}(\cdot)Ax - A\widetilde{S}(\cdot)x$ on $[0, T_0)$. By the uniqueness of solutions for ACP(A, 0, 0, 0), we have $\widetilde{S}(\cdot)Ax = A\widetilde{S}(\cdot)x$ on $[0, T_0)$. Applying Theorem 2.5, we get that $C(\cdot)$ is a nondegenerate local K-convoluted C-cosine function on X with subgenerator A. \Box

By slightly modifying the proof of [15, Theorem 3.5], we can apply Theorem 3.4 to obtain the next result. **Theorem 3.5.** Assume that $R(C) \subset R(\lambda - A)$ for some $\lambda \in \mathbb{F}$, and $ACP(A, K(\cdot)x, 0, 0)$ has a unique solution in $C([0, T_0), [D(A)])$ for each $x \in D(A)$ with $(\lambda - A)x \in R(C)$. Then A is a subgenerator of a nondegenerate local K_0 -convoluted C-cosine function on X.

Proof. Clearly, it suffices to show that for each $x \in X$ the integral equation

$$v(\cdot) = A \int_0^{\cdot} \int_0^s v(r) dr ds + K_1(\cdot) Cx$$
⁽²⁵⁾

has a (unique) solution $v(\cdot; x)$ in $C([0, T_0), X)$. Let $x \in X$ be given, then there exists a $y_x \in D(A)$ such that $(\lambda - A)y_x = Cx$. By hypothesis, ACP($A, K(\cdot)y_x, 0, 0$) has a unique solution $u(\cdot; y_x)$ in $C([0, T_0), [D(A)])$. In particular, $u''(\cdot; y_x) = Au(\cdot; y_x) + K(\cdot)y_x \in L^1_{loc}([0, T_0), X)$. By the closedness of A and the continuity of $Au(\cdot; y_x)$, we have $\int_0^t \int_0^s u(r; y_x) drds \in D(A)$ and

$$A \int_0^t \int_0^s u(r; y_x) dr ds = \int_0^t \int_0^s Au(r; y_x) dr ds = u(t; y_x) - K_1(t) y_x \in \mathcal{D}(A)$$

for all $0 \le t < T_0$, so that

$$(\lambda - A)u(t; y_x) = (\lambda - A)[A \int_0^t \int_0^s u(r; y_x) dr ds + K_1(t)y_x] = A \int_0^t \int_0^s (\lambda - A)u(r; y_x) dr ds + K_1(t)Cx$$
(26)

for all $0 \le t < T_0$. Hence, $v(\cdot; x) = (\lambda - A)u(\cdot; y_x)$ is a solution of (25) in C([0, T_0), X). \Box

Combining Theorem 3.4 with Theorem 3.5, the next theorem is also attained.

Theorem 3.6. Assume that $R(C) \subset R(\lambda - A)$ for some $\lambda \in \mathbb{F}$, and $ACP(A, K(\cdot)x, 0, 0)$ has a unique solution in $C^1([0, T_0), [D(A)])$ for each $x \in D(A)$ with $(\lambda - A)x \in R(C)$. Then A is a subgenerator of a nondegenerate local K-convoluted C-cosine function on X.

Proof. Let $x \in X$ be given, and let $u(\cdot; y_x)$ and $v(\cdot; x)$ be given as in the proof of Theorem 3.5. By hypothesis, $v(\cdot; x)$ is continuously differentiable on $[0, T_0)$ and $v'(t; x) = (\lambda - A)u'(t; y_x)$ for all $0 \le t < T_0$. By (26), we also have $v'(t; x) = A \int_0^t v(r; x)dr + K_0(t)Cx$ for all $0 \le t < T_0$. In particular, v'(0; x) = 0, and so $v'(\cdot; x) = Aj_1 * v'(\cdot; x) + K_0(\cdot)Cx$ on $[0, T_0)$. Hence, $v'(\cdot; x)$ is a (unique) solution of the integral equation $v(\cdot) = Aj_1 * v(\cdot) + K_0(\cdot)Cx$ in $C([0, T_0), X)$.

Since $C^{-1}AC = A$ and $R((\lambda - A)^{-1}C) = C(D(A))$ if $\rho(A) \neq \emptyset$, we can apply Proposition 3.1, Theorem 3.5 and Theorem 3.6 to obtain the next two corollaries.

Corollary 3.7. Assume that the resolvent set of A is nonempty. Then A is the generator of a nondegenerate local K_0 -convoluted C-cosine function on X if and only if for each $x \in D(A)$ ACP(A, K(·)Cx, 0, 0) has a unique solution in $C([0, T_0), [D(A)])$.

Corollary 3.8. Assume that the resolvent set of *A* is nonempty. Then *A* is the generator of a nondegenerate local *K*-convoluted *C*-cosine function on *X* if and only if for each $x \in D(A)$ $ACP(A, K(\cdot)Cx, 0, 0)$ has a unique solution in $C^1([0, T_0), [D(A)])$.

Just as in [15, Theorems 3.9 and 3.10], we can apply Theorem 3.4 to obtain the next two wellposed theorems. The wellposedness of abstract fractional Cauchy problems and abstract Cauchy problems associated with various classes of Volterra integro-differential equations in locally convex spaces have been recently considered in [10].

Theorem 3.9. Assume that A is densely defined. Then the following are equivalent :

- (i) A is a subgenerator of a nondegenerate local K_0 -convoluted C-cosine function $S(\cdot)$ on X;
- (ii) for each x ∈ D(A) ACP(A, K(·)Cx, 0, 0) has a unique solution u(·; Cx) in C([0, T₀), [D(A)]) which depends continuously on x. That is, if {x_n}_{n=1}[∞] is a Cauchy sequence in (D(A), || · ||), then {u(·; Cx_n)}_{n=1}[∞] converges uniformly on compact subsets of [0, T₀).

Proof. (*i*) \Rightarrow (*ii*). It is easy to see from the definition of a subgenerator of *S*(·) that *S*(·)*x* is the unique solution of ACP(*A*, *K*(·)*Cx*, 0, 0) in C([0, *T*₀), [D(*A*)]) which depends continuously on $x \in D(A)$. (*ii*) \Rightarrow (*i*). In view of Theorem 3.4, we need only to show that for each $x \in X$ (25) has a unique solution $v(\cdot; x)$ in C([0, *T*₀), *X*). Let $x \in X$ be given. By the denseness of D(*A*), we have $x_m \to x$ in *X* for some sequence $\{x_m\}_{m=1}^{\infty}$ in D(*A*). We set $u(\cdot; Cx_m)$ to denote the unique solution of ACP(*A*, *K*(·)*Cx*_m, 0, 0) in C([0, *T*₀), [D(*A*]]). Then $u(\cdot; Cx_m) \to u(\cdot)$ uniformly on compact subsets of [0, *T*₀) for some $u \in C([0, T_0), X)$, and so $\int_0^\infty \int_0^s u(r; Cx_m) drds \to \int_0^\infty \int_0^s u(r) drds$ uniformly on compact subsets of [0, *T*₀). Since $u''(\cdot; Cx_m) = Au(\cdot; Cx_m) + K(\cdot)Cx_m$ a.e. on (0, *T*₀), we have

$$A \int_{0}^{s} \int_{0}^{s} u(r; Cx_{m}) dr ds = \int_{0}^{s} \int_{0}^{s} Au(r; Cx_{m}) dr ds = u(\cdot; Cx_{m}) - K_{1}(\cdot)Cx_{m}$$
(27)

on $[0, T_0)$ for all $m \in \mathbb{N}$. Clearly, the right-hand side of the last equality of (27) converges uniformly to $u(\cdot) - K_1(\cdot)Cx$ on compact subsets of $[0, T_0)$. It follows from the closedness of A that $\int_0^t \int_0^s u(r)drds \in D(A)$ for all $0 \le t < T_0$ and $A \int_0^{\cdot} \int_0^s u(r)drds = u(\cdot) - K_1(\cdot)Cx$ on $[0, T_0)$, which implies that $u(\cdot)$ is a (unique) solution of (25) in $C([0, T_0), X)$.

Theorem 3.10. Assume that A is densely defined. Then the following are equivalent :

- (i) A is a subgenerator of a nondegenerate local K-convoluted C-cosine function $C(\cdot)$ on X;
- (ii) for each $x \in D(A)$ ACP(A, K(·)Cx, 0, 0) has a unique solution $u(\cdot; Cx)$ in
 - $C^{1}([0, T_{0}), [D(A)])$ which depends continuously differentiable on x. That is, if $\{x_{n}\}_{n=1}^{\infty}$ is a Cauchy sequence in $(D(A), \|\cdot\|)$, then $\{u(\cdot; Cx_{n})\}_{n=1}^{\infty}$ and

 $\{u'(\cdot; Cx_n)\}_{n=1}^{\infty}$ both converge uniformly on compact subsets of $[0, T_0)$.

Proof. $(i) \Rightarrow (ii)$. For each $0 \le t < T_0$ and $x \in D(A)$, we set $S(t)x = \int_0^t C(r)xdr$. Then $S(\cdot)x$ is the unique solution of ACP($A, K(\cdot)Cx, 0, 0$) in $C^1([0, T_0), [D(A)]$). Let $\{x_n\}_{n=1}^{\infty}$ be a Cauchy sequence in $(D(A), \|\cdot\|)$. We set $u(\cdot; Cx_n) = S(\cdot)x_n$ for $n \in \mathbb{N}$, then $\{u(\cdot; Cx_n)\}_{n=1}^{\infty}$ and $\{u'(\cdot; Cx_n)\}_{n=1}^{\infty}$ both converge uniformly on compact subsets of $[0, T_0)$. $(ii) \Rightarrow (i)$. For each $x \in X$ and $0 \le t < T_0$, we define $u(t) = \lim_{n \to \infty} u(t; Cx_n)$ whenever $\{x_n\}_{n=1}^{\infty}$ is a sequence in D(A) which converges to x in X. By hypothesis, $u(\cdot; Cx_n) \to u(\cdot)$ and $u'(\cdot; Cx_m) \to u'(\cdot)$ uniformly on compact subsets of $[0, T_0)$ for some $u \in C^1([0, T_0), X)$. Just as in the proof of Theorem 3.9, we have

$$A\int_0^t \int_0^s u'(r; Cx_m) dr ds = A\int_0^t u(s; Cx_m) ds = u'(\cdot; Cx_m) - K_0(\cdot) Cx_m$$

on $[0, T_0)$ for all $m \in \mathbb{N}$. Similarly, we also have $A \int_0^{\infty} \int_0^s u'(r) dr ds = u'(\cdot) - K_0(\cdot)Cx$ on $[0, T_0)$, which implies that $u'(\cdot)$ is a solution of the integral equation $v(\cdot) = Aj_1 * v(\cdot) + K_0(\cdot)Cx$ in $C([0, T_0), X)$. The uniqueness of solutions for the integral equation $v(\cdot) = Aj_1 * v(\cdot) + K_0(\cdot)Cx$ in $C([0, T_0), X)$. The uniqueness of solutions for the integral equation (3.1) in $C([0, T_0), X)$. \Box

We end this paper with several illustrative examples.

Example 1. Let $X = C_b(\mathbb{R})$, and C(t) for $t \ge 0$ be bounded linear operators on X defined by $C(t)f(x) = \frac{1}{2}[f(x + t) + f(x - t)]$ for all $x \in \mathbb{R}$. Then for each $K \in L^1_{loc}([0, T_0), \mathbb{F})$ and $\beta > -1$, $K_\beta * C(\cdot) = \{K_\beta * C(t)|0 \le t < T_0\}$ is local a K_β -convoluted cosine function on X which is also nondegenerate with a closed subgenerator $\frac{d^2}{dx^2}$ acting with its maximal distributional domain when K_0 is not the zero function on $[0, T_0)$ (or equivalently, K is not the zero in $L^1_{loc}([0, T_0), \mathbb{F})$), but $K * C(\cdot)$ may not be a local K-convoluted cosine function on X except for $K \in L^1_{loc}([0, T_0), \mathbb{F})$ so that $K * C(\cdot)$ is a strongly continuous family in L(X) for which $\frac{d^2}{dx^2}$ is a closed subgenerator of $K * C(\cdot)$ when K_0 is not the zero function on $[0, T_0)$. Moreover, (1)-(4) hold and $\frac{d^2}{dx^2}$ is its generator and maximal subgenerator when K_0 is a kernel on $[0, T_0)$. In this case, $\frac{d^2}{dx^2} = \overline{A_0}$ for each subgenerator A_0 of $C(\cdot)$.

Example 2. Let k be a fixed nonnegative integer and K_0 a kernel on $[0, \infty)$, and let C(t) for $t \ge 0$ and C be bounded linear operators on c_0 (the family of all convergent sequences in \mathbb{F} with limit 0) defined by $C(t)x = \{x_n(n-k)e^{-n}\int_0^t K(t-s)\cosh nsds\}_{n=1}^{\infty}$ and $Cx = \{x_n(n-k)e^{-n}\}_{n=1}^{\infty}$ for all $x = \{x_n\}_{n=1}^{\infty} \in c_0$, then $\{C(t)|0 \le t < 1\}$ is a local K-convoluted C-cosine function on c_0 which is degenerate except for k = 0 and generator A defined by $Ax = \{n^2x_n\}_{n=1}^{\infty}$ for all $x = \{x_n\}_{n=1}^{\infty} \in c_0$ with $\{n^2x_n\}_{n=1}^{\infty} \in c_0$, and for each r > 1 $\{C(t)|0 \le t < r\}$ is not a local K-convoluted C-cosine function on c_0 . Suppose that $k \in \mathbb{N}$. Then $A_a : c_0 \to c_0$ for $a \in \mathbb{F}$ defined by $A_ax = \{n^2y_n\}_{n=1}^{\infty}$ for all $x = \{x_n\}_{n=1}^{\infty} \in c_0$ with $\{n^2x_n\}_{n=1}^{\infty} \in c_0$, are subgenerators of $\{C(t)|0 \le t < 1\}$ which do not have proper extensions that are still subgenerators of $\{C(t)|0 \le t < 1\}$. Here $y_n = ak^2x_k$ if n = k, and $y_n = n^2x_n$ otherwise. Consequently, $\{C(t)|0 \le t < 1\}$ does not have a maximal subgenerator when $k \in \mathbb{N}$.

Example 3. Let $X = C_b(\mathbb{R})$ (or $L^{\infty}(\mathbb{R})$), and A be the maximal differential operator in X defined by $Au = \sum_{j=0}^{k} a_j D^j u$ on

ℝ for all $u \in D(A)$, then $UC_b(\mathbb{R})$ (or $C_0(\mathbb{R})$) = $\overline{D(A)}$. Here $a_0, a_1, \dots, a_k \in \mathbb{C}$ and $D^j u(x) = u^{(j)}(x)$ for all $x \in \mathbb{R}$. It is shown in [2, Theorem 6.7] that $\{C(t)|0 \le t < T_0\}$ defined by $(C(t)f)(x) = \frac{1}{\sqrt{2\pi}} \int_0^t \int_{-\infty}^\infty K(t-s)\widetilde{\phi_s}(x-y)f(y)dyds$ for all $f \in X$ and $0 \le t < T_0$, is a norm continuous local K_0 -convoluted cosine function on X with closed subgenerator A if the real-valued polynomial $p(x) = \sum_{j=0}^k a_j(ix)^j$ satisfies $\sup_{x \in \mathbb{R}} p(x) < \infty$, and $K \in L^1_{loc}([0, T_0), \mathbb{F})$ is not the zero function

on $[0, T_0)$. Here ϕ_t denotes the inverse Fourier transform of ϕ_t with $\phi_t(x) = \int_0^t \cosh(\sqrt{p(x)}s) ds$ for all $t \ge 0$. Suppose that K_0 is a kernel on $[0, T_0)$. Then A is its generator and maximal subgenerator. Applying Theorem 3.4, we get that for each $f \in X$ and continuous function g on $[0, T_0) \times \mathbb{R}$ with $\int_0^t \sup_{x \in \mathbb{R}} |g(s, x)| ds < \infty$ for all $0 \le t < T_0$, the function u on $[0, T_0) \times \mathbb{R}$ defined by $u(t, x) = \frac{1}{\sqrt{2\pi}} \int_0^t \int_{-\infty}^\infty K_1(t-s) \phi_s(x-y) f(y) dy ds + \frac{1}{\sqrt{2\pi}} \int_0^t \int_{-\infty}^\infty K_1(t-r-s) \phi_s(x-y) f(y) dy ds + \frac{1}{\sqrt{2\pi}} \int_0^t \int_0^{t-r} \int_{-\infty}^\infty K_1(t-r-s) \phi_s(x-y) f(y) dy ds + \frac{1}{\sqrt{2\pi}} \int_0^t \int_0^{t-r} \int_{-\infty}^\infty K_1(t-r-s) \phi_s(x-y) f(y) dy ds + \frac{1}{\sqrt{2\pi}} \int_0^t \int_0^{t-r} \int_{-\infty}^\infty K_1(t-r-s) \phi_s(x-y) f(y) dy ds + \frac{1}{\sqrt{2\pi}} \int_0^t \int_0^{t-r} \int_{-\infty}^\infty K_1(t-r-s) \phi_s(x-y) f(y) dy ds + \frac{1}{\sqrt{2\pi}} \int_0^t \int_0^{t-r} \int_{-\infty}^\infty K_1(t-r-s) \phi_s(x-y) f(y) dy ds + \frac{1}{\sqrt{2\pi}} \int_0^t \int_0^{t-r} \int_{-\infty}^\infty K_1(t-r-s) \phi_s(x-y) f(y) dy ds + \frac{1}{\sqrt{2\pi}} \int_0^t \int_0^{t-r} \int_{-\infty}^\infty K_1(t-r-s) \phi_s(x-y) f(y) dy ds + \frac{1}{\sqrt{2\pi}} \int_0^t \int_0^{t-r} \int_{-\infty}^\infty K_1(t-r-s) \phi_s(x-y) f(y) dy ds + \frac{1}{\sqrt{2\pi}} \int_0^t \int_0^{t-r} \int_{-\infty}^\infty K_1(t-r-s) \phi_s(x-y) f(y) dy ds + \frac{1}{\sqrt{2\pi}} \int_0^t \int_0^{t-r} \int_{-\infty}^\infty K_1(t-r-s) \phi_s(x-s) dy dy ds$

y)g(r, y)dydsdr for all $0 \le t < T_0$ and $x \in \mathbb{R}$, is the unique solution of

$$\begin{cases} \frac{\partial^2 u(t,x)}{\partial t^2} \\ = \sum_{j=0}^k a_j (\frac{\partial}{\partial x})^j u(t,x) + K_1(t) f(x) + \int_0^t K_1(t-s)g(s,x)ds \text{ for } t \in (0,T_0) \text{ and } a.e. \ x \in \mathbb{R}, \\ u(0,x) = 0 \text{ and } \frac{\partial u}{\partial t}(0,x) = 0 \quad \text{for } a.e. \ x \in \mathbb{R} \end{cases}$$

in $C^{2}([0, T_{0}), X) \cap C([0, T_{0}), [D(A)]).$

Acknowledgements: The author is grateful to the referee for his or her corrections and valuable suggestions.

References

- W. Arendt, C.J.K. Batty, H. Hieber and F. Neubrander, Vector-Valued Laplace Transforms and Cauchy Problems, (96), Birkhauser Verlag, Basel-Boston-Berlin, 2001.
- W. Arendt and H. Kellermann, Integrated Solutions of Volterra Integrodifferential Equations and Applications, Pitman Res. Notes Math. (190), Longman, Harlow, 1989, 21-51.
- [3] H.O. Fattorini, The Cauchy Problem, Addison-Wesley, Reading, Mass., 1983.
- [4] M.C. Gao Local C-Semigroups and C-Cosine Functions, Acta Math. Sci. 19 (1999) 201-213.
- [5] J.A. Goldstein, Semigroups of Linear Operators and Applications, Oxford, 1985.
- [6] F. Huang and T. Huang, Local C-Cosine Family Theory and Application, Chin. Ann. Math. 16 (1995) 213-232.
- [7] Z. Huang and S. Wang, Strongly Continuous Integrated C-Cosine Operator Function and the Application to the Second Order Abstract Cauchy Problem, Functional Analysis in China, Kluwer Academic Publishes, Holland, 1996, 330-350.
- [8] M. Kostic, Generalized Semigroups and Cosine Functions, Mathematical Institute Belgrade, 2011.
- [9] M. Kostic, (a,k)-Regularized (C_1 , C_2)-Existence and Uniqueness Families, Bull.Cl.Sci.Math. 38 (2013) 9-26.
- [10] M. Kostic, Abstract Volterra Integro-Differential Equations, Taylor and Francis Group, 2015.
- [11] C.-C. Kuo and S.-Y. Shaw, C-Cosine Functions and the Abstract Cauchy Problem I, II, J. Math. Anal. Appl. 210 (1997) 632-646, 647-666.
- [12] C.-C. Kuo, On α-Times Integrated C-Cosine Functions and Abstract Cauchy Problem I, J.Math.Anal. Appl. 313 (2006) 142-162.
- [13] C.-C. Kuo, On Existence and Approximation of Solutions of Second Order Abstract Cauchy Problem, Taiwanese J. Math.14(3B) (2010) 1093-1109.
- [14] C.-C. Kuo, On Local Integrated C-Cosine Function and Weak Solution of Second Order Abstract Cauchy Problem, Taiwanese J. Math. 14(5) (2010) 2027-2042.
- [15] C.-C. Kuo, On Perturbation of Local Integrated Cosine Functions, Taiwanese J. Math. 16(5) (2012) 1613-1628.
- [16] C.-C. Kuo, Note On Local Integrated C-Cosine Functions and Abstract Cauchy Problems, Taiwanese J. Math. 17(3) (2013) 957-980.
- [17] Y.-C. Li and S.-Y. Shaw, On Generators of Integrated C-Semigroups and C-Cosine Functions, Semigroup Forum 47 (1993) 29-35.
- [18] S.-Y. Shaw and Y.-C. Li, On *N*-Times Integrated C-Cosine Functions, Evolution Equation, Dekker, New York, 1994, 393-406.
- [19] S.-Y. Shaw and Y.-C. Li, Characterization and generator of local C-Cosine and C-Sine Functions, Inter. J. Evolution Equations 1(4) (2005) 373-401.
- [20] Sova, Cosine Operator Functions, Rozprawy Mat. 49 (1966) 1-47.
- [21] T. Takenaka and S. Piskarev, Local C-Cosine Families and N-Times Integrated Local Cosine Families, Taiwanese J. Math. 8 (2004) 515-546.
- [22] H.-Y. Wang, C-Cosine Operator Functions and the Second Order Abstract Cauchy Problem, Northeast Math. J. 11(1) (1995) 1-10.
- [23] S.-W. Wang and Z. Huang, Strongly Continuous Integrated C-Cosine Operator Functions, Studia Math. 126 (1997) 273-289.
- [24] T.-J. Xiao and J. Liang, The Cauchy Problem for Higher-Order Abstract Differential Equations, Lectures Notes in Math. (1701), Springer, 1998.
- [25] R. Zhao and Z. Huang, Properties of Subgenerators of Integrated C-Cosine Operator Functions, Northeast Math. J. 14(3) (1998) 281-290.
- [26] Q. Zheng, Coercive Differential Operators and Fractionally Integrated Cosine Functions, Taiwanese J. Math. 6 (2002) 59-65.