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Abstract. The “oldest cubic” functional equation was introduced and solved by the second author of this
paper (see: Glas. Mat. Ser. III 36(56) (2001), no. 1, 63-72). which is of the form:

f (x + 2y) = 3 f (x + y) + f (x − y) − 3 f (x) + 6 f (y).

For further research in various normed spaces, we are introducing new cubic functional equations, and
establish fundamental formulas for the general solution of such functional equations and for the “Ulam
stability” of pertinent cubic functional inequalities.

1. Introduction

In 1940, Ulam [39] gave a talk before the Mathematics Club of the University of Wisconsin in which
he discussed a number of unsolved problems. Among these was the following famous “stability Ulam
question”:

We are given a group G and a metric group G′ with metric ρ(., .). Given ε > 0, does there exist a δ > 0 such
that if f : G → G′ satisfies ρ( f (xy), f (x) f (y)) < δ for all x, y in G, then a homomorphism h : G → G′ exists with
ρ( f (x), h(x)) < ε for all x ∈ G?

By now an affirmative answer has been given in several cases, and some interesting variations of the
problem have also been investigated. We shall call such an f : G→ G′ an approximate homomorphism.

In 1941, Hyers [8] considered the case of approximately additive mappings f : E→ E′, where E and E′

are Banach spaces and f satisfies the following Hyers’ inequality

‖ f (x + y) − f (x) − f (y)‖ ≤ ε,

for all x, y ∈ E. It was shown that the limit

L(x) = lim
n→∞

2−n f (2nx)
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exists for all x ∈ E and that L : E→ E′ is the unique additive mapping satisfying ‖ f (x) − L(x)‖ ≤ ε.
No continuity conditions are required for this result, but if f (tx) is continuous in the real variable t for

each fixed x, then L is linear, and if f is continuous at a single point of E then L : E→ E′ is also continuous.
In 1982-1994, a generalization of this result was proved by the author J. M. Rassias [26–28, 30, 33],as

follows. He introduced the following weaker condition (or weaker inequality or the generalized Cauchy
inequality)

‖ f (x + y) − [ f (x) + f (y)]‖ ≤ θ‖x‖p‖y‖q,

for all x, y ∈ E controlled by (or involving) a product of different powers of norms, where θ ≥ 0 and real
p, q : r = p + q , 1, and retained the condition of continuity of f (tx) in t for fixed x. Besides he investigated
that it is possible to replace ε in the above Hyers’ inequality, by a non-negative real-valued function such
that the pertinent series converges and other conditions hold and still obtain stability results. In all the
cases investigated in these results, the approach to the existence question was to prove asymptotic type
formulas:

L(x) = lim
n→∞

2−n f (2nx); L(x) = lim
n→∞

2n f (2−nx).

Theorem. (J. M. Rassias: 1982-1994). Let X be a real normed linear space and let Y be a real complete
normed linear space. Assume in addition that f : X→ Y is an approximately additive mapping for which
there exist constants θ ≥ 0 and p, q ∈ R such that r = p + q , 1 and f satisfies the “generalized Cauchy
inequality”

‖ f (x + y) − [ f (x) + f (y)]‖ ≤ θ‖x‖p‖y‖q,

for all x, y ∈ X. Then there exists a unique additive mapping L : X→ Y satisfying

‖ f (x) − L(x)‖ ≤
θ

|2r − 2|
‖x‖r

for all x ∈ X. If, in addition, f : X→ Y is a mapping such that the transformation t→ f (tx) is continuous in
t ∈ R for each fixed x ∈ X, then L is an R-linear mapping.

In 1940, Ulam [39] proposed the “Ulam stability problem”: When does a linear transformation near an
“approximately linear” transformation exist?. Since then, many specialists on this “famous Ulam problem”,
have investigated interesting functional equations, for instance: Hyers [8], Aoki [3], Gajda [5], Gǎvruta [6],
Rassias et al. [29, 31, 36], Jung [10, 11], Jun and Kim [9], Part et al. [21, 22, 24], Mirmostafaee and Moslehian
[12], Rätz [37], and others. Also very interesting results on additive, quadratic and cubic functional
equations have been achieved by Mohiuddine et al. [1, 2, 13–18, 20]. The “oldest cubic” functional equation
was introduced and solved by the second author [34] of this paper which is of the form:

f (x + 2y) = 3 f (x + y) + f (x − y) − 3 f (x) + 6 f (y).

Since then various “cubic” equations have been proposed and solved by a number of experts in the area
of functional equations and inequalities (see also [4, 7, 19, 23, 25, 32, 35, 38, 40–42]). For further research
in various normed spaces, we are introducing new cubic functional equations, and establish fundamental
formulas for the general solution of such functional equations and for the “Ulam stability” of pertinent
cubic functional inequalities.

2. Euler-Lagrange-Jensen k-cubic Mappings

Let X be a real normed linear space and let Y be a real complete normed linear space. Let us introduce
Euler-Lagrange-Jensen k-cubic mapping f : X→ Y, satisfying the following Euler-Lagrange-Jensen k-cubic
functional equation

k[ f (kx + y) + f (x + ky)] + (k − 1)3

[
f
(

kx − y)
k − 1

)
+ f

(
x − ky
1 − k

)]
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= (k4
− 1)[ f (x) + f (y)] + 8k(k2 + 1) f

(x + y
2

)
, (2.1)

where m = k + 1 , 0; m , ±1.
Replacing x = y = 0 in (2.1), one gets

2k2(k2 + 3k + 3) f (0) = 0, (2.2)

or
2(m − 1)2(m2 + m + 1) f (0) = 0, (2.3)

or
f (0) = 0, (2.4)

if k , 0; m , 1.
Replacing x = x, y = x in (2.1), one obtains

2k[ f ((k + 1)x) − (k3 + 3k + 3k + 1) f (x)] = 0, (2.5)

or
2(m − 1)[ f (mx) −m3 f (x)] = 0, (2.6)

or
f (mx) = m3 f (x). (2.7)

Replacing x→ m−1x in (2.7), we get
f (x) = m3 f (m−1x). (2.8)

3. Approximate Euler-Lagrange-Jensen k-cubic Mappings

Let X be a real normed linear space and let Y be a real complete normed linear space. Let us introduce
approximate Euler-Lagrange-Jensen k-cubic mappings f : X→ Y, satisfying the following Euler-Lagrange-
Jensen k-cubic functional inequality∥∥∥∥∥k[ f (kx + y) + f (x + ky)] + (k − 1)3

[
f
(

kx − y
k − 1

)
+ f

(
x − ky
1 − k

)]

−(k4
− 1)[ f (x) + f (y)] − 8k(k2 + 1) f

(x + y
2

) ∥∥∥∥∥≤ c, (3.1)

where c(= const.) > 0, and
m = k + 1 , 0; m , ±1.

Replacing x = y = 0 in the above inequality (3.1), one gets

2k2(k2 + 3k + 3)‖ f (0)‖ ≤ c, (3.2)

or
2(m − 1)2(m2 + m + 1)‖ f (0)‖ ≤ c, (3.3)

or
‖ f (0)‖ ≤

c
2(m − 1)2(m2 + m + 1)

, (3.4)

if k , 0; m , 1.
Note that

m2 + m + 1 = (k + 1)2 + (k + 1) + 1 = k2 + 3k + 3 > 0. (3.5)
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Replacing x = x, y = x in the inequality (3.1), one obtains

2|k|
∥∥∥∥∥ f ((k + 1)x) − (k3 + 3k + 3k + 1) f (x)

∥∥∥∥∥≤ c, (3.6)

or
2|m − 1|

∥∥∥ f (mx) −m3 f (x)
∥∥∥ ≤ c, (3.7)

or ∥∥∥ f (mx) −m3 f (x)
∥∥∥ ≤ c2 =

c
2|m − 1|

, (3.8)

or ∥∥∥ f (x) −m−3 f (mx)
∥∥∥ ≤ c1 =

c2

|m|3
=

c
2|m|3|m − 1|

, (3.9)

if m ∈ R − {0,±1}; |m| > 1.
Replacing x→ mx in (3.9) and then multiplying by |m|−3, we find∥∥∥m−3 f (mx) −m−6 f (m2x)

∥∥∥ ≤ |m|−3c1, m , 0. (3.10)

Then ∥∥∥ f (x) −m−6 f (m2x)
∥∥∥ ≤ ∥∥∥ f (x) −m−3 f (mx)

∥∥∥ +
∥∥∥m−3 f (mx) −m−6 f (m2x)

∥∥∥
≤

(
1 + |m|−3

)
c1, (3.11)

if m ∈ R − {0,±1}; |m| > 1.
Employing (3.9)-(3.10), without induction, we obtain∥∥∥ f (x) −m−3n f (mnx)

∥∥∥ ≤

∥∥∥ f (x) −m−3 f (mx)
∥∥∥ +

∥∥∥m−3 f (mx) −m−6 f (m2x)
∥∥∥

+ · · · +
∥∥∥m−3(n−1) f (mn−1x) −m−3n f (mnx)

∥∥∥
≤

(
1 + |m|−3 + · · · + |m|−3(n−1)

)
c1

or the following general inequality;

∥∥∥ f (x) −m−3n f (mnx)
∥∥∥ ≤ 1 − |m|−3n

1 − |m|−3 c1 =
1

|m|3 − 1

(
1 − |m|−3n

)
c2, (3.12)

where
|m| > 1, c2 = |m|3c1 =

c
2|m − 1|

. (3.13)

Similarly for |m| < 1; m , 0, we get:∥∥∥ f (x) −m3 f (m−1x)
∥∥∥ ≤ c′1 =

c
2|m − 1|

= c2, (3.14)

by replacing x→ m−1x in (3.7).
Replacing x→ m−1x in (3.14) and then multiplying by |m|3, we find∥∥∥m3 f (m−1x) −m6 f (m−2x)

∥∥∥ ≤ |m|3c′1, m , 0. (3.15)

Then ∥∥∥ f (x) −m6 f (m−2x)
∥∥∥ ≤ ∥∥∥ f (x) −m3 f (m−1x)

∥∥∥ +
∥∥∥m3 f (m−1x) −m6 f (m−2x)

∥∥∥
≤

(
1 + |m|3

)
c′1 (3.16)

if m ∈ R − {0,±1}; |m| < 1.
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Therefore, without induction, we obtain∥∥∥ f (x) −m3n f (m−nx)
∥∥∥ ≤

∥∥∥ f (x) −m3 f (m−1x)
∥∥∥ +

∥∥∥m3 f (m−1x) −m6 f (m−2x)
∥∥∥

+ · · · +
∥∥∥m3(n−1) f

(
m−(n−1)x

)
−m3m f (m−nx)

∥∥∥
≤

(
1 + |m|3 + · · · + |m|3(n−1)

)
c′1

or the following general inequality:∥∥∥ f (x) −m3n f (m−nx)
∥∥∥ ≤ 1

1 − |m|3
(1 − |m|3n)c2, (3.17)

where
|m| < 1, m ∈ R − {0,±1}; c2 = c′1 =

c
2|m − 1|

.

Note 1. (i) Let us denote
Cn : Cn(x) = m−3n f (mnx). (3.18)

In fact, assuming |m| > 1, and j > i > 0, then from inequality (3.12) we get

0 ≤
∥∥∥Ci(x) − C j(x)

∥∥∥ =
∥∥∥m−3i f (mix) −m−3 j f (m jx)

∥∥∥
= |m|−3i

∥∥∥ f (mix) −m−3( j−i) f (m j−imix)
∥∥∥

≤
1

|m|3 − 1

(
|m|−3i

− |m|−3 j
)

c2 → 0, (3.19)

as i→∞ (and j→∞).
(ii) Let us denote

Cn : Cn(x) = m3n f (m−nx). (3.20)

Similarly, assuming |m| < 1, from the general inequality (3.17), we get

0 ≤
∥∥∥Ci(x) − C j(x)

∥∥∥ =
∥∥∥m3i f (m−ix) −m3 j f (m− jx)

∥∥∥
= |m|3i

∥∥∥ f (m−ix) −m3( j−i)) f
(
m−( j−i)m−ix

) ∥∥∥
≤

1
1 − |m|3

(
|m|3i
− |m|3 j

)
c2 → 0,

as i→∞ (and j→∞). Thus the sequence {Cn}, is a Cauchy sequence.

Note 2. Claim the “well-defined cubicness” of the mapping

C : C(x) = lim
n→∞

Cn(x). (3.21)

(i) Considering (3.18) and replacing in the above k-inequality (3.1)

x→ mnx and y→ mny, (3.22)

then multiplying by |m|−3n, |m| < 1, and also taking limits n→∞, we obtain

0 ≤

∥∥∥∥∥k[C(kx + y) + C(x + ky)] + (k − 1)3

[
C

(
kx − y
k − 1

)
+ C

(
x − ky
1 − k

)]
(3.23)

−(k4
− 1)[C(x) + C(y)] − 8k(k2 + 1)C

(x + y
2

) ∥∥∥∥∥≤ |m|−3nc→ 0, n→∞
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leading to the original k-cubic functional equation, and thus the cubicness of C : |m| > 1, satisfying the
k-cubic functional equation (2.1).
(ii) Considering (3.20) and replacing in the above k-inequality (3.1)

x→ m−nx and y→ m−ny, (3.24)

then multiplying by |m|3n, |m| < 1; m , 0, and also taking limits n→∞, we obtain

0 ≤

∥∥∥∥∥k[C(kx + y) + C(x + ky)] + (k − 1)3

[
C

(
kx − y
k − 1

)
+ C

(
x − ky
1 − k

)]
(3.25)

−(k4
− 1)[C(x) + C(y)] − 8k(k2 + 1)C

(x + y
2

) ∥∥∥∥∥≤ |m|3nc→ 0, n→∞

leading to the original k-cubic functional equation, and thus the well-defined cubicness of C : |m| < 1; m , 0,
satisfying the k-cubic functional equation (2.1).

Therefore the proof for the existence of the k-cubic mapping C, given by (3.21), is complete.

Note 3. Claim the “uniqueness” of the mapping (3.21).
(i) Considering (3.18) and assuming |m| > 1, and two cubic mappings C : X→ Y; C′ : X→ Y satisfying (2.7)
and (3.21), we get by induction on n:

C(mnx) = m3nC(x); C′(mnx) = m3nC′(x), (3.26)

and ∥∥∥ f (x) − C(x)
∥∥∥ ≤ c2

|m|3 − 1
;

∥∥∥ f (x) − C′(x)
∥∥∥ ≤ c2

|m|3 − 1
. (3.27)

Also we find:
0 ≤

∥∥∥C(x) − C′(x)
∥∥∥ ≤ ∥∥∥C(x) − f (x)

∥∥∥ +
∥∥∥ f (x) − C′(x)

∥∥∥. (3.28)

Thus, one proves

0 ≤
∥∥∥C(x) − C′(x)

∥∥∥ = |m|−3n
∥∥∥C(mnx) − C′(mnx)

∥∥∥
≤ |m|−3n

{∥∥∥C(mnx) − f (mnx)
∥∥∥ +

∥∥∥ f (mnx) − C′(mnx)
∥∥∥},

≤ |m|−3n
{

2c2

|m|3 − 1

}
→ 0, n→∞, (3.29)

leading to
C(x) ≡ C′(x), (3.30)

establishing the uniqueness of the mapping C : X→ Y : |m| > 1.
(ii) Considering (3.20), and assuming |m| < 1; m , 0, and two cubic mappings C : X → Y : C′ : X → Y
satisfying (3.21) and (2.8) we get by induction on n :

C(m−nx) = m−3nC(x); C′(m−nx) = m−3nC′(x) (3.31)

and ∥∥∥ f (x) − C(x)
∥∥∥ ≤ c2

1 − |m|3
;

∥∥∥ f (x) − C′(x)
∥∥∥ ≤ c2

1 − |m|3
. (3.32)

Thus from (3.28) and (3.32), one proves

0 ≤
∥∥∥C(x) − C′(x)

∥∥∥ = |m|3n
∥∥∥C(m−nx) − C′(m−nx)

∥∥∥
≤ |m|3n

{∥∥∥C(m−nx) − f (m−nx)
∥∥∥ +

∥∥∥ f (m−nx) − C′(m−nx)
∥∥∥},

≤ |m|3n
{

2c2

1 − |m|3

}
→ 0, n→∞, (3.33)
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leading to
C(x) ≡ C′(x), (3.34)

establishing the uniqueness of the mapping C : X→ Y : |m| < 1; m , 0.

Therefore the following Theorem 3.1 holds:
Theorem 3.1. Let X be a real normed linear space and let Y be a real complete normed linear space. If
approximate Euler-Lagrange-Jensen k-cubic mappings f : X→ Y, satisfy the Euler-Lagrange-Jensen k-cubic
functional inequality (3.1), then there exists a unique Euler-Lagrange-Jensen k-cubic mapping C : X → Y,
satisfying the following inequality∥∥∥ f (x) − C(x)

∥∥∥ ≤ c2∣∣∣∣|m|3 − 1
∣∣∣∣ ; ∀ m(= k + 1) ∈ R − {0,±1}, . (3.35)

m different also from 2.
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