On Certain Double A-summability Methods

Ekrem Savas

aIstanbul Ticaret University, Department of Mathematics, Üsküdar-Istanbul/Turkey

Abstract. The aim of this paper is to continue our investigations in line of our recent paper, Savas [24] and [26]. We introduce the notion of A^I- double statistical convergence which includes the new summability methods studied in [24] and [23] as special cases and make certain observations on this new and more general summability method.

1. Introduction

The idea of convergence of a real sequence has been extended to statistical convergence by Fast [6] and later also by Schoenberg [32] as follows: Let K be a subset of \mathbb{N}. Then asymptotic density of K is denoted by

$$\lim_{n \to \infty} \frac{1}{n} |\{k \leq n : k \in K\}|$$

where the vertical bars denoted the cardinality of the enclosed set.

A sequence (x_k) of real numbers is said to be statistically convergent to L if for arbitrary $\epsilon > 0$ the set $K(\epsilon) = \{n \in \mathbb{N} : |x_n - L| \geq \epsilon\}$ has natural density zero. Statistical convergence turned out to be one of the most active areas of research in summability theory after the works of Fridy [8] and Salat [27]. More works on statistically convergence can be find from [1], [19], [30] and [33].

The notion of statistical convergence was further extended to I-convergence [14] using the notion of ideals of \mathbb{N}. Many interesting investigations using the ideals can be found in ([3], [2], [13], [15],[29], [28], [36] and [35]). In particular in [24] and [23] ideals were used to introduce new concepts of double I-statistical convergence, double I-lacunary statistical convergence and double I_1-statistical convergence.

Natural density was generalized by Freeman and Sember in [9] by replacing C_1 with a nonnegative regular summability matrix $A = (a_{m,k})$. Thus, if K is a subset of N then the A-density of K is given by

$$\delta_A(K) = \lim_n \sum_{k \in K} a_{m,k}$$

if the limit exists.

On the other hand, the idea of A-statistical convergence was introduced by Kolk [12] using a nonnegative regular matrix A (which subsequently included the ideas of statistical, lacunary statistical or λ-statistical convergence as special cases). More recent work in this line can be found in ([5],[18], [26]) and [27] where many references can be found.
In [20] the notion of convergence for double sequences was presented by A. Pringsheim. Also, in [10] and [21] the four dimensional matrix transformation $(Ax)_{m,n} = \sum_{k,l=1}^{\infty} a_{m,n,k,l} x_{k,l}$ was studied extensively by Hamilton and Robison. In their work and throughout this paper, the four dimensional matrices and double sequences have real-valued entries unless specified otherwise.

In this paper, by using the above two approaches we introduce the idea of A^L-double statistical convergence and make certain observations.

2. Preliminaries

Throughout the paper \mathbb{N} will denote the set of all positive integers. A family $I \subset 2^\mathbb{N}$ of subsets of a nonempty set Y is said to be an ideal in Y if (i) $A, B \in I$ implies $A \cup B \in I$; (ii) $A \in I, B \subset A$ implies $B \in I$, while an admissible ideal I of Y further satisfies $|x| \in I$ for each $x \in Y$. If I is a proper ideal in Y (i.e. $Y \notin I, Y \neq \phi$) then the family of sets $F(I) = \{M \subset Y : \text{there exists } A \in I : M = Y \setminus A\}$ is a filter in Y. It is called the filter associated with the ideal I. Throughout I will stand for a proper non-trivial admissible ideal of \mathbb{N}.

A sequence $\{x_{k,l}\}_{k,l=1}^{\infty}$ of real numbers is said to be I-convergent to $x \in \mathbb{R}$ if for each $\varepsilon > 0$ the set $A(\varepsilon) = \{n \in \mathbb{N} : |x_n - x| \geq \varepsilon\} \in I$ [14].

Before continuing with this paper we present some definitions. By the convergence in a double sequence we mean the convergence on the Pringsheim sense that is, a double sequence $(x)_{k,l}$ of complex double sequences $x_{k,l}$ of real numbers is said to be I-convergent to $x \in \mathbb{R}$ if for each $\varepsilon > 0$ there exists $N = N(\varepsilon) \in \mathbb{N}$ such that $|x_{k,l} - L| < \varepsilon$ whenever $k,l > N$ [20]. We shall describe such an x more briefly as "P-convergent".

Definition 2.1. Let $A = (a_{m,n,k,l})$ denote a four dimensional summability method that maps the complex double sequences x into the double sequence Ax where the mn-th term to Ax is as follows:

$$(Ax)_{m,n} = \sum_{k,l=1}^{\infty} a_{m,n,k,l} x_{k,l}. $$

Such transformation is said to be non-negative if $a_{m,n,k,l}$ is nonnegative for all m,n,k, and l.

In 1926 Robison presented a four dimensional analog of the definition of regularity for double sequences in which he added an additional assumption of boundedness. This assumption was made because a double sequence which is P-convergent is not necessarily bounded. In addition, to this definition we also presented a Silverman-Toeplitz type characterization of the regularity of four dimensional matrices. This characterization is called the Robison-Hamilton characterization. A double sequence x is bounded if and only if there exists a positive number M such that $|x_{k,l}| < M$ for all k and l.

Definition 2.2. The four dimensional matrix A is said to be $\textbf{RH-conservative}$ if it maps every bounded P-convergent sequence into a P-convergent sequence.

Theorem 2.1. (Hamilton [10], Robison [21]) The four dimensional matrix A is $\textbf{RH-conservative}$ if and only if

\textbf{RH}_1: $P\text{-lim}_{m,n} a_{m,n,k,l} = c_{k,l}$ for each k and l;
\textbf{RH}_2: $P\text{-lim}_{m,n} \sum_{k,l=1}^{\infty} a_{m,n,k,l} = a$;
\textbf{RH}_3: $P\text{-lim}_{m,n} \sum_{k=1}^{\infty} a_{m,n,k,l} - c_{k,l} = 0$ for each l;
\textbf{RH}_4: $P\text{-lim}_{m,n} \sum_{l=1}^{\infty} a_{m,n,k,l} - c_{k,l} = 0$ for each k;
\textbf{RH}_5: $\sum_{k,l=1}^{\infty} |a_{m,n,k,l}| < A$ for all (m,n); and
\textbf{RH}_6: there exists finite positive integers A and B such that $\sum_{k,l=1}^{B} |a_{m,n,k,l}| < A$.
When these conditions are satisfied, we have

\[P \lim_{m,n} Y_{m,n} = \mu (a - \sum_{k,l} c_{k,l} x_{k,l}) + \sum_{k,l} c_{k,l} x_{k,l} \]

where \(\mu = P \lim_{k,l} x_{k,l} \), the double series \(\sum_{k,l} c_{k,l} (x_{k,l} - \mu) \) is always absolutely \(P \)-convergent.

Definition 2.3. The four dimensional matrix \(A \) is said to be RH-\textit{regular} if it maps every bounded \(P \)-convergent sequence into a \(P \)-convergent sequence with the same \(P \)-limit.

Theorem 2.2. (Hamilton [10], Robison [21]) The four dimensional matrix \(A \) is RH-regular if and only if

1. RH1: \(P \lim_{m,n} a_{m,n,k,l} = 0 \) for each \(k \) and \(l \);
2. RH2: \(P \lim_{m,n} \sum_{k=1}^{\infty} a_{m,n,k,l} = 1 \);
3. RH3: \(P \lim_{m,n} \sum_{k=1}^{\infty} \left| a_{m,n,k,l} \right| = 0 \) for each \(l \);
4. RH4: \(P \lim_{m,n} \sum_{l=1}^{\infty} \left| a_{m,n,k,l} \right| = 0 \) for each \(k \);
5. RH5: \(\sum_{k,l=1}^{\infty} |a_{m,n,k,l}| \) is \(P \)-convergent; and
6. RH6: there exist finite positive integers \(A \) and \(B \) such that

\[\sum_{k,l} a_{m,n,k,l} < A. \]

Let \(K \subset N \times N \) be a two-dimensional set to positive integers and let \(K(m,n) \) be the numbers of \((i,j)\) in \(K \) such that \(i \leq n \) and \(j \leq M \). The two-dimensional analogues of natural density can be defined as follows: The lower asymptotic density of a set \(K \subset N \times N \) is defined as

\[\delta^2(K) = \lim \inf_{m,n} \frac{K(m,n)}{mn}. \]

In case the double sequence \(\frac{K(m,n)}{mn} \) has a limit in the Pringsheim sense then we say that \(K \) has a double natural density as

\[P \lim_{m,n} \frac{K(m,n)}{mn} = \delta^2(K). \]

Let \(K \subset N \times N \) be a two-dimensional set of positive integers, then the \(A \)-density of \(K \) is given by

\[\delta^2_A(K) = P \lim_{m,n} \sum_{(i,j) \in K} a_{m,n,k,l} \]

provided that the limit exists. The notion of double asymptotic density for double sequence was presented by Mursaleen and Edely [18] and Tripathy [34] independently as follows:

A real double sequence \(x = (x_{k,l}) \) is said to be \(P \)-statistically convergent to \(L \) provided that for each \(\epsilon > 0 \)

\[P \lim_{m,n} \frac{1}{mn} |(k,l) : k < m \text{ and } k < n, |x_{k,l} - L| \geq \epsilon | = 0. \]

In this case we write \(S_{\ell_2} \)-\(\lim_{m,n} x_{k,l} = L \) and denote the set of all statistical convergent double sequences by \(S_{\ell_2} \). It is clear that a convergent double sequence is also \(S_{\ell_2} \)-convergent but the converse is not true, in general. Also \(S_{\ell_2} \)-convergent double sequence need not be bounded.

Throughout \(\epsilon \) will denote a sequence all of whose elements are 1. Also as usual,

\[\ell_\infty = \left\{ x = (x_{k,l}) : \|x\|_\infty = \sup_{k,l} |x_{k,l}| < \infty \right\}. \]
3. Main Results

Now we introduce the main concept of this paper, namely the notion of A^I_2-statistical convergence.

Definition 3.1. Let $A = (a_{m,n,k,l})$ be a non-negative RH-regular four dimensional matrix. A sequence $(x_{k,l})$ is said to be A^I-double statistically convergent to L if for any $\varepsilon > 0$ and $\delta > 0$,

$$\left\{ m, n \in \mathbb{N} \times \mathbb{N} : \sum_{k,l \in K_2(\varepsilon \to \infty)} a_{m,n,k,l} \geq \delta \right\} \in I$$

where

$$K_2(x - Le, \varepsilon) = \left\{ k, l \in \mathbb{N} \times \mathbb{N} : |x_{k,l} - L| \geq \varepsilon \right\}.$$ In this case we write $x_{k,l} \xrightarrow{A^I_-st} L$. We denote the class of all A^I_2-statistically convergent sequences by $S^2_A(I)$.

1. If we take $A = (C, 1, 1)$, i.e., the double Cesàro matrix then A^I_2-statistical convergence becomes I-double statistical convergence [23].

2. Let us consider the following notations and definitions. The double sequence $\theta_{rs} = \{(k_r, l_s)\}$ is called double lacunary if there exist two increasing sequences of integers such that

$$k_0 = 0, h_s = k_s - k_{s-1} \to \infty \text{ as } r \to \infty,$$

$$l_0 = 0, h_s = l_s - l_{s-1} \to \infty \text{ as } s \to \infty,$$

and let $\theta_{rs} = A_{rs} \theta_{rs}$ is determine by $I_{rs} = \{(i, j) : k_{r-1} < i \leq k_r \land l_{s-1} < j \leq l_s\}$. If we take

$$a_{rs,kl} = \begin{cases} \frac{1}{h_s}, & \text{if } (k, l) \in I_{rs}; \\ 0, & \text{otherwise.} \end{cases}$$

then A^I_2-statistical convergence coincides with I-double lacunary statistical convergence [23].

4. As a final illustration let

$$a_{ij,kl} = \begin{cases} \frac{1}{\lambda_i}, & \text{if } k \in I_i = [i - \lambda_i + 1, i] \text{ and } l \in L_j = [j - \lambda_j + 1, j] \\ 0, & \text{otherwise} \end{cases}$$

where we shall denote λ_{ij} by $\lambda_i \mu_j$. Let $\lambda = (\lambda_i)$ and $\mu = (\mu_j)$ be two non-decreasing sequences of positive real numbers such that each tending to ∞ and $\lambda_{i+1} \leq \lambda_i + 1, \lambda_1 = 0$ and $\mu_{j+1} \leq \mu_j + 1, \mu_1 = 0$. Then A^I_2-statistical convergence coincides with I_1-double statistical convergence [24].

Non-trivial examples of such sequences can be seen from [24], [23].

Also note that for $I = I_{m,n}$, A^I_2-statistical convergence becomes A-double statistical convergence [25].

We now prove the following result which establishes the topological character of the space $S^2_A(I)$.

Theorem 3.1. $S^2_A(l) \cap \ell_{\infty}$ is a closed subset of ℓ_{∞} endowed with the superior norm.

Proof. Suppose that $(x^{mn}) \subset S^2_A(l) \cap \ell_{\infty}$ is a convergent sequence and it converges to $x \in \ell_{\infty}$. We have to show that $x \in S^2_A(l) \cap \ell_{\infty}$. Let $x^{mn} \xrightarrow{A^I_-st} L_{mn}$ for all $(m, n) \in \mathbb{N} \times \mathbb{N}$. Take a sequence (ε_{mn}) where $\varepsilon_{mn} = \frac{1}{4N_{mn}} \forall (m, n) \in \mathbb{N} \times \mathbb{N}$. We can find a positive integer N_{mn} such that $||x - x^{mn}||_\infty < \frac{\varepsilon_{mn}}{4}, \forall mn \geq N_{mn}$. Choose $0 < \delta < \frac{1}{4}$. Now
shall prove that forms a closed linear subspace of for any given δ > M.

Let Let A completes the proof of the result.

We can say that the set of all bounded Remark 1: A A -summable to L if the sequence \((a_{mn}) \) is A -summable reduces to statistical double convergence. We define another related summability method and establish its relation with A -summability, [5].

Definition 3.2. Let A = \((a_{mn}) \) be a non-negative RH-regular four dimensional matrix. Then we say that x is A -summable to L if the sequence \((a_{mn}(x)) \) L -converges to L.

For I = I M, A -summability reduces to statistical double A-summability, [5].
Theorem 3.2. If a sequence is bounded and A_2^I-statistically convergent to L then it is A_2^I-summable to L.

Proof. Let $x = (x_{kl})$ be bounded and A_2^I-statistically convergent to L and for $\varepsilon > 0$, let as before $K_2(\frac{\varepsilon}{2}) := \{(k,l) \in \mathbb{N} \times \mathbb{N} : |x_{kl} - L| \geq \frac{\varepsilon}{2}\}$. Then

$$|A_{mn}(x) - L| \leq \left| \sum_{(k,l) \in K_2(\frac{\varepsilon}{2})} a_{mnkl} (x_{kl} - L) \right| + \left| \sum_{(k,l) \in K_2(\frac{\varepsilon}{2})} a_{mnkl} (x_{kl} - L) \right| \leq \frac{\varepsilon}{2} \sum_{k,l \in K_2(\frac{\varepsilon}{2})} a_{mnkl} + \sum_{k,l \in K_2(\frac{\varepsilon}{2})} a_{mnkl} |x_{kl} - L| \leq \frac{\varepsilon}{2} + B \sum_{k,l \in K_2(\frac{\varepsilon}{2})} a_{mnkl},$$

where $B = \sup_{x_{kl} \in x} |x_{kl} - L|$. It now follows that

$$\{(m,n) \in \mathbb{N} \times \mathbb{N} : |A_{mn}(x) - L| \geq \varepsilon\} \subset \left\{(m,n) \in \mathbb{N} \times \mathbb{N} : \sum_{k,l \in K_2(\frac{\varepsilon}{2})} a_{mnkl} \geq \frac{\varepsilon}{2B}\right\}.$$

Since x is A_2^I-statistically convergent to L, so the set on the right hand side belongs to I and this consequently implies that x is A_2^I-summable to L. \hfill \Box

The converse of the above result is not generally true.

Example 2. If $A = (a_{mnkl}) = (C,1,1)$, double Cesàro matrix and let

$$x_{kl} = \begin{cases} 1 & \text{if } k,l \text{ are odd} \\ 0 & \text{if } k,l \text{ are even}. \end{cases}$$

Then $x = (x_{kl})$ is A_2-summable to $1/2$ and so is A_2^I-summable to $1/2$ for any admissible ideal I. But note that for any $L \in \mathbb{R}$ and for $0 < \varepsilon < \frac{1}{2}$, $K_2(\varepsilon) = \{(k,l) \in \mathbb{N} \times \mathbb{N} : |x_{kl} - L| \geq \varepsilon\}$ contains either the set of all even integers or the set of all odd integers or both. Consequently $\sum_{k,l \in K_2(\varepsilon)} a_{mnkl} = \infty$ for any $(k,l) \in \mathbb{N} \times \mathbb{N}$ and so for any $\delta > 0$

$$\left\{(m,n) \in \mathbb{N} \times \mathbb{N} : \sum_{k,l \in K_2(\varepsilon)} a_{mnkl} \geq \delta\right\} \notin I.$$

This shows that $x = (x_{kl})$ is not A_2^I-statistically convergent for any non-trivial ideal I.

We conclude this paper with the following theorem which shall give that continuity preserves the A_2^I-statistical convergence.

Theorem 3.3. If for a sequence $x = (x_{kl})$, $x_{kl} \xrightarrow{A_2^I-\text{st}} L$ and g is a real valued function which is continuous then $g(x_{kl}) \xrightarrow{A_2^I-\text{st}} g(L)$.

Proof. The proof can be established using standard techniques, so omitted. \hfill \Box

References