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Semi-abundant Semigroups with Quasi-Ehresmann Transversals

Shoufeng Wang?

?School of Mathematics, Yunnan Normal University, Kunming, 650500, P. R. China

Abstract. Chen (Communications in Algebra 27(2), 4275-4288, 1999) introduced and investigated ortho-
dox transversals of regular semigroups. In this paper, we initiate the investigation of quasi-Ehresmann
transversals of semi-abundant semigroups which are generalizations of orthodox transversals of regu-
lar semigroups. Some interesting properties associated with quasi-Ehresmann transversals are estab-
lished. Moreover, a structure theorem of semi-abundant semigroups with generalized bi-ideal strong
quasi-Ehresmann transversals is obtained. Our results generalize and enrich Chen’s results.

1. Introduction

The concept of inverse transversals was introduced by Blyth-McFadden [3]. From then on, inverse
transversals have been extensively investigated and generalized by many authors (for example, see [1]-[7],
[14]-[15] and [18]). Since orthodox semigroups can be regarded as generalizations of inverse semigroups,
in 1999, Chen [4] generalized inverse transversals to orthodox transversals in the class of regular semigroups
and gave a construction theorem for a kind of regular semigroups with orthodox transversals. Furthermore,
Chen-Guo [6] explored some interesting properties associated with orthodox transversals. Most recently,
Kong [14, 15] also investigated orthodox transversals and obtained some new results.

On the other hand, semi-abundant semigroups are generalized regular semigroups and have been
studied by many authors, for example, see the texts [8]-[12] and [16]-[17]. In particular, Ehbal-El-Qallali
[17] investigated a class of semi-abundant semigroups whose idempotents form a subsemigroup, El-Qallali-
Fountain-Gould [8] and Gomes-Gould [10] studied some classes of semi-abundant semigroups by so called
“fundamental approaches” and Lawson [16] considered some kinds of semi-abundant semigroups by “category
approaches”. Fountain-Gomes-Gould [9] investigated this class of semigroups from the viewpoint of variety,
and Gould [11] gave a survey of investigations of special semi-abundant semigroups, namely restriction
semigroups and Ehresmann semigroups. Moreover, He-Shum-Wang [12] considered the representations of
quasi-Ehresmann semigroups.

In this paper, we initiate the study of semi-abundant semigroups by using the idea of “transversals” which
was firstly used to the study of regular semigroups by Blyth and McFadden in [3]. Specifically, we introduce
the concept of quasi-Ehresmann transversals for semi-abundant semigroups, which is a generalization of
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the concept of orthodox transversals of regular semigroups, and give some properties associated with quasi-
Ehresmann transversals. Furthermore, a structure theorem of semi-abundant semigroups with generalized
bi-ideal strong quasi-Ehresmann transversals is obtained. Our results generalize and enrich the main results
associated with orthodox transversals obtained in the texts Chen [4] and Chen-Guo [6].

2. Preliminaries

Let S be a semigroup. We use E(S) to denote the set of idempotents of S. For x,a € S, if axa = a and
xax = x, then a is called an inverse of x in S. We also let

V(x) = {a € Slaxa = a, xax = x}.

An element x in S is called regular if V(x) # 0. A semigroup S is regular if every element in S is regular. A
semigroup is regular if and only if each L-class (or R-class) of S contains idempotents. A regular semigroup
S is called orthodox if E(S) is a subsemigroup of S, an orthodox semigroup S is inverse if E(S) is a commutative
subsemigroup of S. For K € {L, R} and x € S, we use K, to denote the K-class of S containing x. On Green’s
relations, we also need the following results.

Lemma 2.1 ([13]). For any semigroup S, the following statements are true:

(1) Ife, f € E(S) and eDf in S, then each element a of R, N Ly has a unique inverse a’ in Rg N L, such that aa’ = e
anda’'a = f.

(2) Ifa,beS, thenab € R, N Ly if and only if L, N Ry, contains an idempotent.
Let S be a semigroup, S° a subsemigroup of S, a € S and A C S. Throughout this paper, we denote
Ve (a) = V(a) N S°, Vo (A) = U V- (a)
acA

Let S be a regular semigroup and S° a subsemigroup of S. According to Blyth-McFadden [3], S° is called
an inverse transversal if |Vs-(a)| = 1 for all 2 € S. On the other hand, from Chen [4], a subsemigroup S° of a
regular semigroup S is called an orthodox transversal of S if

(i) Vso(a) #0forallacS;
(ii) {a,b} N S° # 0 implies that Vs (b)Vs:(a) € Vs-(ab) for alla,b € S.
On orthodox transversals, we need the following results.
Lemma 2.2 ([6]). Let S be a regular semigroup and S° a subsemigroup of S such that Vs-(a) # 0 foralla € S. Denote
I ={aa°|a° € Vso(a),a € S}, A = {a°ala® € Vs-(a),a € S}.
(1) S is an orthodox semigroup if and only if Vso(a)Vs-(b) C Vso(ba) forall a,b € S.
(2) S° is an orthodox transversal of S if and only if

IE(S°) € I, E(S°)A € A, E(S°)I C E(S), AE(S°) C E(S).

(3) If S° is an orthodox transversal of S, then the subsemigroup generated by I (resp. A) is a subband of S.

Let S be a semigroup and a,b € S. That aRb means that ea = a if and only ifeb =bforalle € E(S). The
relation £ can be defined dually. Denote H=ZLNR In general, Lisnota right congruence and R is not
a left congruence. Obviously, L C LandRCR Ifabe Reg$, the set of regular elements of S, then aRb

(resp. aLb) if and only if aRb (resp. aLb). On the relation R on a semigroup S, we have the following easy
but useful result.
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Lemma 2.3. Let S be a semigroup and a € S, e € E(S). Then the following statements are equivalent:
(1) eRa;
(2) ea =aand forall f € E(S), fa = aimplies fe =e.
Now, we state the following fundamental concept of our paper.

Definition 2.4. A semigroup S is called semi-abundant if the following conditions hold:
(i) Each L-class and each R-class of S contains idempotents.

(ii) Lisa right congruence and Risa left congruence on S, respectively.

A semi-abundant semigroup S is quasi-Ehresmann if its idempotents form a subsemigroup of S. Obvi-
ously, regular semigroups are semi-abundant, and orthodox semigroups are quasi-Ehresmann semigroups.
Furthermore, a semi-abundant semigroup S is quasi-Ehresmann if and only if RegS is an orthodox subsemi-

group of S. Let S be a semi-abundant semigroup. For K € {£, R} and a € S, we use K, to denote the K-class
of S containing a.

Notation 2.5. Let S be a quasi-Ehresmann semigroup. We use a' and a* to denote the typical idempotents
contained in R, and L, for a € S, respectively.

Let S be a quasi-Ehresmann semigroup. Denote the D-class of E(S) containing the element e €E(S) by
E(e). Define the binary relation 6 on S as follows:

adb if and only if b = eaf for some e € E(a") and f e E@).
On the relation 6 on a quasi-Ehresmann semigroup S, we have the results below.
Lemma 2.6. Let S be a quasi-Ehresmann semigroup, a,b € S and b = eaf for some e € E(a") and f € E(a*). Then
(1) E(a") = E(b") and E(a*) = E(V") for any b and b*.
(2) 0 is an equivalent relation on S.
(3) eRbLS.
(4) H N6 is the identity relation on S.

Proof. (1) By the hypothesis, we have E(e) = E(a") and E(f) = E(a*). Furthermore, we also obtain eb = b and
bf = b. Since bRb" and bLD", it follows that eb” = b and b*f = b*. This implies that E(b") < E(e) = E(a") and
E(b*) < E(f) = E(a"). On the other hand, we have

a=ataa" =ateatan far = at(ea’an’ fa" = a'(ea fa* = a'ba’ = (@'vHb(b a).

Observe that a'b' € E(b") and b*a* € E(b"), by the above discussions, it follows that E(a") < E(a'b") = E(b)
and E(a*) < E(b*a*) = E(b*). Thus, E(a") = E(b") and E(a*) = E(b").

(2) Since a = a'aa* for all a € S, § is reflexive. Moreover, by the proof of item (1), it follows that 6 is
symmetric. Finally, let adb, boc and

b= eaf,c = gbh,e € E@@"), f € E@"), g € E(b™), h € E(").
By item (1), we have E(a") = E(b"), E(a*) = E(b*). This implies that ¢ = (ge)a(fh) and ge € E(a"), fh € E(a*)
whence adc. Therefore, 0 is transitive.

(3) Letk € E(S) and kb = b. Then keaf = eaf. This implies that

kea = keaa” = keaa” fa* = keafa” = eafa” = eaa” fa* = eaa” = ea.
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Since aRa' and R is a left congruence, we have eaRea’ and so kea® = ea*. Thus,
ke = kea'e = ea’e = e

by the fact that e € E(a"). By Lemma 2.3, eRb. Dually, bl f.
(4)Ifa,b € S and a(H N 6)b, then b = eaf for some e € E(a*) and f € E(a*). This implies that

b=a'ba" =a'eafa’ = a'ea‘aa’ fa* = a*aa* = q,
as required. [

A semi-abundant subsemigroup U of a semi-abundant semigroup S is called a ~-subsemigroup of S if
Z(U) = £(S) N (U x U),RU) = R(S) N (U x L)

It is easy to see that a semi-abundant subsemigroup U of a semi-abundant semigroup S is a ~-subsemigroup

if and only if there exist ¢, f € E(U) such that eLx and fRxin S for all x € U.
Now, let S be a semi-abundant semigroup and S° a quasi-Ehresmann ~-subsemigroup of S. For any
x € S, denote

Qs (%) = {(e,%, f) € E(S) x S° X E(S)|x = éxf, eLX', fRX for some X', X" € E(S°))

and
[se(x) = {xl(e, X, f) € Qse(x)}, Is-(x) = {el(e, X, f) € Qs0(x)},

Ase(®) = Iflle. %, f) € Qs: () Is = | JIs:(0), Ase = ] Ase ().
xeS xesS
For the sake of simplicity, if no confusion, we shall use Q, I'y, Iy, Ay, I and A to denote Qg- (x), I'se (x), Is- (x), Aso(x), Ise
and Ag., respectively.

Lemma 2.7. Let S be a semi-abundant semigroup and S° a quasi-Ehresmann ~-subsemigroup of S.
(1) I ={e € E|(3e® € E(S°))eLe’}, A= {f € EI(Af° € E(S°))fRf°};
(2) INn A =E(S°),IE(S5°) UE(S°)A C RegS.

Proof. (1) Lete € I. Then, there exist x € S,% € S° and f € E(S) such that (¢, %, f) € Q,. Thus, eLx" for some
%' € E(S°). Conversely, if e € E(S) and eLe® € E(S°), then (e, e°,¢°) € Q,, this shows that ¢ € I. A similar
argument holds for A.

(2) By (1), E(S°) CINnA. If e e IN A, again by (1), there exist e°,e* € E(5°) such that e° LeRe*, which leads
toe =e'e® € E(5°) by Lemma 2.1 (2). Lete € I and f° € E(S°). Then, there exists ¢° € E(S°) such that eLe°.
Hence, ef° Le° f° € E(S°). This implies that IE(S°) € RegS. Dually, E(S°)A € RegS. O

In the following three lemmas, we always assume that S is a semi-abundant semigroup and S° is a
quasi-Ehresmann ~-subsemigroup of S.

Lemma28. Ifx €S, (¢,%, f) € Q, and eLx", fRX" for some ¥t and ¥ in E(S°), then X = ¥'x¥ and eRxLf. In
particular, if x € Reg$S, we have eRxLf.

Proof. By hypothesis, x = exf. This shows that ex = x. Now, let g € E(S) and gx = x. Then gexf = exf
whence
gex = geXX’ = geXfX' = eXfX" = eXX = ex.

Since ¥R%" and Ris a left congruence on S, it follows that exRext = e. Inview of the fact that ge¥ = e, we have
ge = e. By Lemma 2.3, ¢Rx. Dually, we have x£f. Furthermore, we have x'xx* = ¥fexfx* = x'xx* =x. O
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Lemma 2.9. If x,y € S° and z € S such that xLzRy and T, # 0. Then z € S°. In particular, if xHz, T, # 0 and
x €5°, then z € 5°.

Proof. Let x*.ch.ij??yi{y* for some x*, ' € E(S°). Let (¢,z, f) € Q. and z*Rf for some z* in E(S°). Then, by
Lemma 2.8, f Lz . This implies that Z*Rf Lx*. By Lemma 2.1 (2), we have z* Lx*Z*Rx". Since Z'x", x*z* € E(5°)
and f € E(S), by Lemma 2.1 (2) again, fHZ'x* and so f = Z'x* € 5°. Dually, e € S°. Hence, z = ezf € 5°. [0

Lemma 2.10. Foranyx € Sand ¥ € I'y, x € RegS if and only if ¥ € RegS°®. In this case, I, = {xx°|x° € Vg (x)}, Ay =
{x°x]|x° € Vso(x)} and T'y = Vo (Vo (x)).

Proof. Let x € RegS,(e,%, f) € Q, and eLx!, fR¥" for some x',¥* € E(S°). Then, by Lemma 2.8, fLxRe
and ¥ = x'xx". This deduces that there exist x' € V(x) and x” € V(x’) such that xx’ = ¢,x’x = f and

x'x” = x,x"x' = &' from Lemma 2.1 (1). Moreover, by Lemma 2.1 (2), we have the following egg-box
diagram:

x =exf e xX*, ex
f x x
T T=xxx, x”

Yo

Observe that x = xx’x”x’'x = ex” f, it follows that

Since ¥*Rx’ Lx' and x*, ¥ € S°, it follows that x’ € S° by Lemma 2.9. This implies that x’ € V(%) and so
X € RegS°. Conversely, let X € RegS°. By very similar method, we can see that x € Regs$.

On the other hand, by the discussions above, for all x € RegS and (e, %, f) € Q,, we have e = xx’ and
f =x'x for some X’ € Vg-(x) N Vo (%). This implies that

L € {xx'|x" € Vo (0)}, Ay € {x'xlx” € Vo (x)}, Ty € Vo (Vs (x))

for all x € Reg$.
Now, let x € RegS, x" € Vso(x) and x” € Vs-(x’). Since

xx' Lx X R’ , ' xR ¥ Lx, x = (xx")x" (x'x), x""x", x'x"" € E(S°),
it follows that (xx’, x”, x’'x) € Q,, whence xx’ € I, x'x € A, and x” € I',. Therefore,
{xx'Ix" € Vo (x)} C I, {x'x|x" € Viso (%)} © Ay, Vo (Vise(x)) C Ty

Thus, the three equalities in this lemma hold. [

3. Quasi-Ehresmann Transversals

This section will explore some properties of semi-abundant semigroups with quasi-Ehresmann transver-
sals. We first give the following concept, which is inspired by Lemma 2.2 (2) and Lemma 2.10.

Definition 3.1. Let S be a semi-abundant semigroup and S° a quasi-Ehresmann ~-subsemigroup of S. Then S° is
called a quasi-Ehresmann transversal of S if the following conditions hold:

(i) Ty #0Qforallx € S;
(ii) is € I and “si € RegS = si € E(S)” forall i € I and s € E(S°);
(iii) sA € Aand “As € RegS = As € E(S)” forall A € A and s € E(5°).

We first observe that quasi-Ehresmann transversals of semi-abundant semigroups are indeed general-
izations of orthodox transversals of regular semigroups.
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Theorem 3.2. Let S be a regular semigroup and S° a subsemigroup of S. Then S° is an orthodox transversal of S if
and only if S° is a quasi-Ehresmann transversal of S.

Proof. Let S° be an orthodox transversal of S. Then S° is an orthodox subsemigroup of S and certainly a
quasi-Ehresmann ~-subsemigroup of S. Observe that (xx’, x”/,x'x) € Q, for every x € 5,x" € Vs.(x) and
x"" € Vso(x’). This shows that I'y # 0 for any x € S, and so the condition (i) in Definition 3.1 holds. On the
other hand, by Lemma 2.10, we have

I={xx'|x' € Vso(x),x € S}, A = {x'x|x" € Vso(x),x € S}.

By Lemma 2.2 (2), the conditions (ii) and (iii) in Definition 3.1 are satisfied, Thus, S° is a quasi-Ehresmann
transversal of S.
Conversely, let S° be a quasi-Ehresmann transversal of S. By Lemma 2.10 again,

I = {xx'|x" € Vo (x)}, Ay = {¥'x|x" € Vo (x)}, T = Vige (Vs (x))

for all x € RegS. Observe that S is regular, it follows that 5° is an orthodox transversal of S from Definition
3.1 and Lemma 2.2 (2). O

In the remainder of this section, we always assume that S is a semi-abundant semigroup with a quasi-
Ehresmann transversal S°. In the sequel, we characterize the relations £ and R on S.

Theorem 3.3. Let x,y € S.
(1) xRy ifand only if I, = I,,;
(2) xLy if and only if Ay = A,.

Proof. (1) Assume that I, = I, and e € I, = I,. By Lemma 2.8, we have x@e?’?y and so xﬁy. Now, let x?’?y,
(e,%, f) € Qcand (g, 7, h) € Q,. TheneLx!, fR¥" and gLy", hRy" for some &', x* and 7', 7" in E(S°). By Lemma
2.8, eRxRyRg and so eRg. Then, by Definition 3.1 (ii) and Lemma 2.1 (2), we have the following graph:

e =gx' € E(S) g=ej € ES)
X Xyt =xg € E(S)
7' =jle € E(S) A

Hence,
y = gih = (ey")yh = (7 Ph = efh = (x)gh = e Ph.
We assert that ¥'Rx' 7.L7". In fact, let m € E(S) and mx'y = &§. Observe that 7R and R is a left congruence
on S, it follows that ' 7Rx' . By Lemma 2.3, we have mx'§" = x'§* whence mx" = mx'y'x" = x'y'x" = '
Observe that '(¥'7) = !7, it follows that x'R%' 7 by Lemma 2.3 again. On the other hand, if n € E(S) and
x'y = xtyn, then
7=7%GP =7 G gn=gn
By 7L7* and the dual of Lemma 2.3, we have 7* = 'n. Observe that ¥'§§* = '§j, by the dual of Lemma 2.3
again, *' 7Lj". By the above discussions, we have e L¥'Rx" 7 and x'7L*Rh. This implies that (¢, x'§, h) € Q,
and so e € I,. Hence, I, C I,,. Dually, I, C I,.
(2) The is the dual of (1). O

Now, we investigate some properties of I'y for x € S.
Theorem 3.4. Let x € Sand (¢, X, f) € Q.
(1) T, = {y € S°[yox}.
(2) Ty, =Ty, ifand only if T, NIy, # 0 for all x1,x, € S.
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(3) Ty NE(S®) # 0 implies that Ty C E(S°) and Vs (x) € E(S°).
Proof. (1) Let (e1,y, f1) € Qy. By Lemma 2.8, we can let
' LeRei L', TRFLARY

for some x', 7', ¥ and #* in E(S°). In view of Lemma 2.1, x'e; Le; and fix" Lx".

e €1 = 23
X Xe f X fy
1 — fl f1 X y
yx Yy

By Definition 3.1 (ii),(iii), we can obtain that x'e;, 1%* € E(S). Again by Lemma 2.1, xfe; = ' and
fix* = y'x*. Thus, by Lemma 2.8,

2t = e gpx =gy ="y &,

X=x
where %' € E(7") and ¥ € E(i*). This implies that 5.
On the other hand, if § € $°, %% and eLx! for some &' in E(S°), then there exist i € E(y'),A € E(¥")
such that ¥ = iyA for some (all) 7' and ¥ in E(S°) (Notice that i, A € E(S°)). By Lemma 2.6, E(x') = E(y").
According to Lemma 2.1 (1), we have

e eiy ei

= =T

x X'y
—F=f = =
yx Yy yi
—F=F —F :
iy x iy i

Since e € I and it € E(S°), eiyt € I € E(S) by Definition 3.1 (ii). Thus, ez?u:]_f. Dually, we can obtain
Y'Af € E(S) and ¥Ry Af. Observe that

x = exf = eiAf = (e )F(G AP,
iy, y,yAf) € Q and y €T,
(2) This is a direct consequence of item (1) and Lemma 2.6 (2).

(3) Let x e I'y and e° € I'y N E(S°). Then, e°6x by (1). Hence, there exist k,I € E(e°) such that ¥ = ke°l,
which implies that ¥ € E(S°). On the other hand, by Lemma 2.10, in this case,

Iy = Vs (Ve (x)) € E(S°).
Since RegS° is orthodox, we have Vs-(x) € E(S°). O
The following theorem shows that quasi-Ehresmann transversal have transitivity.

Theorem 3.5. Let S be a semi-abundant semigroup with a quasi-Ehresmann transversal S° and S* a quasi-Ehresmann
transversal of S°. Then S* is a quasi-Ehresmann transversal of S.

Proof. By Lemma 2.7, Is- = {e € E(S)|(de® € E(5°))eLe°}. Let x € S and (e1, x1, f1) € Qg-(x) with el£x1“7~€x1 and
x{ € E(S°). Let (e, x2, f2) € Qg-(x1) such that (In view of Lemma 2.8)

x{?’?xlﬁez.ﬁx;@xz xl.ZfQRx;sz, x;x; € E(S), ez, f2 € E(S°).
Then e1 LxTRe, Lx}. By Lemma 2.1, e1e; Lx}. On the other hand, since ¢; € Is- and e, € E(S°), e1e; € Iso C E(S)

by Definition 3.1 (ii). Dually, we can obtain that fof; € E(S) and f,fiRx;. Observe that x = ejx1fi =
(e1e2)x2(f2.f1), it follows that (e1ey, x2, f2f1) € Qs-(x). This implies that I's-(x) # @ for all x € S.
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On the other hand, by Lemma 2.7 again, we have
Is- = {e € E(S)I(Je* € E(S))eLe"}, As: = {f € E(S)I(Tf* € E(S)fRf}.

Lets,e* € E(S*) € E(S°) and ¢*Le € Is- C Is-. Apply Definition 3.1 (ii) to Is, es € Iso € E(S). Observe that
esLe's € E(SY), it follows that es € Is-. On the other hand, let se € RegS. Apply Definition 3.1 (ii) to Is- again,
se € E(S). Hence, Definition 3.1 (ii) for Is- is satisfied. Dually, we can prove Definition 3.1 (iii) for Ags. also
holds. Thus, S* is a quasi-Ehresmann transversal of S. [

From Lemma 2.7, we have IE(S°) U E(5°)A C RegS. In the following, we shall give some equivalent
conditions such that E(S°)] U AE(S°) € RegS. We give the lemma below firstly.

Lemma 3.6. Leta,b € RegS,e, f € Iand g,h € A. Then
(1) Ifa° € Vso(a), then Vs-(a) = Vs-(a®a)a® V- (aa®);
(2) IfeLf, then Vso(e) = Vs (f);
(3) If gRh, then Vso(g) = Vso(h);
(4) If Vso(a) N Vo (b) # 0, then Vg-(a) = V(D).
Proof. (1) Leta* € Vgo(a) and a°° € Vs-(a°). Then, by Lemma 2.1 (2)
a®°a°Ra°a°aa* La*Ra*aa°a’° La°a°.

0,00
a

By Lemma 2.9, a°°a°aa”, a*aa € S°. The remainder is similar to the proof of Lemma 2.4 in Chen [4].

(2) Let t € Vse(e). By Lemma 2.7, we may let eLf Lh for some h € E(S°). Then, (¢,h,h) € Q, and so
h e I, N E(S°). By (3) of Theorem 3.4, t € Vso(e) € E(S°). In view of Definition 3.1 (ii), we have ft € I.
Observe that tRteLeLf, it follows that fRftLt by Lemma 2.1. Since ft € I C E(S), by Lemma 2.1 again,
tfHte € E(S). This implies that tf € RegS. By Definition 3.1 (ii), tf € E(S). Hence, tf = te.

e et
f ftel

tf =te t
h

This implies that tft = tet = t and ftf = (ft)f = f. Therefore, t € Vs-(f) and so Vse(e) € Vso(f). Dually,
Vso(f) € Vs:(e).

(3) This is the dual of (2).

(4) Let x € Vso(a) N Vso(b). Then axLbx and xaRxb. In view of Lemma 2.10, we have ax,bx € I and
xa,xb € A. By (1), (2) and (3), we have

Vse(a) = Vo (xa)xVs-(ax) = Ve (xb)x Vs (bx) = Vs:(b),
as required. [
Theorem 3.7. The following conditions on S are equivalent:
(1) Yu,velUA) “lu,v}NES°)#0=T,T,CT,”;
(2) E(S°)I C E(S), AE(S°) C E(S);

(3) (Ya,b € RegS) “la,b}NS° #0 = Vs:-(b)Vs(a) C V- (ab)”.
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Proof. (1)implies (2). Leti € [,A € A and s € E(S°). By Definition 3.1 (ii) and (iii), it suffices to show
si,As € RegS. In fact, by Lemma 2.7, there exist i°, A° € E(S°) such that i°£i and A°RA. This implies that
(1,1°,i°) € Q; and (A°,A°,A) € Q,. Hence, i° € I; and A° € T'). Clearly, s € I's. By (1), si® € I'; N E(5°) and
A°s € s NE(S°). In view of Lemma 2.10, we have si, As € Reg§.

(2) implies (3). Let a € RegS® and b € RegS. Take a° € Vs.(a) and b° € Vso(b). Then a®a € E(S°) and bb° € ]
by Lemma 2.10. By (2) and Definition 3.1 (ii), we have

abb®a®ab = a(a®abb®)(a°abb®)b = aa°abb®b = ab

and
b°aabb°a® = b°(bb°a’a)(bb°a°a)a® = b°bb°a°aa’® = b°a°.

Dually, we can prove the case for a € RegS and b € RegS°.
(3) implies (1). Let u € E(5°) and v € I U A. Clearly, u,v € RegS. Take

u° € Vso(u), u*® € Voo (u°),v° € Vso(v),v°° € Vo (0°).
Then by (3), v°u® € Vs.(uv). Since RegS® is orthodox, we have
10 € Voo (11°) Vo (v°) C Vg (v°11°) C Vo (Viso (uw)).

Hence, by Lemma 2.10, I',I', € I',. Similarly, we can show the case for v € E(S°) and u € U A. This implies
that (1) holds. O

The following Theorem 3.8 yields that if Condition (1) of Theorme 3.7 is strengthened by removing
{u,v} N E(S°) # 0, then S itself is quasi-Ehreshmann.

Theorem 3.8. The following conditions on S are equivalent:
(1) Vu,velUA) I ,[, CT,;
(2) AILIA CE(S);
(3) S is quasi-Ehreshmann.

Proof. (1) implies (2). Leti € Iand A € A. Then, by Lemma 2.7 (1), there exist i°, A° € E(5°) such that i.£i® and
ARA°. This shows that (i, i°,i°) € QQ;and (A°, A°,A) € Q,. Hence, i° € I;and A° € I'y. By (1), A°i® € I'y; NE(S°).
In view of Lemma 2.10, Ai € RegS and I'y; = Vs(Vso(Ai)) whence A°i° € Vs (Vso(Ai)). Hence, there exists
(AD)° € Vgo(Ai) N Ve (A°i°). By Lemma 3.6 (4), Vso(Ai) = Vso(A°1°). Noticing that i°A°, A°i° € Vs (A°i°), we
have A°i°,i°A° € Vg (Ai). Thus,

Ai = Aii°A°Ai = Aidi € E(S).

On the other hand, by similar arguments, we can obtain A°i° € Vs (iA). Hence,
id = iAA°PIA = IA°°A.
Since A°i° € Vs (Ai), this implies that
iAid = i(A°PAIAEP)A = iA°I°A = A € E(S).

(2) implies (3). Leta,b € RegS. Then, we can take a° € Vs.(a) and b° € Vs.(b) by Lemma 2.10. We assert
b°a® € Vo (ab). In fact, since bb° € [ and a°a € A by Lemma 2.10, by (2),

b°a°abb®a® = b°(bb°a’a)(bb°a’a)a® = b°a°

and
abb®a®ab = a(a®abb®)(a°abb®)b = ab.
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Hence, RegS$ is a regular subsemigroup of S and
VRegS° (b)VRegS" ({Il) c VREgS° (ﬂb)

for each a,b € RegS. It is clear that RegS° is a subsemigroup of RegS and Vgegs-(a) = Vs-(a) # 0 for each
a € RegS. In view of Lemma 2.2 (1), Reg$ is orthodox. Thus, S is quasi-Ehreshmann.
(3) implies (1). Let u,v € I U A. Then u, v € RegS. Take

u® € Veo(u), u®® € Vs (u°),v° € Vs (v),v°° € Vo (v°).
By (3), RegS is orthodox. This implies v°u°® C Vs.(uv). Hence,

u°v%° € Voo (u°) Vo (v°) C Vo (v°u°) C Vo (Vo (uv)).
In view of Lemma 2.10, T, I, € T,,,. O

Let S be a semi-abundant semigroup and S° a quasi-Ehreshmann transversal of S. We shall say that S°
is strong if one (equivalently, all) of the conditions in Theorem 3.7 holds. Obviously, orthodox transversals
are strong quasi-Ehresmann transversals by Theorem 3.7 (3). However, quasi-Ehresmann transversals may
not be strong in general. The following result illustrates this situation.

Example 3.9. (Example 2.7 in [5]) Let S = {e, g, h, w, f} with the following multiplication table

e g h w f
ele g e g g
919 9 9 9 49
h|h g h g g°
wlw g w g g
flg 9 w w f

Then, it is routine to check that S is a semi-abundant semigroup with a quasi-Ehresmann transversal S° = {w, e, f, g}.
In this case, I = {e, h, f, g} and f € E(S°), but fh =w ¢ E(S).

Theorem 3.10. Let S be a semi-abundant semigroup with a strong quasi-Ehreshmann transversal S° and I the
subsemigroup generated by I. Then

(1) For i, € Iand z'z € E(S5°) such that ik.[:i;, wherek =1,2,--- ,n, we have iyi; -1} € Vso(iyia -~ 1iy).

(2) E(S°) is an orthodox transversal of I and I is a subband of S.

Dually, we have a symmetrical result for A.

Proof. (1) Clearly, the result holds for the case n = 1. Now, we assume that the result holds for n = t — 1 and
prove that it is also true for n = . Let

11,05+ i €1, x =iy -1}

Then, by hypothesis, i} | ---i; € Vso(iai3 - - -i;), which shows that ipi3 - - -i; € RegS. Clearly, i} € RegS°. By
(3) of Theorem 3.7, we have i}i; | ---i] € Vse(iJip -+ - ;). This yields #;i} | ---i] € Vso(x). Indeed, observe that

ik.ﬁi;,k =1,2,3,---,t, it follows that
o0 o 00 o _ i sopioi i iy o _
Bty e B XE G g iy =0T (i i)y 0y =
oo o0  \ioro 0 _ o o
SRR M (A R ) MR MR H PR
and
o0 o o o0 N0 . .. .
x(ipiy - rip)x = ip((Jin - - i) (@71, -+ )((inin -+ 4y) = dqdp -+ i = X,
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(2) By Lemma 2.7,

I={e€ E(S)|(Je® € E(S°))eLe’}, A ={f € E(S)I(Af° € E(S°))fRf°}.

In view of item (1), I is a regular semigroup and Vgs-)(x) # 0 for all x € I. Denote
IES) = (xx°lx e [,x° € VE(So)(x)},AE(SD) = {x°x|x € [, x° € Vs (v)}.
Then by Lemma 2.7 and Lemma 2.10,
IF®) = {e € E(DI(Fe° € E(S°))eLe’}, AP = {f € E(DIAf° € E(S°) fRF°).

It is easy to see that I = [ and AFS?) = A N I. Hence by Definition 3.1 and Theorem 3.7 (2), we have

IESIE(S®) = IE(S°) € I = IE®), E(S°)IECY) = E(S°) C E(S) N I = E(I)

and
E(S°)AES) = E(S)ANT) CEGS)ANES) S ANT = AFS),
AFSIE(S®) = (ANT)E(S®) € AE(S°) NIE(S°) C E(S) N 1T = E(I).
By Lemma 2.2 (2), E(S°) is an orthodox transversal of I. According to Lemma 2.2 (3), the subsemigroup

generated by ") = [ in I is a subband of I. This implies that I itself is a subband of S. By dual arguments,
we can obtain a symmetrical result for A. O

In the end of this section, we give some properties of semi-abundant semigroups with generalized
bi-ideal quasi-Ehreshmann transversals, which will be used in the next section. Recall that a subset T of a
semigroup S is called a generalized bi-ideal if TST C T.

Lemma 3.11. Let S be a semi-abundant semigroup with a strong quasi-Ehreshmann transversal S° which is also a
generalized bi-ideal of S. Then I and A are subbands of S. In this case, E(S°)] € E(5°) and AE(S°) C E(S5°).

Proof. Lete, f € I. Then, by Lemma 2.7, there exist e°, f° € E(S°) such that eLe® and fLf°. Since S° is a
generalized bi-ideal of S, e°f = ¢°ff° € S°. By (2) of Theorem 3.7, we have ¢°f € E(S). This implies that
e° f € E(5°). In virtue of condition (ii) of Definition 3.1, we have

ef =e(e°f) € IE(S°) C L.

This shows that I is a subband of S. Dually, A is also a subband of S.
Now, let s € E(5°) and i € I. Then, by Lemma 2.7, i.Li° for some i° € E(5°). Since I is a subband and S° is
a generalized bi-ideal of S, we have
si =sii° e INS° = E(S°).

This yields that E(S°)I € E(5°). Dually, AE(S°) € E(5°). O
Lemma 3.12. Letx,y € S°,e,g €1, f,h € Aand eLx", fRx", gLy", hRy"*. Then
eRyg, x0y, fLh & exf = gyh.

Proof. Necessity. By hypothesis, we have x = kyl, where k € E(y") and I € E(y*)(Notice that k, I € E(5°)!). By
lemma 2.6, E(x") = E(y"). By Lemma 2.1, we have

e+ g, fkg‘” ek
X xTy
i ¥ i
kyTxt ky* k
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Since ky' € E(S°) and e € I, by condition (i) of Definition 3.1, we have eky'" € I whence eky’ = g. Dually,
y'lf = h. Therefore,

exf =ekylf = eky" -y - y'If = gyh.
Sufficiency. Let exf = gyh. Then,
(erxrf)/ (9; yr h) € QEXf = ngh'

By Lemma 2.8,
eRlexf = gyhR'g, f Lexf = gyhL7h.
The fact that xoy follows from Theorem 3.4 (1). O
Lemma 3.13. The following statements are equivalent:
(1) S° is a generalized bi-ideal of S;
2) (Vx,y € S)(¥(e X, f) € Q)(Y(g, v, h) € Q) Xfgy € Tuy,
(3) VfeAN(Vgel) fgeS.

Proof. (1)= (2). By (1), xfgy € S°. Let eLx" and hRyy*. Then, for any (¥fg%)" and (¥fg7)*, by Lemma 2.3 and
its dual, we have

e(xfgy)' LX' (fgy)" = &fg9)", (Xf99) hREf99)'T = (Ef97)".
Observe that xy = e(Xfgy)'xfgy(xfgy)'h, it follows that Xfgy € Iy,
(2) = (3). Let f € Aand g € I. Then, by Lemma 2.7, there exist f°,g° € E(S°) such that fRf° and gLg°.
Hence, (f°, f°, f) € Qrand (9,9°,9°) € Q. By (2), fg = f°fg9° € I'5,. Therefore, fg € S°.
(3)=(1). Letx,z € S°,y € Sand (g, i, h) € Q,. Then, by (3) we have xyz = x(x'g)y(hz")z € S°. This shows
that S° is a generalized bi-ideal of S. O

4. A Structure Theorem

In this section, a structure theorem of semi-abundant semigroups with a generalized bi-ideal strong
quasi-Ehreshmann transversal is established by using so-called QSQE-systems which are defined as follows.

Definition 4.1. Let I and A be two bands, S° be a quasi-Ehreshmann semigroup such that
E(S°) =InA,E(S°) € E(5°), AE(S°) C E(S°)
and P be a A x I-matrix over S°. Then (I, A, S°, P) is called 1 QSQE-system if for all i, j € E°,e € I and f € A,
(QSQE) iPse = Pife, Prej = Prej, Pri= fi, Pje = je.
Let (I, A, S°, P) be a QSQ&E-system and denote E° = E(S°). Write
Q=QU A, S, P)={(R,5(x), L) € /R x S°/6 x A/ LleLx", fRx" for some x",x* € E°}.
The following result shows that the above set Q is well-defined.

Lemma4.2. Let (R, 6(x),Ls) € Qand g € I,y € S°,h € A. If eRg, x5y and f Lh, then there exist y', y* € E° such
that gLy" and hRy".
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Proof. Let (Re,6(x),Lf) € Q, g€,y € S°,he Aand
eRyg, xdy, fLh,eLx", fRx
for some x', x* € E°. Then, there existi € E(x"), A € E(x*) such that y = ixA. Leta = ix'g, B = hx*A. Since I and

A are bands and E°I C E°, AE° C E°, we have a,§ € E°. Sincei € E(xh, e,g € I and x*.EeRg, it follows that
e q,1 x' in the same D-class of I(This method will be used in the rest of this section frequently). Hence,

ga=gix'g=g.
Clearly, ag = a. Therefore, gLa. On the other hand, if k € E° and ky = y, then kixA = ixA.This implies that
kix = kixx*Ax" = kixAx" = ixAx" = ixx’Ax" = ixx" = ix.

Since xRx", we have ixRix", whence kix = ix" by Lemma 2.3, and so ka = kix'g = ix'g = a. Butay =
(ix*gi)xA = ixA = y, again by Lemma 2.3, yRa. Therefore, gLaRy. Dually, we have hRELy. O

Lemma 4.3. Define a multiplication on Q by the rule
(Re, 0(x), L)(Rg, 6(y), L) = (Reat, 6(a), Lun),
where a = xPygy. Then the following statements are true:
(1) (Reat,8(a), Lyn) € Q dose not depend on the choice of a* and a’;
(2) the above multiplication dose not depend on the choice of e, x, f and g, y, h;

(3) Q becomes a semigroup with the above multiplication.

Proof. (1) Let (R, 6(x),Ly), Ry, 6(y),Ly) € Q and eLx",hRy* for some x',y* € E°. Then, by Lemma 2.3
and its dual, x'a" = a' and a*y* = a*. Therefore, ea’ Lx'a' = a' and a'hRa*y* = a*. This implies that
(Ropt,5(a), Len) € Q. If a™,a* € E° and a* LaRa't, then a™Ra't and a* La*, whence ea"Rea't and a*hLa*h. This
proves that (R, 5(a), L,1,) dose not depend on the choice of a* and a.

(2) Let (R¢, 6(x), Lf) = (Rk, 6(z), L), (Rg, 6(y), Ln) = (Rp, 6(w), Ly) € Q and

eLx', KLz, gLy, p L', fRY", IRz, h Ly, g L.

Then,
eRk, x6z, f L1, gRp, yow, hLq.

By Lemma 2.6 (1), there exist
i € E(z') = E(), A € K@) = E(x"), j € E@") = E(y"), p € E@") = E(y")
such that x = izA and y = jwu. Leta = xPf,y and b = zP;,w. Then,

a

XPggy = izAPggjwu = izP)sgwu (QRSQE), A, j € E°)

= iZPypputgiop (FLL gRp, IRz, pLw")

= izZ'AfZ'Pw gjwtwp (QSQE), Afz,w'gj € E°,zz" = z,w'w = w)

= izPwp (A€ E@EZ) = E("), fRx", j € E@') = E(y"), gLy", zz" = z,w'w = w)
= (bbb p).



Shoufeng Wang / Filomat 29:5 (2015), 985-1005 998

Noticing that i € E(z") and z'b = b, we have z'b" = b and ib" € E(b"). Dually, b*'u € E(b*). Thus, 5(a) = 5(b).
By lemma 2.6 (3), we have ib"Ra', b*uLa* and E(a) = E(b"). Therefore,

ea'kb' = ki'exta'kb" (eRkLz',x%a" =a')
= kZ'a'kbt (E(x) = E(zY), eLxT)
= kZ'a'vt (kL2 2t = b, atket € E@ah) = E(bY)
= kzt@Na'vt = kfivt  (@'Ribt,at € E(bY))
= kZ'iz'bt = k2" = kb'. (' = b',i € E(2Y))
By the above identity and its dual, we have eatRikb*. Dually, we can obtain a*h.Lb*q. Hence,
(Rer 6(9(), Lf)(Rg/ 6(y)r Lh) = (Rea*/ 6(”)/ Lu*h)
= (Rkaf/ 6(b)/ Lb*q) = (Rk/ 6(2)/ Ll)(Rp/ 6('(/0), Lq)
(3) Let my = (R,, 6(x), Ly), ma = (Ry, 6(y), Ln), m3 = (Rs, 6(2), Lt) € Q. Then,

(mlmZ)mS = (Rea*/ 6(“)/ Lu*h)mS = (Rec“r 6(C)/ Lc*t)/

ml(m2m3) = ml(Rngf/ 6(17)/ Lb*t) = (Rede/ 6(‘1)/ Ld*t)‘
By (QSQE), we have

¢ = aPyysz = aa’ Pz = aPpsz = xPr yPysz = fo,gb‘Lb = fo/gh‘rb =d,
which implies that (mmo)ms = my(momz). O
Lemma 4.4. Let (R, 6(x),L¢) € Q. Then (R.,6(x), Lf) € E(Q) if and only if xP.x = x.
Proof. Let (R, 6(x),Ly) € Q, eLx" and fRx". If (R,, 0(x),Ly) € E(Q), then

(Re, 6(x), L) = (Regt, 6(a), Lyg),
where a = xP.x. Hence, there exist i € E(x*) and A € E(x*) such that xPsex = ixA. Thus,
xPgex = x+fo,gxx* = xtivAx* = dtiGet ) Axt = i )x(Ax) = xfxxt =
Conversely, if x = xPf,x, then
(Re, 5(x), Ls)? = (Rext, 8(x), L) = (R, 6(x), Lg) € E(Q),

as required. [

Lemma 4.5. Let (R, 0(x),Ly) € Q and eLxt, fRx" for some xt,x* € E°. Then (R, d(x"),Ly+) € E(Q) and
(Re, 8(x), LR(R,, 6(x"), Lyt).
Proof. Clearly, (R,, 5(x"), Ly+) € Q. In view of Condition (QSQE), we have
foP,ﬁ,exJr =xT(xTe)x™ = xfxfxt = af,
whence (R,, 5(x"), L;+) € E(Q) by Lemma 4.4. By similar calculations, we can obtain that
(Re, 8(x"), Lt)(Re, 6(x), L) = (Re, 6(x), L) 1)
Now, let (Ry, 6(y), L) € E(Q) and

(Rg/ 6(y)/ Lh)(REI 5(X), Lf) = (RE/ 6(X), Lf)
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Then yP;, 4y = y by Lemma 4.4 and (Ryat,6(a), Lo £) = (Re, 6(x), Ly), where a = yPj, .x. This implies that
yPy, € E°, ga'Re,a" f Lf, E(x") = E(a")

by Lemma 2.6. Since eLx" and E(x") = E(a"), we have a'e = afex' = a'x*. In view of Condition (QSQE) and
the fact ga*Re, we obtain

yph,€x+ = ]/Ph,gu*ex+ = yPh,gmax* = (]/Ph,g)ll+x+ € E°.

Since xRxt and R is a left congruence, we have a = yPhlexﬁyPh,ngr. This yields that a*RyP),.x* and yP,.x" €
E(a") = E(x") since yPj,.x" € E°. So
eRgatRgyPyox", 5(yPyex") = 6(x1), yPyx" L.

In view of Lemma 4.3 (1) and the fact yPy.x" € E°, we have

(Rg, 6(), Li)(Re, 6(x"), Lyt) = (Ryyp,,at, O(YPhex"), Lyp, xtxt) = (Re, O(x1), Lyt). 2
According to items (1) and (2), we have (R, 6(x"), Lx+)§(Rg, 0(x),Ls) by Lemma 2.3. [
Lemma 4.6. Let (R., 6(x), L) and (Ry, 6(y), L) € Q. Then (R., 6(x), Lf)ﬁ(Rg,é(y), Ly) if and only if eRg.
Proof. Now, let my = (R, 6(x), L), n1 = (Ry, 6(y), Ly) € Q and

eLx', gLy',m) = (R, 6(x"), L), n} = Ry, 8(y"), L)

Then by (QSQE),
mln1 = (Rewt, O(u), Ly ), u = erthgyJr = x*g € E°.

’ ’ ’

If mlﬁnl, then by Lemma 4.5, we have m;Rn;, which is equivalent to mln/l = n, and n/lm1 = ml But
m n, = n} implies gReu’ whence eg = g. Dually, n;m; = m| implies ge = e. Therefore, ¢Rg. Conversely, if

eRyg, then by Lemma 2.1, we have

e g eu
o P Fs e gy i
T 7 T 7 ®3)
ye Y
e

Hence,
min, = (Reu*/ 5(14), Lu*y*) = (Rer 6(x*y+), Ly*) = (Rgf 5(y+)/ Ly*) =ny.
Dually, we have n,m = m|. Hence, m Rn;. Again by Lemma 4.5, mRny. O

Lemma 4.7. Q is a semi-abundant semigroup and
Q" = {(Ru, 0(x), L) € Qlx € 57}
is a quasi-Ehreshmann ~-subsemigroup of Q isomorphic to S° such that
T ((Re, 6(x), Ly)) # 0

forall (R, 5(x), Ly) in Q.
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Proof. By Lemma 4.5, each L-class and each R-class of Q contains idempotents. Let

my = (Re‘/ (S(JC), Lf)/ mp = (Rgr 6(y)/ Lh)r ms = (Rs, 6(2)1 Lt) € Q

and eLxt, g Ly", mRn;. By Lemma 4.6, we have eRg. In view of the diagram (3), we have x'e = x* and

x"g = x*y". This implies that x* = xTeRx"g = xTy* whence zP; x"RzP; .xTy'. By (QSQE) and the diagram (3),
zP; X" RzPy xyT Yy = 2Pyt v =2zP .yt

On the other hand, since xRxt, we have th,L,xinP,,gx*. Similarly, we have th,gyﬁthlgy*. Thus, th,exﬁth,gy

and 50 (zP;.x)'R(zP;4y)". This implies that s(zP;.x)'Rs(zP;,y)!. By Lemma 4.6, we have mym;Rmzm,. We

have shown that R is a left congruence. Dually, £ is a right congruence. Therefore, Q is a semi-abundant

semigroup.

Now, define
lnb : QO - SO/ (RX+/6(x)I Lx‘) = X.

Then, by Lemma 2.6 (3), 1 is bijective. It is also a homomorphism. In fact, by (RSQE),
(Rx"r (S(X), Lx*)(Ry+/ 6(y)r Ly) = (/ 6(pr*,y+ y)r ) = (/ 5(3595]/ }/)/ ) = (r 5(x]/)/ )

Moreover, by Lemma 4.6 and its dual, for each (R,+, 0(x), Ly-) € Q°, we have
(Ret, 6(:"), Ly )R(Ryr, 5(x), L) LR, 8(x°), L)

and
(Rx*l 6(X+), Lx*)r (Rx*/ 6(X*)/ Lx*) € E(QO)

Hence, Q° is a quasi-Ehreshmann ~-subsemigroup of Q.
Let m = (R, 6(x),Ls) € Q and eLx", fRx*. Then /i = (R, 6(x), L) € Q°. By condition (QSQE), Lemma
4.5, Lemma 4.6 and their dual, we have

(R, 6(x"), L) = m'RinLim* = (Ry-, 6(x%), L)

and
' Lew = (Re, 0(x"), L) € E(Q), m'Rfin = Ry, 8(x"), Ly) € E(Q).

It is routine to check that m = e, f,,. This proves that I'g-((Re, 6(x), Lf)) # 0. [
Lemma 4.8. The following statements hold:
(1) E(Q°) = {(R., 6(e), Le) € Q°le € E°);
(2) Ig- = {(Ry,6(h),Ly) € E(Q)lgLh & h € E°};
(3) Age = {(Ry,6(9), L) € E(QQ)lgRh & g € E°}.
Proof. (1) Let (Ryt, 6(x), L) € E(Q°). By Lemma 4.6 and condition (QSQE),
X =xPp px = xx'xtx = xx e E°.

Hence,
(Ryt, 0(x), L) = (Ry, 0(x), Ly) € {(Re, 6(e), L) € Q°le € E°}.

The reverse inclusion is obvious.
(2) Let (R, 6(x), Ly) € Ig- and eLx", fRx". Then, by Lemma 4.4, Lemma 4.7 and Lemma 2.7, we have

XPgex = X, (Re, 6(x), L) L(R;, 6(), L)
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for some (R;, 6(i), L;) € E(Q°) where i € E°. Thus, by the dual of Lemma 4.6, f.Li whence f = fi € E° since
i€ E° and E°A C A. By (RSQE), Py, = fe € E°I C E°. Since xPf,.x = x, we have xPy,, Ps.x € E°. Therefore,

x = xPgox = (x(fe))((fe)x) € E°E® C E°.

Moreover, by Lemma 2.1,

x x
x* xxt f
e ef =k

Thus,
(Re, 6(x), Lr) = (Re, 6(f), Ls) € {(Ry, 6(h), Ly) € E(Q)lgLh & h € E°}.

Conversely, let (Ry, 6(h), Ly) € E(Q) and gLh € E°. Then, by the dual of Lemma 4.6 and Lemma 4.7, we can
obtain

(Ru, 6(h), L) € E(Q°), (Rg, 6(h), L) L(Rpy, 6(h), Ly).

By Lemma 2.7, (R, 6(h), Ly) € Ig:.
(3) This is the dual of (2). O

Lemma 4.9. Q° is a generalized bi-ideal strong quasi-Ehreshmann transversal of Q.

Proof. By Lemma 4.7, Lemma 3.13 and the definition of strong quasi-Ehreshmann transversals, it suffices
to prove that I- and Ag- are subbands of Q and Ag-Ip- € Q°. For the first part, we only prove the case for
Ig-, the similar argument holds for Ag.. By Lemma 4.8, let

(Re, 6(f), Ly), (Ry, 6(h), Ly) € I(Q),eLf € E°, gLh € E°.

By (QSQS),
a= fPrgh=Prrgn =Ppq = fg € E".
Then by Lemma 4.3 (1) and Lemma 4.8,
(RE/ 6(f)/ Lf)(Rgl 6(h)/ Lh) = (Re(fg)r 6(f!7)/ L(fg)h) = (REg/ 5(f9)/ Lfg) € IQ°

Now, let
(R61 6(f)/ Lf) € IQOI (Rg/ b(!])/ Lh) € AQ°

and eLf € E°,hRyg € E° by Lemma 4.8. Then,
(Rg, 0(9), Lu)(Re, 0(f), L) = (Rypt, 6(b), Ly 5)-
Since b = gPy,. f, we have gb" = b* and b* f = b* by Lemma 2.3 and its dual. Therefore,
(Rg, 6(9), Ln)(Re, 8(f), L) = (Rer, 6(b), Lir) € Q°,

as required. [

Now, we can give our main result in this section.

Theorem 4.10. Let (I, A,S°, P) be a QSQE-system. Then Q is a semi-abundant semigroup with a generalized
bi-ideal strong quasi-Ehreshmann transversal isomorphic to S°; Conversely, every such semigroup can be obtained in
this way.
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Proof. The direct part follows from Lemma 4.7 and Lemma 4.9. Conversely, let S be a semi-abundant
semigroup with a generalized bi-ideal strong quasi-Ehreshmann transversal S°. Then we define I and A as
in Section 2 and Py, = fe € S° fore € I and f € A by Lemma 3.13. Then, (I, A,S°, P) is a QSQE-system by
Lemma 2.7 and Lemma 3.11. By the proof of the direct part, we can construct a semi-abundant semigroup
Q with a generalized bi-ideal strong quasi-Ehreshmann transversal Q° isomorphic to 5°.

Let

P:Q—S, (R, 6(x),Ly) = exf.

By Lemma 3.12, ¢ is well-defined and injective. Let m € S. Then, there existe, f € E(S) and i € S° such that
(e,m, f) € Q. Hence, (R,, 6(1),L¢) € Q and

@R, 6(m), Ly) = emf = m.
That is, ¢ is surjective. Let (R,, 6(x), Lf), (Ry, 6(y), L) € Q. Then,
P((Re, 6(x), L)(Rg, 6(y), Ln))

P(Repy 0P 1 g1), e, yyh))
= P(Reefgyyt 0CfaY), Lixggyyn)

= e(xfay) - xfay- (xfay)h

= exfgyh

= @R, 6(x),Lf) - p(Rg, 6(y), Ln).

This implies that ¢ is indeed an isomorphism from Q onto S. [

Now, we apply our Theorem 4.10 to the class of regular semigroups with a generalized bi-ideal orthodox
transversal. The following theorem gives a structure theorem for regular semigroups with generalized bi-
ideal orthodox transversals, which substantively is the Theorem 3.4 in Chen [4].

Corollary 4.11. Let (I, A, S°, P) be a QSQE-system such that S° is an orthodox semigroup. Then Q is a reqular
semigroup with a generalized bi-ideal orthodox transversal isomorphic to S°. Conversely, every such semigroup can
be obtained in this way.

Proof. It follows from Theorem 3.2 and Theorem 4.10. [

5. Some Remarks

In this section, we give some remarks on the results obtained in this paper. Let S be a semigroup and
x,y € S. The Green’s *-relations can be defined as follows. That xR*y means that ax = bx if and only if
ay = by for alla,b € S'. The relation £* can be defined dually. Denote H* = £ N R*. Clearly, £* is a right
congruence and R" is a left congruence. A semigroup is called abundant if each L*-class and each R*-class
contains idempotents. An abundant semigroup S is quasi-adequate if its idempotents form a subsemigroup
of S. An abundant subsemigroup U of an abundant semigroup S is called a *-subsemigroup of S if

LU) = £5S) N (U x U), R (U) = R(S) N (U x U).

It is well known (and easy to prove) that abundant semigroups are always semi-abundant semigroups
and quasi-adequate semigroups are always quasi-Ehresmann semigroups. Moreover, in an abundant

semigroup S, we have £L* = £, R* = Rand H"* = H and so *-subsemigroups of S and ~-subsemigroups of S
are equal. Thus, we have the following remark.

Remark 5.1. Quasi-Ehresmann transversals of abundant semigroups are generalizations of orthodox transversals of
reqular semigroups in the range of abundant semigroups.

On the other hand, Ni [18] introduced quasi-adequate transversals of abundant semigroups (with the
notations in this paper) as follows: A quasi-adequate *-subsemigroup S° of an abundant semigroup S is
called a quasi-adequate transversal of S if
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(i) Ty #0forallx € S.
(ii) T.I's CTg and I';I, C Ty for all e € E(S) and s € E(5°).

From Ni [18], a multiplicative orthodox transversal of a regular semigroup S is always a multiplicative
quasi-adequate transversal of S. In the following, we give an example to show that, in general, an orthodox
transversal 5° of a regular semigroup S may not be a quasi-adequate transversal of S even if S° is also a
generalized bi-ideal of S.

Example 5.2. Let S be an inverse monoid with identity 1 which is not a Clifford semigroup. Then there exist a € S
and i € E(S) such that ai # ia. Suppose that M = M(S,2,2, P) is the Rees matrix semigroup over S, where the
entries of its sandwich matrix P = (Pyp)axo are

pr=pr=pa=Lpn=al.

Denote M° = {(1,x,1)lx € S}. Then M° is an inverse subsemigroup and a generalized bi-ideal of M, and
Ve (1, x,0)) = {(1,x71, 1)} for all (u,x,v) € M where x™! is the unique inverse of x in S. For (u,x,v) € M,
we denote (u,x,v)° = (1,x71,1). Now, let (uy,x1,v1), (12, X2, v2) € M and

{(11,x1,01), (U2, X2, 02)} N M° # 0.
It is easy to check that
Vive ((u1, x1, v1) (U2, X2, 02)) = {((u1, X1, 1) (12, X2, 02))°}
= {(uz, x2,v2)°(u1,x1,v1)°} = Ve (2, X2, v2)) Vivee (11, x1, 01)).

This implies that M° is an orthodox transversal of M.
On the other hand, since M is reqular and M° is an inverse subsemigroup of M, M is abundant and M° is a
quasi-adequate *-subsemigroup of M certainly. Let (u,x,v) € M. Then (1,x,1) € M° and

1,x,1)" = (1,xx7,1),(1,x,1) = (1,x7'x, 1)
It is easy to see that
((ul xl U)(u, x/ v)ol (11 x/ 1)/ (ul xr v)o(u, xr v)) € Q(ll,X,U)
and so (1,x,1) € Lyxo). If (1,y,1) € Ly x ), then there exist
(u1,21,71), (U2, 22, v2) € E(M)
such that
(u,x,0) = (u1,z1,01)(1, y, 1)(u2, 22, 02)

and
(ul/ 21, Ul)L(ll Y, 1)+ = (1/ yy71/ 1)/ (1/[2, 23, UZ)R(ll ]// 1);F = (1/ yily/ 1)

This implies that
U1 =U10=001=uU =1

and
21,22 € E(S), 21 Lyy ™, 2Ly 'y

in S whence zy = yy~ ! and zo = y~'y since S is inverse. Thus, we have
(1/[, X, U) = (ulr 21, Ul)(]-/ Y, 1)(”2/ 23, 7)2) = (1/[, ]/]/71/ 1)(1/ Y, 1)(1/ ]/71]// 0) = (M, Y, v)

and so (1,y,1) = (1,x,1). We have shown that T, ) = {(1,x,1)} for all (u,x,v) € M. For (2,a,2) € E(M) and
(1,i,1) € E(M®), we have
Fow2 =11, a, 1)}, T,y =1{(1,4,1)},
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Fineae2) = Taia = (1, ia, 1)}

and
Foenlainy =11,a,1)(1,i, 1)} ={(1,ai,1)}.

Since ai # ia, it follows that T'(2,4,2)I 1,1y is not contained in T'1 ;1) 0,q,2). This implies that M® is not a quasi-adequate
transversal of M.

The above Example 5.2 implies the following remark.

Remark 5.3. Quasi-adequate transversals of abundant semigroups are not generalizations of orthodox transversals
of reqular semigroups in the range of abundant semigroups.

To explore some relations between quasi-adequate transversals and quasi-Ehresmann transversals of
abundant semigroups, we need the following proposition.

Proposition 5.4. Let S be an abundant semigroup and S° a generalized bi-ideal quasi-adequate transversal of S.
Then
E(S°) € E(S5°),IE(S°) CI,E(S°)A € A, AE(S°) C E(S°),

where I and A are defined in the statements before Lemma 2.7.

Proof. In fact, let e € I and f € E(S°). By Lemma 2.7, there exists e° € I such that eLe°, and so e° € I,
and e°f € E(S8°). Since S° is a generalized bi-ideal of S, we have fe = fee® € §°. Obviously, f € T;. By
the definition of quasi-adequate transversals, e°f € T.I'r C I'r,. By Lemma 2.10 and e°f € E(S°) C RegS°,
it follows that e°f € Vs (Vgse(fe)). Noticing that e°f € E(S°), fe € S° and RegS° is orthodox, we obtain
fe € E(S°). On the other hand, by the above discussions, we can see that e° f and ef are in the same D-class
of E(5°). In view of the fact eLe°, we have ef Le° f € E(S°) and

(ef)* = efef = ee® fee® f = e(e° f fee® f) = ee’ f = ef.
Again by Lemma 2.7, we have ef € I. Dually, we can prove that E(S°)A € A and AE(S°) C E(S°). O
In view of Definition 3.1, Theorem 3.7 and Proposition 5.4, we have the remark below.

Remark 5.5. A generalized bi-ideal quasi-adequate transversal of an abundant semigroup S is always a generalized
bi-ideal strong quasi-Ehresmann transversal of S. The converse is not true by the Example 5.2.

However, up to now we do not know whether a quasi-adequate transversal of an abundant semigroup
is a quasi-Ehresmann transversal in general. This would be an interesting problem to be considered in the
future research works.
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