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Local K-Convoluted C-Cosine Functions and Abstract Cauchy Problems
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Abstract. Let K : [0,T;) — F be a locally integrable function, and C : X — X a bounded linear operator
on a Banach space X over the field F(=RR or C). In this paper, we will deduce some basic properties of
a nondegenerate local K-convoluted C-cosine function on X and some generation theorems of local K-
convoluted C-cosine functions on X with or without the nondegeneracy, which can be applied to obtain
some equivalence relations between the generation of a nondegenerate local K-convoluted C-cosine function
on X with subgenerator A and the unique existence of solutions of the abstract Cauchy problem: u"(t) =
Au(t) + f(t) for a.e. t € (0,Tp), u(0) = x, u'(0) = y when K is a kernel on [0, Tj), C : X — X an injection,
and A : D(A) € X — X a closed linear operator in X such that CA ¢ AC. Here 0 < Ty < o0, x,y € X, and
f € Lip([0, To), X).

loc

1. Introduction

Let X be a Banach space over the field IF(=R or C) with norm || - ||, and let L(X) denote the family of
all bounded linear operators from X into itself. For each 0 < Ty < oo, we consider the following abstract
Cauchy problem:

u’(t) = Au(t) + f(t) fora.e. t€(0,Tp),
ACP(A, f,x,y) {u(O) —x(0) =y,

where x, y € X, A : D(A) ¢ X — X s a closed linear operator, and f € L}OC([O, To), X). A function u is called a
(strong) solution of ACP(A, f,x,y)if u € CL([0, Ty), X) satisfies ACP(A, f,x,y) (thatis u(0) = x, u’(0) = y and
fora.e. t € (0,Ty), u'(t) is differentiable and u(t) € D(A), and u” (t)=Au(t)+f(t) for a.e. t € (0, Ty)). For each
Cel(X)and K € L}OC([O, To), IF), a subfamily C(-)(= {C(t)|0 < t < Top}) of L(X) is called a local K-convoluted
C-cosine function on X if C(') is strongly continuous, C(-)C = CC(:), and satisfies

2C(H)C(s)x = (fo‘m - j: - fos) K(t + s — r)C(r)Cxdr + ﬁ:l K(s — t + r)C(r)Cxdr

[t—sl|
+ f K(t — s + r)C(r)Cxdr + f K(|t — s| + r)C(r)Cxdr
[t=s] 0
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forall0 <t,s,t+5 < Ty and x € X (see [8]). In particular, C(*) is called a local (O-times integrated) C-cosine
function on X if K = j_;(the Dirac measure at 0) or equivalently, it is strongly continuous, C(-)C = CC(-), and
satisfies

2C(HC(s)x = C(t+s)Cx+ C(t —s[)Cx  forall0<t,s,t+s<Tpand x € X

(see [4,6,19,21]). Moreover, we say that C(-) is nondegenerate, if x = 0 whenever C(t)x = 0 for all 0 < t < Ty.
The nondegeneracy of a local K-convoluted C-cosine function C(-) on X implies that

C(0) = Cif K = j_1, and C(0) = 0 (the zero operator on X) otherwise,

and the (integral) generator A : D(A) € X — X of C(*) is a closed linear operator in X defined by
D(A) = {x € X| there exists a y, € X such that C(-)x — Ko(-)Cx = g(-)yx on [0, Ty)}

and Ax = y, for all x € D(A). Here Kg(t) = K * jg(t) = fot K(t — s)jp(s)ds for B > —1 with jg(t) = #il) and the

Gamma function I'(:), S(s)z = fos C(r)zdr, and S(t)z = fot S(s)zds. In general, a local K-convoluted C-cosine
function on X is called a K-convoluted C-cosine function on X if Ty = oo; a (local) K-convoluted C-cosine
function on X is called a (local) K-convoluted cosine function on X if C = I(the identity operator on X) or a
(local) a-times integrated C-cosine function on X if K = j,—1 for some a > 0 (see [12-14,16]); a (local) a-times
integrated C-cosine function on X is called a (local) a-times integrated cosine function on X if C = I (see
[15]); and a (local) C-cosine function on X is called a cosine function on X if C = I (see [1,5]). Moreover, a
local a-times integrated cosine function on X is not necessarily extendable to an a-times integrated cosine
function on X except for a = 0 (see [5]), the nondegeneracy of a local a-times integrated C-cosine function
on X does not imply the injectivity of C except for Ty = oo (see [12]), and the injectivity of C does not imply
the nondegeneracy of a local a-times integrated C-cosine function on X except for & = 0 (see [19]). Some
basic properites of a nondegenerate (local) a-times integrated C-cosine function on X have been established
by many authors in [11,22] when a = 0, in [7,17-18,23-24] when a € N, in [12] when «a > 0 is arbitrary with
To = oo and in [16] for the general case 0 < T < oo, which can be applied to deduce some equivalence
relations between the generation of a nondegenerate (local) a-times integrated C-cosine function on X with
subgenerator A (see Definition 2.4 below) and the unique existence of strong or weak solutions of the
abstract Cauchy problem ACP(4, f, x, y) (see the results in [7,12] for the case Ty = oo and in [13-14,16] for
the general case 0 < Ty < o). The purpose of this paper is to investigate the following basic properties of
a nondegenerate local K-convoluted C-cosine function C(-) on X when C is injective and some additional
conditions are taken into consideration.

CAC = A; (1)

S(Hx € D(A) and AS(f)x = C(t)x — Ko(t)Cx forallx € X and 0 <t < T; )

C(t)x e D(A) and AC(t)x = C(t)Ax forallx € D(A) and 0 <t < Ty; (3)
and

C(t)C(s) = C(s)C(t) forall0<t,s, t+s<Ty 4)

(see Theorems 2.7 and 2.11, and Corollary 2.12 below). We then deduce some equivalence relations between
the generation of a nondegenerate local K-convoluted C-cosine function on X with subgenerator A and the
unique existence of strong solutions of ACP(A4, f, x, y) in section 3 just as results in [16] concerning some
equivalence relations between the generation of a nondegenerate local a-times C-cosine function on X with
subgenerator A and the unique existence of strong solutions of ACP(4, f, x, y). To do these, we will prove an
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important lemma which shows that a strongly continuous subfamily C(-) of L(X) is a local K-convoluted C-

cosine function on X is equivalent to say that 5(-) is alocal Ky -convoluted C-cosine function on X (see Lemma
2.1 below), and then show that a strongly continuous subfamily C(-) of L(X) which commutes with C on X

is a local K-convoluted C-cosine function on X is equivalent to say that S (t)[C(s) Ko(s)C]=[C(t) - Ko(t)C]S(s)
forall0 <t,s,t +s < Ty (see Theorem 2.2 below). In order, we show that a = C(-) is a local a * K-convoluted
C-cosine function on X if C() is a local K-convoluted C-cosine function on X and a € Lloc([O, To),F). In
particular, jg = C(:) is a local Kg-convoluted C-cosine function on X if C(-) is a local K-convoluted C-cosine
function on X and B > —1 (see Proposition 2.3 below), where f * C(t)x = fot f(t —s)C(s)xds for all x € X and

fe LIDC([O, To), IF). We also show that a strongly continuous subfamily C(-) of L(X) which commutes with C
on X is a local K-convoluted C-cosine function on X when C(-) has a subgenerator (see Theorem 2.5 below),
which had been proven in [8] by another method similar to that already employed in [12] in the case that
C(-) has a closed subgenerator and C is injective; and the generator of a nondegenerate local K-convoluted
C-cosine function C(-) on X is the unique subgenerator of C(-) which contains all subgenerators of C(-) and
each subgenerator of C(') is closable and its closure is also a subgenerator of C(-) when C(-) has a subgenerator
(see Theorems 2.7 and 2.11, and Corollary 2.12 below). This can be applied to show that CA ¢ AC and C(-)
is a nondegenerate local K-convoluted C-cosine function on X with generator C"!AC when C is injective,
Ky a kernel on [0, Ty) (that is, f = 0 on [0, Ty) whenever f € C([0, Ty), F) with fot Ko(t = s)f(s)ds = 0 for all
0 <t < Tp) and C(-) a strongly continuous subfamily of L(X) with closed subgenerator A. In this case,
C1A,C s the generator of C(+) for each subgenerator A of C(-) (see Theorem 2.13 below). Some illustrative

examples concerning these theorems are also presented in the final part of paper.
2. Basic Properties of Local K-Convoluted C-Cosine Functions

We will deduce an important lemma which can be applied to obtain an equivalence relation between
the generation of a local K-convoluted C-cosine function C(-) on X and the equation

g(t)[C(s) — Ko(s)C] = [C(¢t) - Ko(t)C]g(S) forall0 <t,s,t+s < Ty, (5)

(see a result in [16] for the case of local a-times integrated C-cosine function and a corresponding statement
in [9] for the case of (a, k)-regularized (C;, Cy)-existence and uniqueness family). Lemma 2.1 Let C(-) be a

strongly continuous subfamily of L(X). Then C(-) is a local K-convoluted C-cosine function on X if and only if S()is
a local Ki-convoluted C-cosine function on X.

Proof. We will show that

t+s t S t
i |(f - f —f )Kl(t +5— r)§(r)der + f Ki(s—t+ r)g(r)der
dt |\Jo 0 0 lt=s]

S _ |t—s| _
+ f Kq(t — s + 7)S(r)Cxdr + f Ki(|t —s| + r)S(r)der]
| 0

t—s|

t+s t S t
= (f - f - f )Ko(t +s— r)g(r)der +sgn(s — t) Ko(s—t+ r)§(r)der
0 0 0 =

S _ |t—s| .
+ sgn(t —s) f Ko(t = s + 7)S(r)Cxdr + f Ko(|t = s| + r)S(r)Cxdr
0

[t

t s _
ar [( f f f )Kl(t+s—r)5(r)cxdr+ ﬁ S|K1(S—t+r)5(r)der+ ﬁ _SlKl(t—s+r)S(r)der

|t—s| . .
+ f Ky()t —s| + r)S(r)der] + 2K (s)S(t)Cx
0

and
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t+s t s ; .
= (f - f - f )K(t +5 — 1)S(r)Cxdr + f K(s — t + )S(r)Cxdr + f K(t - s + 1)S(r)Cxdr
0 0 0 el .

[t _
+fo‘t K(|t — s| + r)S(r)Cxdr (7)

forallx e Xand 0 < t,s,t +s < Ty, where sgn(t) = 1if 0 < t, sgn(0) = 0, and sgn(t) = -1 if t < 0. Indeed, for
0<s<t<Tywitht+s < Ty, wehave

d t+s t S _ ; B . B
7 [(f(; - j(; - j{; )Kl(t + s —1)S(r)Cxdr + f;—s Ki(s — t + r)S(r)Cxdr + fo Ki(t—s+ r)S(r)der]

= [(f e f ) j‘s) Kot + s — )S(r)Cxdr — K1(S)§(t)Cx] + |K1(s)§(t)Cx - f Ko(s —t+ r)g(r)der]
0 o Jo .

+ f Ko(t — s + 1)S(r)Cxdr
0

i (j(;m B fot B ﬁs) Ko(t + s — )S(r)Cxdr

+sgn(s — t) f|;_ | Ko(s—t+ r)g(r)der + sgn(t —s) Ko(t —s+ r)g(r)der

|t=s]

t—s| ~
+ f Ko(lt — s| + 1)S(r)Cxdr
0

t+s t S s s
% [(j(; - ](; - jo‘ )Ko(t +5— r)g(r)der - LS Ko(s — t + 7)S(r)Cxdr + fo Ko(t — s + 1)S(r)Cxdr

+ 2Ky (s)S(#)Cx

=( fo " j; i fo) K(t + s — 1)S(r)Cxdr — 2Ko(s)S(t)Cx + L S K(s — t + )S(r)Cxdr

+ f S K(t — s + r)S(r)Cxdr + 2Ky (s)S(£)Cx
0

= (]0‘ +s B fo ) f:) K(t + s — 1)S(r)Cxdr + LS K(s — t + r)S(r)Cxdr + fo K(t — s + r)S(r)Cxdr
t+s t s .
= (f —f —f )K(t +5—1)S(r)Cxdr + f K(s — t + r)S(r)Cxdr
’ 00 sl

S ~ |t—s]| .
+ f K(t — s + r)S(r)Cxdr + f K(|t — s| + r)S(r)Cxdr.
0

|t—s|

and

That is, (6) and (7) both hold for all 0 < s < t < T with t + 5 < Tj. Similarly, we can show that (6) and (7)
both also hold when 0 < t <5 < Ty with t + s < Ty. Clearly, the right-hand side of (7) is symmetric in ¢,s
with 0 < t,s,t +s < Ty. It follows that

% [(f(; +s —jo‘ ~ jo‘s) Ki(t+s— r)g(r)der + f|;—s| Ki(s—t+ r)§(r)der

— {t=s — —
+ f Ky(t = s + r)S(r)Cxdr + f Ky(t —s| + r)S(r)der] + 2Ky (t)S(s)Cx
|t-s| 0
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t+s t S t
:( fo - fo - fo )K(t+s—r)§(r)der+ ﬁ _S‘K(s—t+r)§(r)der

S . |t—s| .
+ f K(t — s + r)S(r)Cxdr + j(; K(|t = s| + 7)S(r)Cxdr (8)

[t—s]|

forall x € Xand 0 <¢,s,t + s < Ty. Using integration by parts twice, we obtain

t+s t S t
(f - f - f )K(t +s— r)g(r)der + f K(s—t+ r)g(r)der
0 0 0 [£=s]

—_ |t—s| _
+ j;_ﬂ K(t — s + r)S(r)Cxdr + f(; K(|t — s| + P)S(r)Cxdr

t+s t S t
= (f - f - f )Kl(t +5 —r)C(r)Cxdr + f Ki(s =t + r)C(r)Cxdr ®
0 0 0 lt=s|

S |t—s|
+ f Ky(t — s + r)C(r)Cxdr + f Ky (|t = s| + r)C(r)Cxdr
0

|t=s|

+ 2Ko(£)S(s)Cx + 2Ko(5)S(+)Cx
forallx € Xand 0 <t,s,t + s < Ty. Suppose that §(-) is a local K;-convoluted C-cosine function on X. Then
we have by (8)-(9) that

25(+)C(s)x = 2d—22§(t)§(s)x
ds

t+s t S
:(f —f —f )K1(t + s —r)C(r)Cxdr
0 0 0

t S
+ f Ki(s =t + r)C(r)Cxdr + f Ki(t — s + r)C(r)Cxdr

[t—s]| |t—s]|

|t—s| .
+ f Ky(Jt — s| + r)C(r)Cxdr + 2Ko(s)S(t)Cx
0

forallx e Xand 0 <t,s,t +s < Ty, so that

2 __

2C()C(s)x :Z%S(t)C(s)x

= (f " —f - fs) K(t + s — r)C(r)Cxdr + f K(s — t + r)C(r)Cxdr (10)
0 0 0 [t=s|

s [t—s]
+ f K(t — s + r)C(r)Cxdr + f K(|t — s| + r)C(r)Cxdr
| 0

t—s|

forallx € Xand 0 <t,s,t +s < Ty. Hence, C(:) is a local K-convoluted C-cosine function on X. Conversely,
let C(-) be a local K-convoluted C-cosine function on X. We will apply Fubini’s theorem for double integrals
twice to obtain

2C(t)§(s)x = [(L " —fo - f:) Ki(t +s —r)C(r)Cxdr + f|;— |I<1(s —t+7)C(r)Cxdr

s [t —
+ f Kq(t — s + r)C(r)Cxdr + f Ky(Jt —s| + r)C(r)der] + 2Ky (t)S(s)Cx
| 0

t—s|

(11)
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forallx € Xand 0 < t,5,t +s < Ty. Let x € X be given, then for 0 < ¢,s,f +s < Tp with t > 5, we have

T t+A
f f K(t + A —r)C(r)CxdrdA
0 Jt
t+T T
= f f K(t + A = r)C(r)CxdAdr (12)
t r—t
t+T

= f Ko(t +7T—- T’)C(T)CXdr/
t

T A
f f K(t+ A = r)C(r)CxdrdA
0o Jo

= fT fT Kt + A — r)C(r)CxdAdr (13)
0 r

= fT Ko(t + 7 — )C(r)Cxdr — Ko(£)S(7)Cx,
0

T t
f f K(A =t +7)C(r)CxdrdA
0 Jr-a

t T
= f f K(A — t + r)C(r)CxdAdr (14)
t—1 Jt-r
=f Ko(t — t + r)C(r)Cxdr,
t—1
and
T A
f f K(t = A+ r)C(r)CxdrdA
0o Jo
= fT fT K(t — A + r)C(r)CxdAdr (15)
0 r
=Kp(#)S(7)Cx — fT Ko(t =t + r)C(r)Cxdr
0

for all 0 < 7 <'s. Observe that (12)-(15) also imply

S t+T t+s
f f Ko(t + 1t —r)C(r)Cxdrdt = f Ki(t + s — r)C(r)Cxdr, (16)
0 t t

fs [fT Ko(t + T — r)C(r)Cxdr — Ko(f)S(T)Cx] dt
0 LJo (17)

= [fs Ky(t + s —r)C(r)Cxdr — Kl(t)S(s)Cx] - Ko(t)g(s)Cx,
0

S t t
f f Ko(t — t + 1)C(r)Cxdrdt = f Ki(s —t + r)C(r)Cxdr, (18)
0 t—1 t—s
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and

f[Ko(t)S(T)Cx - fT Ko(t — 7 + r)C(r)Cxdr]dt
’ (19)
=K0(t)§(s)Cx + [f Ki(t — s + r)C(r)Cxdr — K1(£)S(s)Cx].
0

Combining (16)-(17), we obtain (11) forall 0 < t,s,t +s < Ty with t > s. Similarly, we can show that (11) also
holds when 0 < t,s,t +5 < Ty with s > t. By (7), (9) and (11), we have

2C(H)S(s)x

d2 t+s t S .
:E[(]O‘ _fo —jo‘)Kl(t+s—r)S(r)der
t

+ f Ki(s—t+ r)g(r)der + f Ki(t—s+ r)§(r)der
[t

[t=s]

[t—sl| .
+ f Kq(Jt — s| + r)S(r)Cxdr]
0

forall x € Xand 0 < t,5,t +s < Typ. Combining this and (6) with ¢ = 0, we conclude that §(~) is a local
K;i-convoluted C-cosine function on X. [

Theorem 2.2 Let C(-) be a strongly continuous subfamily of L(X) which commutes with C on X. Then C(-) is a local
K-convoluted C-cosine function on X if and only ifg(t)[ C(s)—Ko(s)C]=[ C(t)-Ko(t)C ]g(s)for all0 <t s, t+s < Ty.
Proof. Let C() be a local K-convoluted C-cosine function on X. By (7) and (8), we have 2C(t)§(s)x +
2Ko(s)S(H)Cx = 25(t)C(s)x + 2Ko(£)S(s)Cx for all x € X and 0 < t,5,t +s < T, or equivalently, S(£)[C(s) —
KO(S)C]=[C(t)—Ko(t)C]g(s) forall0 <t,s,t+s < Ty. Conversely, suppose that (5) holds forall 0 < t,s, t+s < Tj.
Then S(£)C(s)x — C()S(s)x = Ko(5)S(#)Cx — Ko(t)S(s)Cx for all x € X and 0 < t,5,t +s < Tp. Fix x € X and
0<ts,t+s<Tywitht >s. Then we have

g(t +s5s—1)C(r)x —C(t +s— r)g(r)x

— — (20)
=Ko(r)S(t + s — r)Cx — Ko(t + s — r)S(r)Cx
forall0 <r <t and
S(s—t+r)C(rx—C(s—t+7r)S(r)x 1)

=K0(r)§(s —t+7)Cx—Ko(s—t+ r)g(r)Cx

for all t — s < r < t. Using integration by parts to left-hand sides of the integrations of (20)-(21) and change
of variables to right-hand sides of the integrations of (20)-(21), we obtain

t+s t S
§(s)5(t)x+5(s)§(t)x:( fo - fo - fo )Ko(t+s—r)'§(r)der

—_— —_— S —_— t —_—
S(s)S(t)x — S(s)S(t)x = fo Ko(t — s + r)S(r)Cxdr — j; Ko(s — t + r)S(r)Cxdyr,

and
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so that

. t+s t S ~
25(s)S = - - K —1)S(r)Cxd
(s)S(t)x (f(; jo‘ ]{;) o(t +s —1)S(r)Cxdr

- f Ko(s—t+ r)g(r)der + f Ko(t —s+ r)g(r)der.
t—s 0

Hence,

2§(s)C(t)x=( fo v fo - fo S)K(t+s—r)§(r)der+ ft_ K(s — t + 1)S(r)Cxdr

+ f S K(t — s + r)S(r)Cxdr — 2Ky (s)S(#)Cx,
0

which implies that

t+s t S
2§(S)C(t)x+21<0(s)§(t)Cx=( fo - fo - fo )K(t+s—r)§(r)der

t S
+ f K(s — t + )S(r)Cxdr + f K(t - s + 1)S(r)Cxdr (22)

|t=s]| |t—s]|

It-s| _
+ f K(|t = s| + 7)S(r)Cxdr.
0

Similarly, we can show that (22) also holds when x € X and 0 < t,s,t + 5 < Ty with s > t. Combining this
with (7), we have

. d2 t+s t S . t .
25(s)C(t)x =n [(j(; —f(; —f(; )Kl(t + s —1)S(r)Cxdr + j;—s Ki(s — t + r)S(r)Cxdr

s . |t—s]| .
+ f Kq(t — s + 7)S(r)Cxdr + fo Ky(jt —s| + r)S(r)der] .

|t=s]

forallx € X and 0 < ¢,5,t + 5 < Ty. Consequently, §(-) is a local Kj-convoluted C-cosine function on X.
Combining this with Lemma 2.1, we get that C(-) is a local K-convoluted C-cosine function on X. [

By slightly modifying the proof of [16, Proposition 2.3], the next result concerning local K-convoluted
C-cosine functions on X is also attained.
Proposition 2.3 Let C(-) be a local K-convoluted C-cosine function on X and a € L}DC([O, To),IF). Then a=C(:)isa
local a* K-convoluted C-cosine function on X. In particular, for each p > —1 jg = C(-) is a local Kg-convoluted C-cosine
function on X. Moreover, C(-) is a local K-convoluted C-cosine function on X if it is a strongly continuous subfamily
of L(X) such that S(-) is a local Ko-convoluted C-cosine function on X.

Definition 2.4 Let C(-) be a strongly continuous subfamily of L(X). A linear operator A in X is called a subgenerator
of CC) if

t S
C(t)x — Ko(H)Cx = I) f; C(r)Axdrds (23)

forall x € D(A) and 0 < t < Ty, and

t S t S
_ _ 24
ﬁLC(r)xdrdseD(A) andAfO fo C(r)xdrds = C(t)x — Ko(t)Cx (24)
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forallx € Xand 0 <t < Ty. A subgenerator A of C(:) is called the maximal subgenerator of C(-) if it is an extension
of each subgenerator of C(-) to D(A).

Applying Theorem 2.2, we can obtain the next result concerning the generation of a local K-convoluted
C-cosine function C(-) on X, which had been proven in [8] by another method similar to that already
employed in [12] in the case that C(-) has a closed subgenerator and C is injective.

Theorem 2.5 Let C(-) be a strongly continuous subfamily of L(X) which commutes with C on X. Assume that C(-)
has a subgenerator. Then C(-) is a local K-convoluted C-cosine function on X. Moreover, C(-) is nondegenerate if the
injectivity of C is added and Ky is a non-zero function on [0, Ty).

Proof. Let A be a subgenerator of C(-). By (24), we have
[C(t) — Ko(HCIS()x = S(HAS()x = S(HIC(-) — Ko(-)Clx

on [0,Ty —¢t) forall x € X and 0 < t < Ty. Applying Theorem 2.2, we get that C(-) is a local K-convoluted
C-cosine function on X. Suppose that C is injective, Ky is a non-zero function, x € X and C(t)x = 0,
t € [0, Tp). By (24), we have Ko(-)Cx = 0 on [0, Tp), and so Cx = 0. Hence, x = 0, which implies that C(-) is
nondegenerate. [J

Lemma 2.6 Let A be a closed subgenerator of a strongly continuous subfamily C(-) of L(X), and Koy a kernel on [0, to)
(or equivalently, K is a kernel on [0, tg)) for some 0 < ty < Ty. Assume that C is injective and u € C([0, ty), X) satisfies
u(-) = Aj1 = u(-) on [0, t9). Then u = 0 on [0, ty).

Proof. We observe from (23) and (24) that A fot fOS C(r)xdrds = fot fos C(r)Axdrds forallx € D(A)and 0 < t < T.
Combining this with the closedness of A, we have C(t)Ax = AC(t)x for all x € D(A) and 0 < t < Ty, and

SO f(f C(t — s)u(s)ds = fot C(t = 5)Aj1 * u(s)ds = fOtAC(t —5)j1 * u(s)ds = Af(; C(t = s)j1 * u(s)ds = AS u(t) =

fot C(t — s)u(s)ds — Cfot Ko(t = s)u(s)ds for all 0 < t < ty. Hence, fot Ko(t = s)u(s)ds = 0 for all 0 < t < t5, which
implies that u(t) =0forall0 <t <t,. O

Theorem 2.7 Let C(-) be a nondegenerate local K-convoluted C-cosine function on X with generator A. Assume that
C(-) has a subgenerator. Then A is the maximal subgenerator of C(-), and each subgenerator of C(-) is closable and its
closure is also a subgenerator of C(-). Moreover, if C is injective. Then (1)-(3) hold, and (4) also holds when Ky is a
kernel on [0, Ty) or Ty = oo.

Proof. Let B be a subgenerator of C(-). Clearly, B C A. It follows that C(t)z — Ko(t)Cz = B ﬂ fos C(r)zdrds =

A fot fos C(r)zdrds for all z € X and 0 < t < Ty, which together with the definition of A implies that A
is also a subgenerator of C(-). To show that each subgenerator of C(:) is closable and its closure is also
a subgenerator of C(-). We will show that B is closable. Let x4 € D(B), xx — 0, and Bxx — y in X.
Then xx € D(A) and Axy = Bxy — y. By the closedness of A, we have ¥ = 0. In order to show that B
is a subgenerator of C(-). Let x € D(B) be given, then x; — x and Bxy — Bx in X for sequence {x:};",
in D(B). By (23), we have C(f)x; — Ko(t)Cxy = fot fos C(r)Bxydrds for all k € IN and 0 < t < Tj. Letting
k — oo, we get that C(t)x — Ko(t)Cx = fot fos C(r)Bxdrds for all 0 < t < Ty. Since B C B, we also have

Ct)z — Ko(t)Cz = B fot fos C(r)zdrds = B fot fos C(r)zdrds for all z € X and 0 < t < Tp. Consequently, the
closure of B is a subgenerator of C(-). To show that A is the maximal subgenerator of C(-). We will apply
Zorn’s lemma to show that C(-) has a subgenerator which does not have a proper extension that is still
a subgenerator of C(-). To do this. Let ¥ be the family of all subgenerators of C(-). We define a partial
order “C” on ¥ by f C g if g is an extension of f to D(g). Suppose that A is a chain of . Define
Ap : D(Ag) € X — X by D(Ag) = UseaD(f) and Agx = fx whenever x € D(Ag) with x € D(f) for some
f € A, then Ay is well-defined and a subgenerator of C(:), and so Ay is an upper bound of A in (¥,C). By
Zorn’s lemma, (¥,C) has a maximal element B which is a subgenerator of C(-), and does not have a proper
extension that is still a subgenerator of C(-). In particular, B ¢ A. Similarly, we can show that B is the
maximal subgenerator of C(-), which implies that A C B. Clearly, (2) and (3) both hold because A is the
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maximal subgenerator of C(-). To show that (1) holds when C is injective, we will show that A ¢ C"'AC or
equivalently, CA C AC. Let x € D(A) be given, then K(t)Cx = S(t)x — j1 * S(t)Ax € D(A) and
AKy(HCx =AS(t)x — Ajy » S()Ax
=AS(t)x — [S(t)Ax — K»(H)CAx]
=K,(+)CAx

forall 0 < t < Ty, so that CAx = ACx. Hence, CA c AC. In order to show that C"!AC c A. Letx € D(C"'AC)
be given, then Cx € D(A) and ACx € R(C). By the definition of generator and the commutativity of C with

C(-), we have C[C(Hx—Ko(f)Cx] = C()Cx—Ko(H)C%x = [ S(ACxdr = [ S()\CC'ACxdr = C [} S(r)C~ ACxdr.
Since C is injective, we have x € D(A) and Ax = C"'ACx. Consequently, A ¢ C"'AC. Finally, we will show
that (4) holds when K is a kernel on [0, Ty). Clearly, it suffices to show that S(£)S(s)x=5(s)S(t)x for all x € X

and 0 <t,5s < Ty. Letx € Xand 0 < s < T be given. By (3) and the closedness of A, we have
S()S(s)x = Aji + S()S(s)x =Ka(-)CS(s)x
=5(s)Ka()Cx
=S(S)[S()x = Aji * S(x]
=5(5)S(-)x — S(s)Aj1 * S()x
=5(s)S(-)x — Ajfi * S(s)S()x

on [0, To), and so [S(-)S(s)x = S(s)S()x] =Aj1 * [S()S(s)x — S(s)S(-)x] on [0, Ty). Hence, S(-)S(s)x = S(s)S(-)x on
[0, Tp), which implies that S(t)S(s)x=5(s)S(f)x forall 0 < t,s < Ty. I

Lemma 2.8 Let C(-) be a local K-convoluted C-cosine function on X, and 0 € suppKy (the support of Ko). Assume
that C(-)x = 0 on [0, to) for some x € X and 0 < ty < To. Then CC(-)x = 0 on [0, Ty). In particular, C(t)x = 0 for all
0 <t < Ty if the injectivity of C is added.

Proof. Let 0 < t < Ty be given, then t +s5 < Ty and Ky(s) is nonzero for some 0 < s < tp, so that
S(s)C(t)x=C(t)5(s)x=0, C(s)S(t)x=5(£)C(s)x=0 and S(s)Ko(t)Cx=Ko(t)CS(s)x= 0. By Theorem 2.2, we have
Ko(s)S()Cx=Ko(s)CS(t)x = 0. Hence, S()Cx = 0. Since 0 < t < Ty is arbitrary, we have CC(t)x = C(t)Cx = 0
forall 0 <t < Ty. In particular, C(t)x = 0 for all 0 < t < Ty if the injectivity of C is added. [

Theorem 2.9 Let C(-) be a local K-convoluted C-cosine function on X, and 0 € suppKo. Assume that C is injective.
Then C(-) is nondegenerate if and only if it has a subgenerator.

Proof. By Theorem 2.5, we need only to show that A is a subgenerator of C(-) when C(-) is a nondegenerate
local K-convoluted C-cosine function on X with generator A and 0 € suppKy. Observe (23)-(24) and the
definition of A, we need only to show that (23) holds. Let 0 < ¢y < Ty be fixed. Then for each x € X and

0 <s < Ty, wesety = S(t)x. By Theorem 2.2, we have

S(r)[C(s) - Ko(s)Cly =[C(r) — Ko(r)CIS(s)y
=5(s)[C(r) - Ko(NCly
=S(s)([C(r) - Ko(r)C]S(to)x)
=5()(S(r[C(to) — Ko(to)Clx)
=[S(s)S(MNIC(to) — Ko(to)Clx
=5(r)S(s)[C(to) — Ko(to)Clx
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forall 0 < r < Top with v + 5,7 + tp < Ty or equivalently, C(r)[C(s) — Ko(s)Cly = C(r)g(s)[C(to) — Ko (tg)Clx

forall 0 < v < Tp with r + 5,7 + ty < Tp. It follows from Lemma 2.8 and the nondegeneracy of C(-) that

we have [C(s) — Ko(s)Cly = S(s)[C(to) — Ko(to)Clx. Since 0 < s < Ty is arbitrary, we have y € D(A) and
y = [C(to) — Ko(tp)C]x. Since 0 < to < Ty is arbitrary, we conclude that (23) holds. O

By slightly modifying the proof of Theorem 2.9, we can obtain the next result concerning nondegenerate
K-convoluted C-cosine functions.
Theorem 2.10 Let C(-) be a nondegenerate K-convoluted C-cosine function on X. Then C is injective, and C(-) has a
subgenerator.

Combining Theorem 2.10 with Theorem 2.7, the next result concerning nondegenerate K-convoluted
C-cosine functions is also obtained.
Theorem 2.11 Let C(-) be a nondegenerate K-convoluted C-cosine function on X with generator A. Then A is the
maximal subgenerator of C(-), and each subgenerator of C(:) is closable and its closure is also a subgenerator of C(-)
Moreover, (1)-(4) hold.

Since 0 € suppKy implies that K is a kernel on [0, T), we can apply Theorems 2.7 and 2.9 to obtain the
next corollary.
Corollary 2.12 Let C(-) be a nondegenerate local K-convoluted C-cosine function on X with generator A, and
0 € suppKo. Assume that C is injective. Then A is the maximal subgenerator of C(-), and each subgenerator of C(-) is
closable and its closure is also a subgenerator of C(-). Moreover, (1)-(4) hold.
Theorem 2.13 Let A be a closed subgenerator of a strongly continuous sufamily C(-) of L(X), and Ko a kernel on
[0, To). Assume that C is injective. Then CA C AC, and C(-) is a nondegenerate local K-convoluted C-cosine function

on X with generator C"YAC. In particular, C""AyC is the generator of C(-) for each subgenerator Ag of C(-).

Proof. To show that C(-) is a nondegenerate local K-convoluted C-cosine function on X. By Theorem 2.5,
we need only to show that CC( ) = C( )C or equlvalently, CS( ) = S( )C. Just as in the proof of Theorem
2.7, we have CA c AC and [S( )Cx — CS( )x] =Aj* [S( )Cx — CS( )x] on [0, Tp). By Lemma 2.6, we also have

S( )Cx = CS( )x on [0, Tp). We will prove that C"*AC is the generator of C(-). Let B denote the generator of
C(-). By Theorem 2.7, we have A C B. By (1), we also have C"'AC c C~!BC = B. Conversely, let x € D(B) be

given, then K,(f)Cx = S(t)x — ji + S()Bx € D(A) for all 0 < t < Ty, so that Cx € D(A) and

AKy(-)Cx =AS(-)x — Ajy * S(-)Bx
=AS(-)x — [S(-)Bx — K»(-)CBx]
=AS(-)x — [BS(-)x — K»(-)CBx]
=K»(-)CBx

on [0, Ty). Hence, ACx = CBx € R(C), which implies that x € D(C"'AC) and C"'ACx = Bx. Consequently,
Bc C'AC. O

Corollary 2.14 Let C(-) be a nondegenerate local K-convoluted C-cosine function on X, and 0 € suppKy. Assume

that C is injective. Then C~'AoC is the generator of C(-) for each subgenerator Ag of C(-).
Remark 2.15 Let C(:) be a local K-convoluted C-cosine function on X. Then

(i) C() is nondegenerate if and only if S(-) is;
(ii) A is the generator of C(-) if and only if it is the generator of S(-);
(iii) A is a closed subgenerator of C(-) if and only if it is a closed subgenerator of S(-).

Remark 2.16 A strongly continuous subfamily of L(X) may not have a subgenerator; a local K-convoluted C-cosine
function on X is degenerate when it has a subgenerator but does not have a maximal subgenerator; and a closed linear
operator in X generates at most one nondegenerate local K-convoluted C-cosine function on X when C is injective and
Ko a kernel on [0, Tp).
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3. Abstract Cauchy Problems

In the following, we always assume that C € L(X) is injective, Ky a kernel on [0, Tj), and A a closed
linear operator in X such that CA ¢ AC. We also note some basic properties concerning the strong solutions
of ACP(4, f, x,y) just results in [12] when A is the generator of a nondegenerate (local) a-times integrated
C-cosine function on X.

Proposition 3.1. Let A be a subgenerator of a nondegenerate local Ko-convoluted C-cosine function C(-) on X. Then
for each x € D(A) C(-)x is the unique solution of ACP(A, K(-)Cx,0,0) in C([0, Tp), [D(A)]). Here [D(A)] denotes
the Banach space D(A) equipped with the graph norm |x|a = ||x|| + [|Ax|| for x € D(A).

Proposition 3.2. Let A be a subgenerator of a nondegenerate local K-convoluted C-cosine function C(-) on X and
Cl={xreX | C()x is continuously differentiable on (0, Ty)}. Then

(i) for each x € C* S(t)x € D(A) for a.e. t € (0, To);
(ii) for each x €C' S(-)x is the unique solution of ACP(A, K(-)Cx, 0, 0);
(iii) for each x € D(A) S(-)x is the unique solution of ACP(A, K(-)Cx, 0, 0)
in C'([0, To), [D(A))).

Proposition 3.3. Let A be the generator of a nondegenerate local K-convoluted C-cosine function C(-) on X and
x € X. Assume that C(t)x € R(C) for all 0 < t < To, and C™'C(-)x € C([0, To), X) is differentiable a.e. on (0, Ty).
Then C™1S(t)x € D(A) for a.e. t € (0, Ty), and C™S(-)x is the unique solution of ACP(A, K(-)x, 0, 0).

Proof. Clearly, S(-)x € CY([0, Ty), X), and C(-)x = CC~1C(-)x is differentiable a.e. on (0, Tj). By Theorem 2.11,
we have C%C’ls(t)x = 5—;S(t)x = AS(H)x + K(t)Cx = ACC1S(t)x + K(t)Cx for a.e. t € (0,Tp), so that for
a.e. t €(0,Ty), C1S(t)x € D(C'AC) = D(A) and %C‘ls(t)x = (CTAC)C1S(t)x + K(t)x = ACTIS(t)x + K(t)x.

Hence, C~'S(:)x is a solution of ACP(A, K(-)x,0,0). O

Applying Theorem 2.13, we can prove an important result concerning the relation between the gener-
ation of a nondegenerate local K-convoluted C-cosine function on X with subgenerator A and the unique
existence of strong solutions of ACP(4, f, x, y), which has been established by the author in [15] when
K = jy-1,in [12] when K = j,—q with Ty = oo, and in [11] when K = j_; and T = co.

Theorem 3.4. The following statements are equivalent :

(i) A is a subgenerator of a nondegenerate local K-convoluted C-cosine function C(-) on X;
(ii) foreachx € Xand g € L! ([0, To), X) the problem ACP(A, Ko(-)Cx + Ko * Cg(-), 0, 0) has a unique solution in

loc
C*([0, To), X) N C([0, To), [D(A)]);
(iii) for each x € X the problem ACP(A, Ko(-)Cx, 0, 0) has a unique solution in
C*([0, To), X) N C([0, To), [D(A)]);
(vi) for each x € X the integral equation v(-)=Aj1 = v(-) + Ko(-)Cx has a unique solution v(-; x) in C([0, To), X).

In this case, g(-)x +S g(+) is the unique solution of ACP(A, Ko(-)Cx + Ko * Cg(:), 0, 0) and v(-; x) = C()x.

Proof. We will prove that (i) implies (i7). Letx € Xand g € L ([0, To), X) be given. We set u(-) = g(')x +S# g(),

loc

then u € C*([0, To), X) N C([0, To), [D(A)]), (0) = w'(0) = 0, and
—_— t~
Au(t) =AS(H)x + Af S(t —s)g(s)ds
0
¢
=C(t)x — Ko(H)Cx + f [C(t = s) — Ko(t = 5)Clg(s)ds
0

¢

=C(t)x + f C(t — s)g(s)ds — [Ko(t)Cx + Ko * Cg(t)]
0

= (t) — [Ko()Cx + Ko * Cg(0)]
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forall 0 <t < Ty. Hence, u is a solution of ACP(A, Ko(-)Cx+Ko*Cg(-),0,0) in C2([0, To), X) NC([0, To), [D(A)]).
The uniqueness of solutions for ACP(A, Ko(-)Cx + Ko * Cg(:),0,0) follows directly from the uniqueness of
solutions for ACP(A4,0,0,0). Clearly, ”(i}) = (iii)” holds, and (iii) and (iv) both are equivalent. We remain
only to show that ”(iv) = (i)” holds. Let C(f) : X — X be defined by C(f)x = v(t;x) for all x € X and
0 <t < Ty. Clearly, C(-) is strongly continuous, and satisfies (24). Combining the uniqueness of solutions
for the integral equation v(-)=Aj; *v(-) + Ko(-)Cx with the assumption CA c AC, we have v(; Cx) = Co(-; x) for
each x € X, which implies that C(f) for 0 < t < T are linear, and commute with C. Let {tk}]‘;‘;l be an increasing
sequence in (0, To) such that t, — Ty, and C([0, Ty), X) a Frechet space with the quasi-norm | - | defined by

o] = ¥ 2k(1Hi|\|\kv||k) for v € C([0, Ty), X). Here ||v|; = rr[lgax] [lo(®)]] for all k € IN. To show that C(:) is a subfamily
k=1 te[0,t

of L(X), we need only to show that the linear map 1 : X — C([0, Ty), X) defined by n(x) = v(; x) for x € X, is
continuous or equivalently, n : X — C([0, To), X) is a closed linear operator. Let {x;};>, be a sequence in X
such that x; — xin X and n(xx) — vin C([0, Tp), X), then v(:; x¢)=Aj1 *v(-; xx) + Ko (-)Cxy on [0, Tp). Combining
the closedness of A with the uniform convergence of {n(x)};2, on [0, t], we have v(-)=Aj; * v(-) + Ko(-)Cx
on [0, Tp). By the uniqueness of solutions for integral equations, we have v(-)=v(:; x)=n(x). Consequently,
n: X — C([0, Tp), X) is a closed linear operator. To show that A is a subgenerator of C(-), we remain only to
show that S(t)A C AS(t) forall 0 < t < Ty. Let x € D(A) be given, then S(t)x — K»(#)Cx=Aj; = S(t)x=j1 * AS(t)x
forall0 <t < Ty, and so

S(HAx — Ajy *+ S(HAx =Kp(t)CAx
=AK>(t)Cx
=AS(t)x — Ajy * S(H)Ax
forall0 <t < Ty. Hence, Aj; * [§(-)_{4x - A§(-)x]=§(-)Ax - Ag(-)x on [0, Tp). By the uniqueness of solutions for

ACP(A,0,0,0), we have S(-)Ax=AS(-)x on [0, Ty). Applying Theorem 2.5, we get that C(-) is a nondegenerate
local K-convoluted C-cosine function on X with subgenerator A. [J

By slightly modifying the proof of [15, Theorem 3.5], we can apply Theorem 3.4 to obtain the next result.
Theorem 3.5. Assume that R(C) € R(A — A) for some A € FF, and ACP(A, K(-)x,0,0) has a unique solution in
C([0, To), [D(A)]) for each x € D(A) with (A — A)x € R(C). Then A is a subgenerator of a nondegenerate local
Ko-convoluted C-cosine function on X.

Proof. Clearly, it suffices to show that for each x € X the integral equation

- s

u(:) = Af f o(r)drds + K;(-)Cx (25)

0 Jo
has a (unique) solution v(:;x) in C([0, Ty), X). Let x € X be given, then there exists a y, € D(A) such that
(A = A)yx = Cx. By hypothesis, ACP(A, K(-)yx,0,0) has a unique solution u(; y,) in C([0, Tp), [D(A)]). In
particular, u”(-; yx) = Au(;; yx) +K()yx € L]loc([O, To), X). By the closedness of A and the continuity of Au(:; yx),
we have fot fos u(r; yx)drds € D(A) and
t S t S
Af f u(r; yy)drds :f f Au(r; yy)drds = u(t; yx) — Ki(t)yx € D(A)
0 Jo 0 Jo

forall 0 <t < Ty, so that

(= Ayu(t; y2) =(A - A)[A f f s y)drds + Ky ]
0o Jo (26)

t S
=AL fo (A = A)u(r; yy)drds + Ky (£)Cx

forall 0 <t < Ty. Hence, v(;; x) = (A — A)u(-; yy) is a solution of (25) in C([0, Ty), X). O
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Combining Theorem 3.4 with Theorem 3.5, the next theorem is also attained.
Theorem 3.6. Assume that R(C) € R(A — A) for some A € [F, and ACP(A, K(-)x,0,0) has a unique solution in
C'([0, To), [D(A)]) for each x € D(A) with (A — A)x € R(C). Then A is a subgenerator of a nondegenerate local
K-convoluted C-cosine function on X.

Proof. Let x € X be given, and let u(-; y,) and v(-; x) be given as in the proof of Theorem 3.5. By hypothesis,
v(-; x) is continuously differentiable on [0, Tp) and v’ (¢; x) = (A — A)u’(t; yx) for all 0 < t < Ty. By (26), we also
havev'(t;x) = A fot o(r; x)dr + Ko(#)Cx for all 0 < t < Ty. In particular, v’(0; x) = 0, and so v'(-; x)=Aj1 *v’'(-; x) +
Ko(-)Cx on [0, Ty). Hence, v'(-;x) is a (unique) solution of the integral equation v(-)=Aj; * v(-) + Ko(-)Cx in
C([Or TO)/ X) 0

Since C'AC = A and R((A — A)™'C) = C(D(A)) if p(A) # 0, we can apply Proposition 3.1, Theorem 3.5
and Theorem 3.6 to obtain the next two corollaries.

Corollary 3.7. Assume that the resolvent set of A is nonempty. Then A is the generator of a nondegenerate local
Ko-convoluted C-cosine function on X if and only if for each x € D(A) ACP(A, K(-)Cx, 0, 0) has a unique solution in
C([0, To), [D(A)])-

Corollary 3.8. Assume that the resolvent set of A is nonempty. Then A is the generator of a nondegenerate local
K-convoluted C-cosine function on X if and only if for each x € D(A) ACP(A, K(-)Cx, 0, 0) has a unique solution in
CH([0, To), [D(A)]).

Just as in [15, Theorems 3.9 and 3.10], we can apply Theorem 3.4 to obtain the next two wellposed theo-
rems. The wellposedness of abstract fractional Cauchy problems and abstract Cauchy problems associated
with various classes of Volterra integro-differential equations in locally convex spaces have been recently
considered in [10].

Theorem 3.9. Assume that A is densely defined. Then the following are equivalent :

(i) A is a subgenerator of a nondegenerate local Ko-convoluted C-cosine function S(-) on X;

(ii) for each x € D(A) ACP(A, K(-)Cx, 0, 0) has a unique solution u(-; Cx) in
C([0, To), [D(A)]) which depends continuously on x. That is, if {x,},; , is a Cauchy sequence in (D(A), || - |I),
then {u(-; Cxy)},;_, converges uniformly on compact subsets of [0, Ty).

Proof. (i)=(ii). It is easy to see from the definition of a subgenerator of 5(-) that S5(-)x is the unique solution
of ACP(A, K(-)Cx,0,0) in C([0, To), [D(A)]) which depends continuously on x € D(A). (ii)=(i). In view of
Theorem 3.4, we need only to show that for each x € X (25) has a unique solution v(-; x) in C([0, Ty), X). Let
x € X be given. By the denseness of D(A), we have x,, — x in X for some sequence {x,,}>>_, in D(A). We set
u(-; Cx,;) to denote the unique solution of ACP(A, K(-)Cx,,, 0,0) in C([0, Tp), [D(A)]). Then u(-; Cx,,) — u(-)
uniformly on compact subsets of [0, Ty) for some u € C([0, Tp), X), and so fo. fos u(r; Cxy,)drds — fo fos u(r)drds
uniformly on compact subsets of [0, Tp). Since u”(-; Cxy,) = Au(-; Cxy,) + K(-)Cxy, a.e. on (0, Tp), we have

Affu(r;me)drds:ffAu(r,‘me)drds:u(-,'me)—Kl(-)me (27)
0 Jo 0 Jo

on [0, Tp) for all m € IN. Clearly, the right-hand side of the last equality of (27) converges uniformly to
u(-) — K1(-)Cx on compact subsets of [0, Tp). It follows from the closedness of A that fot fos u(r)drds € D(A) for

all0<t<Tyand A fo fos u(r)drds=u(-) — K1(-)Cx on [0, Tp), which implies that u(-) is a (unique) solution of
(25) in C([0, Tp), X). O

Theorem 3.10. Assume that A is densely defined. Then the following are equivalent :

(i) A is a subgenerator of a nondegenerate local K-convoluted C-cosine function C(-) on X;

(ii) for each x € D(A) ACP(A, K(-)Cx, 0,0) has a unigue solution u(-; Cx) in
CY([0, To), [D(A)]) which depends continuously differentiable on x. That is, if {xu}, is a Cauchy sequence in
(D(A), I - 11), then {u(-; Cxn)}, and
{u'(; Cxy)}'2 | both converge uniformly on compact subsets of [0, To).
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Proof. (i)=(ii). For each 0 < t < Ty and x € D(A), we set S(t)x = jg C(r)xdr. Then S(-)x is the unique
solution of ACP(A, K(-)Cx,0,0) in C([0, Ty), [D(A)]). Let { {x.}”, be a Cauchy sequence in (D(A), || - [[). We
set u(; Cx,) = S(-)x, for n € N, then {u(-; Cx,)}7, and {u/(; an) , both converge uniformly on compact

subsets of [0, Ty). (i{)=(i). For each x € X and 0 < t < Ty, we defme u(t) = hm u(t; Cx,) whenever {x,}~

is a sequence in D(A) which converges to x in X. By hypothesis, u(-; me) - u( ) and u/(-;Cx,,) — /()
uniformly on compact subsets of [0, Ty) for some u € CY([0, Ty), X). Just as in the proof of Theorem 3.9, we
have

t S t
Af f u' (r; Cxyy)drds = Af u(s; Cxp)ds = u’(-; Cxp) — Ko(-)Cxyy,
0 Jo 0

on [0, Ty) for all m € IN. Similarly, we also have A f f rydrds=u’(-) — Ko(-)Cx on [0, Tp), which implies that
1’ () is a solution of the integral equation v(-)=Aj1 *v(-) + KO( )Cx in C([0, T), X). The uniqueness of solutions
for the integral equation v(-)=Aj; * v(-) + Ko(-)Cx in C([0, Ty), X) follows from the uniqueness of solutions for
the integral equation (3.1) in C([0, Ty), X). O

We end this paper with several illustrative examples.

Example 1. Let X = Cp(R), and C(t) for t > 0 be bounded linear operators on X defined by C(t)f(x) = %[f(x +
£) + f(x — t)] for all x € R. Then for each K € LIOC([O, To),F) and g > -1, Kg = C(-) = {Kg* C(1)|0 < t < To} is
local a Kg-convoluted cosine function on X which is also nondegenerate with a closed subgenerator % acting with
its maximal distributional domain when Ky is not the zero functzon on [0, Ty) (or equivalently, K is not the zero in

loc([O To), IF)), but K * C(-) may not be a local K-convoluted coszne function on X except for K € LZOC([O To), IF) so
that K+ C(-) is a strongly continuous family in L(X) for whlch 47 is a closed subgenerator of K + C(-) when Ky is not
the zero function on [0, Tj). Moreover (1)-(4) hold and el zts generator and maximal subgenerator when Ky is a
g dxz = Ay for each subgenerator Ao of C(-).

Example 2. Let k be a fixed nonnegative integer and Ko a kernel on [0, o), and let C(t) for t > 0 and C be
bounded linear operators on co (the family of all convergent sequences in IF with limit 0) defined by C(t)x =
{x,(n — k)e™ fot K(t = s)coshnsds} | and Cx = {x,(n — k)e™"}>" | for all x = {x,}7 | € co, then {C(H)|0 < t < 1}
is a local K- convoluted C-cosine function on co which is degenerate except for k = 0 and generator A defined by
Ax = {n’x,) oy forall x = {x,}> | € co with {n? Xnly, € co, and for each r > 1 {C(#)|0 < t < r} is not a local
K-convoluted C-cosine function on co. Suppose that k € N. Then A, : co — co for a € FF defined by A,x = (n?y,} |
forall x = {x,}, € co with {n®x,)*, € co, are subgenerators of {C(t)|0 < t < 1} which do not have proper extensions
that are still subgenerators of {C(£)|0 < t < 1}. Here y, = ak’x; if n = k, and y,, = nx,, otherwise. Consequently,
{C(H)|0 < t < 1} does not have a maximal subgenerator when k € IN.

kernel on [0, Ty). In this case

k .
Example 3. Let X = C,(R)(or L*(R)), and A be the maximal differential operator in X defined by Au = ) a;D'u on
j=0

R for all u € D(A), then UCy(R) (or Co(R)) = D(A). Here ag, a1, -+ ,a, € C and Diu(x) = u(x) for all x € R. It is
shown in [2, Theorem 6.7] that {C(£)|0 < t < Ty} defined by (C(t)f)(x) = \/szn fot f_O:o K(t = s)¢ps(x — v) f(y)dyds for
all f € Xand 0 <t < Ty, is a norm continuous local Ko-convoluted cosine function on X with closed subgenerator A

if the real-valued polynomial p(x) = Z a;(ix)! satisfies sup p(x) < oo, and K € L;
xeR

on [0, Ty). Here (E denotes the inverse Fourier transform of ¢y with ¢(x) = fo cosh( +/p(x)s)ds for all t > 0. Suppose
that Ko is a kernel on [0, To). Then A is its generator and maximal subgenerator. Applying Theorem 3.4, we get that

for each f € X and continuous function g on [0, Tp) X R with fot sup |g(s, x)lds < oo for all 0 < t < Ty, the function
x€R

u on [0, Top) X R defined by u(t,x) = \/szn fot f_: Kq(t - s)dAJ;(x - y)f(y)dyds + \/szn fot OH f_O; Ki(t—r— S)qA);(x -

([0, To), FF) is not the zero function

loc
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)g(r, y)dydsdr for all 0 < t < Ty and x € R, is the unique solution of

%u(t, x)
ot?

k ¢
= Z aj(;—x)ju(t, x) + Ki(t) f(x) + fo Ki(t = s)g(s, x)ds for t € (0, To) and a.e. x € R,
=0

u(0,x) = 0and %(O,x) =0 forae xeR

in C*([0, To), X) N C([0, To), [D(A)]).
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