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Abstract. Andre Boivin and Changzhong Zhu introduced the Dirichlet series with complex exponents
and obtained the growth properties of entire functions represented by these series. Later in 2009, Wen Ping
Huang, Ju Hong Ning and Jin Tu [3] made independent studies on these series. In our earlier work,we
have introduced the concept of growth of analytic functions represented by vector valued Dirichlet series
with complex exponents. In these series, we have taken the coefficients from a complex Banach algebra.
In the present paper, we have introduced the approximation error of these series with respect to a class
of exponential polynomials. We have characterized the order and the type of the analytic function f(s)
represented by a vector valued Dirichlet series with complex exponents in terms of the rate of decay of the

approximation error introduced. Our results generalize some of the earlier results obtained by A.Nautiyal
and D.P.Shukla [4] for classical Dirichlet series.

1. Introduction.

In 1983, B.L.Srivastava [5] introduced a new class of Dirichlet series which is called vector valued

Dirichlet series. He modified the classical Dirichlet series ) a, exp(sA,) by considering the sequence {a,}
n=1

as a member of a complex Banach space. In the present paper, we have considered the vector valued

analytic Dirichlet series with complex exponents{A,}.

Let us suppose that A = {A,, = Aule’®;n=1,2,3...}isa sequence of complex numbers in the right half
plane satisfying the following conditions:

lim inf (|Aa1| = 1Aal) = 6(A) >0;

m
sup {larga,l} <a < =;
nx>1 2

(1.1)
lim sup % =D <o

n—oo
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Let

(9]

£(s) = Za,, exp(siy) ; § =0 +it; 1.2)

n=1

o and t are real numbers, be a function represented by vector valued Dirichlet series with complex exponents,
where {a,} is a sequence from the complex Banach algebra E and the sequence of complex numbers{A,}
satisfies the conditions given in (1.1).

B.L.Srivastava [5] has considered the convergence of vector valued Dirichlet series with real exponents
and obtained the expression for its abscissa of convergence.In [1] we have obtained the region of convergence
of vector valued Dirichlet series (1.2).

Let us suppose that f(s) represents an analytic function in Gg = { |arg s| <0y <m/2;s=0+it,0,t €R}.
Let R be defined as

-1
R = lim ing 2811
e T
Suppose that 0. and o, be the abscissa of convergence and abscissa of absolute convergence respectively of
the series (1.2). Then it has been shown in [1] that

o.=0,=—A where A = Rcos6jsec(a— 6y).
The maximum modulus of the analytic function f(s) can be defined as

M(o) = sup {llf(c+it)ll ,s =0 +it e G},

—oco<t<oo

and the maximum term of the series (1.2) is defined as
m(o) = max {|la, exp(sAn)ll;s = 0 +it € Go,n € N}.

Let D4 denote the class of all functions f(s) given by (1.2), which are analytic in the half plane Re(s) <
A0 <A <o) Ifin(12),a, =0forn > k+1and ar # 0 ,then f(s) will be called an exponential
polynomial of degree k . The class of all exponential polynomials of degree at most k will be denoted by ;. .
For an analytic function f(s) € D, represented by vector valued Dirichlet series (1.2) , let us define the order

p of f(s) by

i log log M(o)
=1 <SPS,
e e —log(1—exp(oc —A))’ Osp<e
and if 0 < p < oo, then we define the type 7 of f(s) by

) log M(o)
7 = lim su — .
oA (1—exp(o—A))"

In [1] we have proved that if the sequence A : {A, = [Anle’ ®;n = 1,2,3....) satisfies the conditions of
(1.1)and D = 0, then we can express the order p of f(s) as

log log m(o)

p= (1}1_)11114 Sup — log(1—exp(c —A)) ’

and if 0 < p < oo, then the type 7 is also given by

) log m(c)
T = lim su — .
o= (1 explo — A)
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Now we introduce the error function.

Let Ex(f, B) denote the error in approximating the function f(s) by exponential polynomials in the half
plane Res < B, (B < A). We define E(f, B) as

k
Ex(f,B) = bo,bl,lhlzlf . _max IIf(B +it) — Z byexp((B+it)A)I| ; k=1,2,...

........

n=1

where b, € E. Suppose that D,0 < B < oo, be the class of all functions f(s) given by (1.2) and analytic

in Re(s) < B e, f(s) = Dpif f(s) € Da, for some ag > B. For f(s) € Dp, we define E,(f, B),the error in
approximating the function f(s) by exponential polynomials of degree # in the uniform norm as

Eu(f,B) = inf If =plls, 1=0,1,2...

where ||f —plls = sup |If(B+it) —p(B+it)l|.

—oo<t<oo
In the present paper we have characterized order and type of the analytic function f(s) represented by
a vector valued Dirichlet series with complex exponents in terms of the rate of decay of the approximation
error E,(f,B),B < A,n =1,2,3.... In what follows, we shall always assume that 0 < B < A < co.

We now prove

Lemma 1. Let f(s) be an analytic function represented by Dirichlet series (1.2) and 0 < B < A < oo. Then for all
o(o < A) sufficiently close to A, we have

Ex(f,B) < KMo, f)/ exp((c — B)|Ak+1lsecOcos(a + 0)) , k=1,2,.... (1.3)

where K is a constant independent of k and o.

k
Proof. Let pi(s) = Y. a, exp(sA,) be the k™ partial sum of the series (1.2). By considering the definition of
n=1
Ex(f, B) we have

Ex(f,B) < lf —=plls < Z llan exp(sAn)ll.-
n=k+1

We have ||a,,e™s|| = |la,|| e8¢ = |ja,|| enlBcosan—tsinan) — ||g. || etnlBsecOcos(an+8) From the definitions of
6o and a ,we have sec 8 < sec 6y and cos(a,, + 0) < cos(a ~ 6p) . Hence

BsecOcos(a, + 0) < Bsec6ycos(a ~ 0p).
This gives

Ex(f,B) < ), llasll exp(B sec 6y cos(a — 6)IA,)

n=k+1

< M(o) i exp((B — o) sec O cos(a — Og)|A4]) .

n=k+1

We have lim inf (|A,41] = |A4]) = 0(A) > 0. Hence we can choose 0 < &’ < 6 such that (JA,.1] — |Axl) =
n—o0
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o’,n > 0. Therefore for ¢ > (A + B)/2, we have

Ek(f, B) < M(G) e|/\n+1|(5—0) sec Oy cos(a—09) Z e(|)\n|—|/\n+1|)(3—0) sec 0 cos(a—0o)
n=k+1

(o)

< M(G) e|/\n+1|(3*0) sec O cos(a—0y) Z e[é’(B*A)n sec Oy cos(w—0y)]/2

n=k+1
M(O-) e|/\n+1 |(B—U) sec 90 COS(a—QO)

T 1 — eldo(B-A)sec Oy cos(a—00)]/2
Denoting by K = 1/[1 — el B-Asectocos@=002] we get (1.3).

O

Lemma 2. Let f(s) € ]?,O < B < o0, be given by (1.2). Then for n > 1, we have

lla, |l exp(BIA | sec Oy cos(a — Bp)) < 2 E,-1(f, B). (1.4)

Proof. Let us consider

t, o bk
tlff(B +it) exp(—itA,) dt = %Z fﬂk exp((B + it)Ay) exp(—itA,) dt
* s * =1 0

£

t.
1 v« .
= Z arexp(BAY) | exp(it(Ax — Ay))dt
T k=1
0

t.
1 v . ,
=7 Z ax exp(BAy) f explit|Ax — Ayl e®) dt
fo

k=1

where 0 < ¢ < /2 .Therefore for k # n ,we get

t ) )

1 . exp(itAr — An| €®) — exp(ito|Ax — Ayl €@ 1

—fexp(itmk—A,,Ie“P)dt _ p(it.dAx |e'?) p(itol Ak |e'?) . 4

t. t. A — Ayl €
to

Further,since sin ¢ > 0,we have

exp(tdAx — Ayl (icos @ — sin @)

t*

’ 1
< -
t*
t, A
Now fork =n, { feXp(itl/\k — Al e?)dt = tt__to
to

t
Hence tliggo %ff(B +it) exp(—itAy,) dt = a, exp(BA,).
. 4

From the above equation, we get

t,
a, exp(BA,) = tlirn tl f(f(B +it) —p(B +it)) exp(—itA,) dt
to
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for any p(s) € m,—1.For any p(s) € m,-1 ,the above relation easily gives
la.ll exp(B 4] sec g cos(@ — 00)) < If = plls- (15)
By the definition of error term E,(f, B) there exists p(s) € 7,-1 such that

If =7plls < 2E._1(f, B). (1.6)

Taking in particular p(s) = f?(s) in (1.5) and using (1.6) we get (1.4) and Lemma 2 follows. O

The coefficient characterizations for the order and type of classical analytic functions represented by Dirich-
let series are well known. The same kind of formulae do not hold for vector valued Dirichlet series having
complex exponents as shown in [1].

We introduce some new characterizations of order and type for the vector valued function defined by
(1.2).
Let f(s) € D4 be defined by (1.2).We put the following expressions .

lim sup log™ {log E.(f, B) + ((A — B)sec 6 cos(a — 0p)) secaRe A,41} _ P 0< o< oo
n—oco logRe A1 1+ pr
and
+ — —_—
lim sup log™ {log E,(f, B) + (A — B) sec 6 cos(a — Op)|Ay+1l} _ P 0< pus

n—0c0 log A4l 1+ pw

For 0 < p < oo, we define the corresponding formulae for type 7, and 7,,.Hence we put

p )P[ {log E.(f, B) + ((A — B) sec 6 cos(a — 0p)) seca Re /\n+1}]1+p

7, = lim su (
i P\ Re An+1 1+p)

and

Ty = lim sup

n—oo

( p )P[{log E.(f,B) + (A — B) sec Oy cos(a — GO)IAn+1I}]1+p
[Ansal 1+p) '
2. Main Results.

In this section, we obtain the characterizations of growth parameters of f(s) in terms of the approximation
error. We first obtain the characterization of abscissa of convergence. We prove

Theorem 1. Let f(s) € Dp,0 < B < o0 .Then f(s) € D4, B < A < oo, if and only if

. log E,.(f, B)
lim sup T = (B — A) sec 6y cos(a — Og) (2.1)
n—eo n+1
Proof. From Lemma 1, we have
E.(f,B) < KM(o, f)exp((B — 0)|Au41]secBycos(a — 6p)) ,0< A, n=0,1,2,..

which gives log E,(f, B) < logK + log M(o, f) + (B — 0)IA,+1]sec g cos(a — 6y) . Since log M(o, f) is finite for
a given o ,we get

: log E.(f, B)
lim sup ————

< (B - 0)secBycos(a — 6p)
n—0eo [Ansal
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ie.,

log E,.(f,B
lim sup 281U+ B)

n—0eo [Aa1]

N

(B — A) sec 6y cos(a — Bp) (2.2)

Now by Lemma 2,
12411 exp(BlA 1] sec O cos(a — Oo)) < 2 Eu(f, B)

which gives

1 log E,.(f, B
lim sup M < lim su L(f) — Bsec 6y cos(a — 6p)
n—oo |/\n+1| n—oo |/\n+1|
Since
. log |||
lim sup L = —Asec 6y cos(a — Hp),
n—oo n
we get
: log E,(f, B)
lim sup T > (B - A)secHjcos(a — 6) (2.3)
n—eo n+1

On combining (2.2) and (2.3) we obtain (2.1) and Theorem 1 follows. [J

Now we compare the above growth parameters introduced in section 1 with the order p and type 7
respectively, of the analytic function f(s).

Theorem 2. For the analytic function f(s) we have
pr < p< Py secBOycos(a— 0p). (2.4)
Proof. Using the definition of order p of f(s), we have for arbitrarily small ¢ > 0

log log M(0)
—log (1 —exp(c — A))

<p+eg ople) <o< A
or, logM(0) < (1—exp(o —A)) "™ < (A -0) P+
since (1 —exp(c —A)) ¥ A—o¢ as ¢ = A. Using Lemma 1, we have
log E,(f,B) < logK +logM(o, f) + (B — o) sec Oy cos(a — Op)|Ans1l.

Therefore log E,(f,B) < logK + (B — o) sec 0y cos(a — 6p)|A,11| + (A — 0)~P*9),
We put ¢(0) = (B — 0) sec Oy cos(a — Op)|A 41| + (A — )P+, Then the maximum value of ¢)(c) is obtained as

$(0) = (sl sec O cos(ar — 00)) 0 (p + &) T (1+p + &) + (B — A)|Ayan| sec O cos(a — 6p)
at the point

p+e 1/(1+p+e)

=A-
¢ [Ay+1] sec By cos(a — Bp)

This gives us
log E,(f,B) + ((A — B)sec 6y cos(a — 6p)) secaRe A1
< log K + (secarsec 9y cos(ar — 6p) Re /\,,H)% Y

where Y =(p+ e)_% (1+p+¢)and (|A4l/ReA,) = seca, < seca. Therefore
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log™ {log E,(f, B) + ((A — B)sec 6y cos(a — 6p)) secaRe A1}
log Re A1

log" [log K + (secasec Oy cos(a — Bp) Re /\n+1)% Y]

<
logRe Aj1q

log* [ (Re /\n+1)% ((Re Ans1)” Topwe log K + (sec a sec 6 cos(a — 80))% Y)]
<

logRe A1

<P +¢ N log[(sec a sec Oy cos(ar — 90))%1/] .
S l+pte logRe A,

o(1).
Hence on proceeding to limits as n — oo , we have

log" {log E,(f, B) + ((A — B)sec 6y cos(a — 6p)) secaRe A1} < _P

li <
noes P logRe A1 1+p
je. £ <L

Trp, S T4p 7

which implies that p, < p. This proves the left hand inequality of (2.4).

Now to prove the other half of the inequality, we consider the other characterization of order of f(s) in
terms of the approximation error as

i su log” {log Ex(f, B) + (A — B)sec Oy cos(a — 00)Au1l}  pm < < w
3, SUP 108 Ayet] T Tap, S ™

Then for a given ¢ > 0 and all sufficiently large values of n, we have

10g Ex(f, B) + (A — B) sec 6 cos(@ — Og)lAus1] < AT+ 2.5)
24

By using Lemma 2 we have

gk

Mo, f) < ) llaxllexp(Re(sA,))

ey

< |la, |l exp(o sec Oy cos(a — Op)|Anl)

e 5

[uy

n=

< 2 Z E,_1(f, B) exp [(0 — B) sec 6y cos(a — 0g)|A,]
n=0

< 2M(o, f)
where M(o, fg) denotes the maximum modulus of the analytic function fp(s) defined as:
fo(s) = Y Ex(f, B) exp (~Bsec 0y cos(a — 09)| A1) exp (SAns1):
n=1

In view of Theorem 1,the region of convergence of above series is same as that of series (1.2). Thus, if pp
denotes the order of f(s) then the above inequality, p < pp. Now let mp(0) denote the maximum term of
fa(s) . Then we have

logmg(c) = log E,(f,B) + (0 — B)sec 6y cos(a — 0p)|A,+1]

< max{l/\,,ﬂlli%“ + (0 — A) sec Oy cos(a — 09)| A4}, by using (2.5).
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Let us assume that ¢(t) = * + bt,t > 0, where t = |A,11],a = (pw/1 + pm) + € and b = (o — A) sec 0 cos(a — 0).

. . . -1 - -1 ~1/a-1 . -b 1//1_1 .
Then ¢(t) attains its maximum value ¢(t) = —b"/* [a ala=1 4 g=1/a ] at the point t = (7) . Since ¢ > 0
is arbitrary, we have

) log log mp(0) ) log (A — ) sec Oy cos(a — ) €(pm + 1)+ pm
= < ‘ 4
P }1_r)r/1] SUp — log (1 —exp(c — A)) (1;1314 Sup —log (A -o0) elpm+1)-1

ie,p < pmsecOycos(a—0p).
Combining the two estimates of p , we get (2.4). This proves Theorem 2. [

Corollary 1: If {A,,} is a sequence of positive real numbers then @ = 0 . Further let D =0. Then we have
from (2.3),p, = p = pu. This gives the coefficient characterization of the order of analytic function
represented by the classical Dirichlet series in terms of the approximation error [4,Theorem 2].

Next we obtain the characterization of the type. We prove
Theorem 3. For the analytic function f(s) defined by (1.2) we have
T, (seca)™ < 1 < 1y[(cos Bp)sec(a — Op)]°. (2.6)
Proof. Since the type 7 of f(s) is given by

. log M(o)
T = lim su =,
oA (1-exp(c—A)™*

therefore for a given ¢ > 0, we have

logM(0) < (t+¢)(1—exp(o—A))™".
Combining this with (1.4), we have

logE,(f,B) < logK+ (B—0)sec6cos(a— Op)|Ans1] + (T +¢€) (A—0)".
Now we put

Y (o) =(t+¢€)(A—-0)"+ (B—0)secBycos(a — Op)|Ansl-
The function ¢ (0) attains its maximum value given by
[p—p/1+p + p1/1+ﬂ] (T + &)/ PN, )PP + (B — A) sec 8y cos(a — 0p)| A1l

1/1+p

at the pointo = A - [ (w3 .Thus we have

sec O cos(a—00)| A1

[{log E.(f,B) + ((A — B) sec 6 cos(a — 0p)) seca Re /\,,Jrl}]“p

(1+p)
1
logK + (secaRe /\n+1)”/1+P(T + e)l/l+pX +p

1+p

7

where X = [p‘f’/“F’ + pl/“P] and (JA,|/Re A,)) = seca,, < seca.
Thus

( p )P[{log E.(f,B) + ((A — B) sec Oy cos(a — 6p)) seca Re /\n+1}]1+p
Re A, 1+p)
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1
log K + (secaRe Ayuy)*0(z + &)/ x |7

1+p

Py
( Re An+1 )

X 1+p
< (p)f(t+e) [(m) (seca)” + o(1)

On proceeding to limits as 7 — oo , we have

I ( p )P {log E,.(f, B) + ((A — B) sec 6y cos(a — 69)) seca Re A41} +p
i P \Re Ay 1+p)
- 1+p
p P10 4 pl/1+p
p pop=_ "
< 7 (seca) {(p) ( T+p

< 7 (seca)f.

Hence we get 7, < 7 (seca)f.
To prove the remaining part of (2.6) ,we consider the expression for 7,,. Then for a given ¢ > 0 and all
sufficiently large n we have

A, p/i+p
log E,(f, B) + (A — B) sec 0 cos(a — Op)lAns1| < (T + e)l/Hp(%) (1+p).
Using the definition of the maximum term mg(0) , we obtain

A, p/1+p
logmg(c) < max| (tm + e)]/”p(l—(;l') (1+p)+ (0 —A)sec Oy cos(a — 09)Aniil],

p/1+p
< max| (tn + e)””p(é) (1+ p) + (0 — A) sec 6 cos(a - ) (t)];t ¥

< (T + €)
~ [(A - 0) sec Oy cos(a — 09) P

From the definition of fz , we have logm(o) < logmsg(c). On proceeding to limits as ¢ — A, we have
T < Ty(cos Og) sec(a — 6p))P.
Combining the two inequalities obtained, we get (2.6). [

Corollary 2: If {1, } isa sequence of positivereal numbersthena = Oandif D=0thenwegett, = 7 = 1.
This easily leads to the type formula for analytic functions [4, Theorem 3].
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