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A note on some results related to infinite matrices on weighted ℓ1 spaces
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Abstract. We were motivated by the results in [1] and present another approach to obtain some of the
results in [1], applying the theory of matrix transformations which provides completely different techniques
of the proofs. This also demonstrates one more application of infinite matrices.

1. Introduction and Notation

We demonstrate how applications of the theory of matrix transformations, mainly results of the BK
space theory, yield alternative proofs of the fundamental results in [1]. Among other things, we give a
simple direct proof of [1, Corollary 1], which is the basis for the results in [1, Sections 3 and 4]. We also
obtain some of the results in [4].

As usual, let ω, ℓ∞ and ϕ denote the sets of all complex, bounded and finite sequences x = (xk)∞k=0,
respectively. Furthermore, we write cs, bs and ℓ1 for the sets convergent, bounded and absolutely convergent
series.

A set X of sequences is said to be normal or solid, if x ∈ X and x̃ ∈ ωwith |x̃k| ≤ |xk| for all k imply x̃ ∈ X.
Let X and Y be subsets of ω and z ∈ ω. Then we use the notation ([11, Definition 4.3.4])

z−1 ∗ Y =
{
x ∈ ω : x · z = (xkzk)∞k=0 ∈ Y

}
,

and write

M(X,Y) =
∩
x∈X

x−1 ∗ Y

for multiplier space of X and Y; the special cases where Y = ℓ1 and Y = cs are called the α– and β–duals of
X, denoted by Xα =M(X, ℓ1) and Xβ =M(X, cs). It is clear that Xα ⊂ Xβ for all X ⊂ ω and Xβ ⊂ Xα whenever
X is normal.
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Let A = (ank)∞n,k=0 be an infinite matrix of complex numbers, X and Y be subsets of ω and x ∈ ω. We write
An = (ank)∞k=0 and A(k) = (ank)∞n=0 for the sequences in the n–th row and k–th column of A, Anx =

∑∞
k=0ankxk

and Ax = (Anx)∞n=0 (provided all the series Anx converge). The set XA = {x ∈ ω : Ax ∈ X} is called the matrix
domain of A in X and (X,Y) denotes the class of all matrices that map X into Y, that is, the class of all
matrices A such that X ⊂ YA; hence, A ∈ (X,Y) if and only if An ∈ Xβ for all n and Ax ∈ Y for all x ∈ X.

A matrix T = (tnk)∞n,k=0 is said to be a triangle if tnk = 0 for all k > n and tnn , 0 (n = 0, 1 . . .). Throughout,
let T denote a triangle, S its inverse and R = St, the transpose of S. We remark that the inverse of a triangle
exists, is unique and a triangle ([11, 1.4.8, p. 9] and [9, Remark 22 (a), p. 22]).

If X and Y are Banach spaces, then we write, as usual, B(X,Y) for the set of all bounded linear operators
L : X→ Y with the operator norm ∥ · ∥ defined by ∥L∥ = sup{∥L(x)∥ : ∥x∥ = 1}.

A Banach space X ⊂ ω is a BK space if each coordinate Pn : X→ |C with Pn(x) = xn for all x = (xk)∞k=0 ∈ X
is continuous. A BK space X ⊃ ϕ is said to have AK if x[m] =

∑m
k=0 xke(k) → x (m → ∞) for every sequence

x = (xk)∞k=0 ∈ X, where e(n) (n = 0, 1, . . . ) is the sequence with e(n)
n = 1 and e(n)

k = 0 (k , n).
The important next result is well known.

Lemma 1.1. Let X and Y be BK spaces.
(a) Then we have (X,Y) ⊂ B(X,Y), that is, every A ∈ (X,Y) defines an operator LA ∈ B(X,Y) where LA(x) = Ax for
all x ∈ X ([5, Theorem 1.23] or [11, Theorem 4.2.8]).
(b) If X has AK then we have B(X,Y) ⊂ (X,Y), that is, every L ∈ B(X,Y) is given by a matrix A ∈ (X,Y) such that
Ax = L(x) for all x ∈ X ([3, Theorem 1.9.]).

Since ℓ1 is a BK space with AK with respect to its natural norm ∥ · ∥1 defined by ∥x∥1 =
∑∞

k=0|xk| for all
x = (xk)∞k=0 ∈ ℓ1 ([11, p. 55 and Example 4.2.13]), we obtain B(ℓ1, ℓ1) = (ℓ1, ℓ1), in particular, that every
bounded linear operator L : ℓ1 → ℓ1 is given by an infinite matrix A ∈ (ℓ1, ℓ1).

2. Weighted ℓ1 Spaces

LetU = {u ∈ ω : uk , 0 for all k} and r ∈ U throughout; we write 1/u = (1/uk))∞k=0 for u ∈ U. We consider
the sets

ℓ1(r) = r−1 ∗ ℓ1 =
x ∈ ω :

∞∑
k=0

|xkrk| < ∞
 .

associated with the sequence r. Since the set ℓ1 is normal, this coincides with the definition of the weighted
ℓ1 spaces ℓ1(r) for positive sequences r in [1]. These spaces were also studied in [4].

Since (ℓ1, ∥ · ∥1) is a BK space, we obtain as an immediate consequence of [11, Theorems 4.3.6 and 4.3.12]

Remark 2.1. The set ℓ1(r) is a BK space with AK with respect to its natural norm ∥ · ∥r given by

∥x∥r = ∥x · r∥1 =
∞∑

k=0

|xkrk| for all x ∈ ℓ1(r).

Furthermore, we observe that if r, s ∈ U and X and Y are arbitrary subsets of ω then it is clear from the
definition of the of the sets r−1 ∗ X and s−1 ∗ Y that

a ∈M(r−1 ∗ X, s−1 ∗ Y) if and only if a ∈ (s/r)−1 ∗M(X,Y), where s/r =
( sk

rk

)∞
k=0

(1)

and

A ∈ (r−1 ∗ X, s−1 ∗ Y) if and only if B = (bnk)∞n,k=0 ∈ (X,Y) where bnk =
snank

rk
(2)
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for all n and k. It is well known that ℓβ1 = ℓ∞ ([11, Example 7.3.1]). Applying (1) with s = e = (1, 1, . . . ), we
obtain

(ℓ1(r))β = (1/r)−1 ∗ ℓ∞ =
{

a ∈ ω : sup
k

∣∣∣∣∣ak

rk

∣∣∣∣∣ < ∞} .
We may also consider the set ℓ1(r) as the matrix domain in ℓ1 of the triangle T = D(r), the diagonal

matrix with the sequence r on its diagonal, that is, D(r) is the matrix with the rows (D(r))n = rne(n). So we
have ℓ1(r) = (ℓ1)D(r).

The following useful known results concern matrix transformations between matrix domains of trian-
gles.

Lemma 2.2. ([5, Theorem 3.8]) Let T be triangle.
(a) Then, for arbitrary subsets X and Y of ω, A ∈ (X,YT) if and only if B = TA ∈ (X,Y).
(b) If X and Y are BK spaces and A ∈ (X,YT), then ∥LA∥ = ∥LB∥.

Lemma 2.3. ([6, Theorem 3.6]) Let X and Y be BK spaces and X have AK. If A ∈ (XT,Y) then we have

∥LA∥ = ∥LÂ∥ (3)

where Â ∈ (X,Y) is the matrix with the rows Ân = RAn for (n = 0, 1, . . . ).

The characterization of the class (ℓ1, ℓ1) is a classical result (cf. for instance, [7], [10, 77] or [11, 8.4.1D]).
Here we state the result in the form needed in the sequel; it contains [1, Lemma 1].

Theorem 2.4. ([5, Theorem 2.27]) We have L ∈ B(ℓ1, ℓ1) if and only if

∥A∥(1,1) = sup
k

∞∑
n=0

|ank| < ∞, (4)

where A ∈ (ℓ1, ℓ1) is the matrix that represents L (Lemma 1.1); moreover

∥L∥ = ∥A∥(1,1). (5)

Theorem 2.5. ([2, Theorem 2.6]) Let T and T̃ be triangles. Then we have A ∈ ((ℓ1)T, (ℓ1)T̃) if and only if

sup
k

∞∑
n=0

∣∣∣∣∣∣∣∣
∞∑
j=k

s jk

n∑
i=0

t̃niai j

∣∣∣∣∣∣∣∣ < ∞, (6)

and

sup
m,k

∣∣∣∣∣∣∣∣
∞∑

j=m

s jkanj

∣∣∣∣∣∣∣∣ < ∞ for all n = 0, 1, . . . (7)

3. Main Results - New Approach to the General Results

In this section we are going to prove the main results of [1, Section 2] in a new way.
We start with a useful result which is easily obtained from Lemmas 2.2 and 2.3.

Proposition 3.1. Let X and Y be BK space and X have AK, and T and T̃ be triangles. If A ∈ (XT,YT̃) then

∥LA∥ = ∥L∥B̂, where B̂ = R(T̃A) ∈ (X,Y). (8)
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Proof. Let A ∈ (XT,YT̃). Then it follows by Lemmas 2.2 and 2.3 that B = T̃A ∈ (XT,Y) and ∥LA∥ = ∥LB∥ = ∥LB̂∥,
where B̂ = RB = R(T̃A) ∈ (X,Y).

Remark 3.2. It was shown in [2, Remark 2.5] that if A ∈ (XT,YT̃) then Â ∈ (X,YT) by [6, Theorem 3.4], and then
Ĉ = T̃Â = T̃(RA) ∈ (X,Y) and B̂ = Ĉ.

Theorem 3.3. ([1, Theorem 1]) Given two sequences r, s ∈ U, and an infinite matrix A = (ank)∞n,k=0, then LA ∈
B(ℓ1(r), ℓ1(s)) if and only if

∥A∥(r,s) = sup
k

∞∑
n=0

∣∣∣∣∣ snank

rk

∣∣∣∣∣ < ∞. (9)

In this case, the operator norm of LA is given by

∥LA∥(r,s) = ∥A∥(r,s). (10)

Proof. We are going to prove the theorem in two different simple ways.
First, if we consider the spaces ℓ1(r) and ℓ1(s) as the matrix domains of the triangles D(r) and D(s) in ℓ1,

respectively. Putting T = D(r) and T̃ = D(s) in Theorem 2.5, we obtain A ∈ (ℓ1(r), ℓ1(s)) if and only if (9)
holds, and supk |ank/rk| < ∞ for n = 0, 1, . . . , which clearly is redundant.
The identity for the operator norm in (10) follows from (8), since obviously the entries of the matrix B̂ are
given by b̂nk = snank/rk for all n and k.

The second way of proof is more elementary. We use ℓ1(r) = r−1 ∗ ℓ1 and ℓ1(s) = s−1 ∗ ℓ1(s) and obtain
directly from (2) and (4) that LA ∈ B(ℓ1(r), ℓ1(s)) if and only if (9) is satisfied. Furthermore, since x ∈ ℓ1(r) if
and only if y = r·x ∈ ℓ1, we obtain by the definition of the norm ∥·∥s and (2) that ∥LA(x)∥s = ∥s·L(x)∥1 = ∥LB(y)∥1
where B is the matrix with the entries bnk = snank/rk for all n and k. Now the identity for the operator norm
in (10) follows from (9), the definition of the operator norm, and the fact that ∥x∥r = ∥y∥1.

Remark 3.4. Since ℓ1(r) is a BK space with AK by Remark 2.1, it follows from Lemma 1.1 that (ℓ1(r), ℓ1(s)) =
B(ℓ1(r), ℓ1(s)).

Theorem 3.5. ([1, Lemma 3]) Given any infinite matrix A = (ank)∞n,k=0 and a sequence r, then LA ∈ B(ℓ1(r), ℓ1(s))
for some sequence s if and only if

sn(A) = ∥An/r∥∞ = sup
k

∣∣∣∣∣ank

rk

∣∣∣∣∣ < ∞ for all n = 0, 1, . . . . (11)

Proof. The necessity of the condition in (11) is trivial, since LA ∈ B(ℓ1(r), ℓ1(s)) means, in particular, An ∈
(ℓ1(r))β = (1/r)−1 ∗ ℓ∞ for all n.
To show the sufficiency of the condition, we assume that the condition in (11) is satisfied. Then we have
An ∈ (1/r)−1 ∗ ℓ∞ = (ℓ1(r))β for n = 0, 1, . . . . We define the sequence s = (sn)∞n=0 by

sn =


1

sn(A)(n + 1)2 if An ∈ U

1
(n + 1)2 otherwise.

Now let x ∈ ℓ1(r) be given. Then we obtain

∥Ax∥s =
∞∑

n=0

|Anxsn| ≤
∞∑

n=0

|sn|
∞∑

k=0

∣∣∣∣∣ank

rk

∣∣∣∣∣ · |xkrk| ≤
 ∞∑

n=0

|sn| · sup
k

∣∣∣∣∣ank

rk

∣∣∣∣∣
 · ∥x∥r

=

 ∞∑
n=0

|sn| · |sn(A)|
 · ∥x∥r =

 ∞∑
n=0

1
(n + 1)2

 · ∥x∥r < ∞,
that is, Ax ∈ ℓ1(s), and so A ∈ (ℓ1(r), ℓ1(s)). This completes the proof of the sufficiency of the condition in
(11).
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Now we give a direct proof of [1, Corollary 1] without applying [1, Theorem 2].

Theorem 3.6. ([1, Corollary 1]) Every infinite matrix A = (ank)∞n,k=0 is in (ℓ1(r), ℓ1(s)) for some pair of sequence
r, s ∈ U.

Proof. Let A = (ank)∞n,k=0 be an infinite matrix. We write

bk = max
0≤l, j≤k

|al j| and put rk = 1 + bk for k = 0, 1, . . . .

Then we obviously have r ∈ U and it follows that |ank| ≤ max{bk.bn} ≤ (1 + bk)(1 + bn) for all n and k, hence∣∣∣∣∣ank

rk

∣∣∣∣∣ ≤ (1 + bn)(1 + bk)
(1 + bk)

= 1 + bn < ∞ for each n ∈ IN0.

By Theorem 3.5, there is s ∈ U such that A ∈ (ℓ1(r), ℓ1(s)).
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