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Abstract. In this paper, two new wavelet estimates for a function f having bounded second derivative
and bounded Mth derivative are obtained by Legendre Wavelet Method.

1. Introduction

At present, the approximation of a function by Fourier series method is at common places of analysis.
Wavelet approximation method is a new tool as well as recent trend to detect and analyze abrupt change
in seismic signal processing. The wavelet approximations of certain function by Haar wavelet have been
determined by several researcher like DeVore [1], Debnath [2], Meyer [3], Morlet [4, 5] and Lal and Kumar
[6]. But till now no work seems to have been done for wavelet approximation of a function by Legendre
wavelet methods. In an attempt to make an advance study in this direction,in this paper, the wavelet
approximation of a function f with 0 ≤ sup

x∈[0,1]

∣∣∣ f (2)(x)
∣∣∣ ≤ A < ∞ and a new Legendre wavelet estimate for

a function f with 0 ≤ sup
x∈[0,1]

∣∣∣ f (M)(x)
∣∣∣ ≤ B < ∞, where M is the positive integer, have been obtained. It is

important to note that estimate of a function is better and sharper than the estimate having less bounded
derivative, so the comparison of estimated approximations has significant importance in wavelet analysis.

2. Definitions

2.1. Legendre Wavelets
In recent years, wavelets have found their ways into many different fields of science and engineering. Wavelets

constitute a family of functions constructed from dilation and translation of a single function called mother wavelet.
If ψ ∈ L2(R) satisfies the ’admissibility condition’

Cψ =

∞∫
−∞

∣∣∣ψ̂(ω)
∣∣∣2

|ω| dω < ∞ (1)
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then ψ is called basic wavelet. The Integral Wavelet Transform of (IWT) on L2(R) is defined by

Wψ(f ) = |a|− 1
2

∞∫
−∞

f (t)ψ
(

t − b
a

)
dt, f∈L2(R) (2)

where a, b∈R with a , 0. If in addition, both ψ and ψ̂ satisfy tψ(t) ∈ L2(R), ωψ̂(ω) ∈ L2(R) then basic wavelet ψ
provides a time-frequency window with finite area given by 4∆ψ∆ψ̂. In addition, under this additional assumption,
it follows that ψ̂ is a continuous function so that the finiteness of Cψ in (1) implies ψ̂(0) = 0 or equivalently
∞∫
−∞

ψ(t)dt = 0. This is the reason that ψ is called a Wavelet. We note that the admissibility condition (1) is needed in

obtaining the inverse of the IWT.
By setting,

ψb,a(t) = |a| −1
2 ψ

(
t − b

a

)
(3)

the IWT defined in (2) can be written as

Wψ f (b, a) = ⟨ f , ψb,a⟩.
In this paper, Legendre Wavelet ψn,m(t) have four argument (k, n̂,m, t), where k = 1, 2, ... n̂ = 2n − 1 , m is the order
of Legendre polynomials and t is the normalized time. Legendre Wavelet defined on the interval [0, 1) by

ψn,m(t) =


√

m + 1
2 2

k
2 Lm(2kt − n̂), n̂−1

2k ≤ t < n̂+1
2k ;

0, otherwise,

It is mentionable that Lm(t) are well known Legendre polynomials of order m which are orthonormal with respect to
the weight function w(t) = 1 and satisfy the following recursive formula ,
(i) L0(t) = 1 (ii) L1(t) = t and (iii) (m + 1)Lm+1(t) = (2m + 1)tLm(t) −mLm−1(t), where m = 1, 2, ....
The set of Legendre Wavelets are an orthonormal set.

2.2. Function Approximation
A function f ∈ L2(R) defined over [0, 1) is expanded as Legendre wavelet series in the form of

f (t) =
∞∑

n=1

∞∑
m=0

cn,mψn,m(t), where cn,m = ⟨ f , ψn,m⟩ (4)

and ⟨., .⟩ denotes the inner product.
If the infinite series in (4) is truncated then it can be written as

S2k−1,M(t) =
2k−1∑
n=1

M−1∑
m=0

cn,mψn,m(t) = CTΨ(t) (5)

where C andΨ(t) are 2k−1M×1 matrices given by
C =

[
c1,0, c1,1, ..., c1,M−1, c2,0, c2,1, ..., c2,M−1, ..., c2k−1,0, c2k−1,1, ..., c2k−1,M−1

]
and

Ψ(t) =
[
ψ1,0(t), ψ1,1(t), ..., ψ1,M−1(t), ψ2,0(t), ψ2,1(t), ..., ψ2,M−1(t), ..., ψ2k−1,0(t), ψ2k−1,1(t), ..., ψ2k−1,M−1(t)

]
.

2.3. Projection Pn f
Let Pn f be the orthogonal projection of L2(R) onto Vn. Then

Pn( f ) =
∞∑

k=−∞
an,kϕn,k, where an,k = ⟨ f , ϕn,k⟩ϕn,k, n = 1, 2, 3, ....

Thus

Pn( f ) =
∞∑

k=−∞
⟨ f , ϕn,k⟩ϕn,k, (Sweldens and Piessen[7])
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2.4. Wavelet Approximation

The Wavelet Approximation under supremum norm is defined by

En( f ) = ∥ f − Pn f ∥∞ = Sup| f (x) − Pn f (x)|, (Zy1mund[1], pp.114)

We define

∥ f ∥p =


1∫

0

| f (x)|pdx


1
p

, 1 ≤ p < ∞.

The degree of wavelet approximation En( f ) of f by Pn( f ) under the norm ∥.∥pis given by

En( f ) = min
Pn f
∥ f − Pn f ∥p.

If En( f )→ 0 as n→∞ then En( f ) is called the best wavelet approximation of f of order n. (Zygmund [1], pp. 115)

3. Theorems

In this paper, we prove the following theorems.

Theorem 3.1. If a function f ∈ L2(R) is defined over [0, 1) such that its second derivative is bounded i.e sup
t∈[0,1]

∣∣∣ f ′′(t)∣∣∣ ≤
A < ∞ and is expanded as Legendre Wavelet series

f (t) =
∞∑

n=1

∞∑
m=0

cn,mψn,m(t), where cn,m = ⟨ f , ψn,m⟩. (6)

Then Legendre Wavelet Approximation E2k,M( f ) of f by (2k−1,M)th partial sums S2k−1,M =
2k−1∑
n=1

M−1∑
m=0

cn,mψn,m(t) of its

Legendre Wavelet series (6) in L2[0, 1] is given by

E2k ,M( f ) =

∥∥∥∥∥∥∥ f −
2k−1∑
n=1

M−1∑
m=0

cn,mψn,m(t)

∥∥∥∥∥∥∥
2

= O
(

1

22k (2M − 3)
3
2

)
, M ≥ 2.

Theorem 3.2. Let a function f ∈ L2(R) be a function whose Mth derivative is bounded i.e sup
t∈[0,1]

∣∣∣ f M(t)
∣∣∣ < ∞ then

Legendre Wavelet Approximation of f by S2k−1,M =
2k−1∑
n=1

M−1∑
m=0

cn,mψn,m(t), (2k−1,M)th partial sums of its Legendre Wavelet

series is given by

E2k ,M( f ) =
∥∥∥ f − S2k−1,M

∥∥∥
2
=

∥∥∥∥∥∥∥ f −
2k−1∑
n=1

M−1∑
m=0

cn,mψn,m(t)

∥∥∥∥∥∥∥
2

= O
( 1

M! 2Mk

)
.
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4. Proofs

4.1. Proof of the Theorem 3.1

Legendre Wavelet series of f ∈ L2[0, 1] is given by

f =

∞∑
n=1

∞∑
m=0

cn,mψn,m

=

2k−1∑
n=1

M−1∑
m=0

cn,mψn,m +

2k−1∑
n=1

∞∑
m=M

cn,mψn,m +

∞∑
n=2k−1+1

M−1∑
m=0

cn,mψn,m +

∞∑
n=2k−1+1

∞∑
m=M

cn,mψn,m

= S2k−1,M +

2k−1∑
n=1

∞∑
m=M

cn,mψn,m +

∞∑
n=2k−1+1

M−1∑
m=0

cn,mψn,m +

∞∑
n=2k−1+1

∞∑
m=M

cn,mψn,m. (7)

By definition of ψn,m,

ψn,m(t) =


√

m + 1
2 2

k
2 Lm(2kt − n̂), n̂−1

2k ≤ t < n̂+1
2k ;

0, otherwise,

We know that for Legendre Wavelet,

n̂ − 1
2k
≤ t <

n̂ + 1
2k

,
2n − 2

2k
≤ t <

2n
2k
.

If we take n = 2k−1 + 1, then

2(2k−1 + 1) − 2
2k

≤ t <
2(2k−1 + 1)

2k
,

2k

2k
≤ t <

2k + 1
2k

⇒ 1 ≤ t < 1 +
1
2k
∀ k.

Since ψn,m vanishes outside the interval [0, 1), therefore the third and fourth terms in (7) become zero.
In this way,

f = S2k−1,M +

2k−1∑
n=1

∞∑
m=M

cn,mψn,m.

Then

∥∥∥ f − S2k−1,M

∥∥∥2

2
=

∥∥∥∥∥∥∥
2k−1∑
n=1

∞∑
m=M

cn,mψn,m

∥∥∥∥∥∥∥
2

2

=

⟨2k−1∑
n=1

∞∑
m=M

cn,mψn,m,
2k−1∑
n=1

∞∑
m=M

cn,mψn,m

⟩

=

2k−1∑
n=1

∞∑
m=M

∣∣∣cn,m

∣∣∣2 ∥∥∥ψn,m

∥∥∥2

2
, other terms vanish due to orthonormality o f ψn,m. (8)
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Here ,∥∥∥ψn,m

∥∥∥2

2
=

∞∫
−∞

ψn,m(t)ψn,m(t)dt

=

n̂+1
2k∫

n̂−1
2k

(m + 1
2

) 1
2

2
k
2


2

Lm(2kt − n̂) Lm(2kt − n̂) dt

=
(
m +

1
2

)
2k

n̂+1
2k∫

n̂−1
2k

Lm(2kt − n̂) Lm(2kt − n̂) dt

=
2m + 1

2
2k

n̂+1
2k∫

n̂−1
2k

∣∣∣Lm(2kt − n̂)
∣∣∣2 dt

=
2m + 1

2
2k

1∫
−1

|Lm(u)|2 du
2k
, takin1 2kt − n̂ = u

=
2m + 1

2

1∫
−1

|Lm(u)|2 du

= 1, by ortho1onal property o f Le1endre polynomial and

1∫
−1

(Lm(u))2 du =
2

2m + 1
.

Thus ∥∥∥ψn,m

∥∥∥2

2
= 1 (9)

Using equation (8) and (9), we have∥∥∥ f − S2k−1,M

∥∥∥2

2
=

2k−1∑
n=1

∞∑
m=M

∣∣∣cn,m

∣∣∣2 (10)

Next,

cn,m =

1∫
0

f (x) ψn,m dx

=

n̂+1
2k∫

n̂−1
2k

f (x)
(
m +

1
2

) 1
2

2
k
2 Lm(2kx − n̂) dx

=

1∫
−1

f
( n̂ + t

2k

) (2m + 1
2

) 1
2

2
k
2 Lm(t)

dt
2k
, takin1 2kx − n̂ = t

=
(2m + 1

2k+1

) 1
2

1∫
−1

f
( n̂ + t

2k

) 1
2m + 1

d
dt

(Lm+1(t) − Lm−1(t)) dt, Lm(t) =
L′m+1(t) − L′m−1(t)

2m + 1
, m ≥ 1
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=

(
1

2k+1(2m + 1)

) 1
2

1∫
−1

f
( n̂ + t

2k

) d
dt

(Lm+1(t) − Lm−1(t)) dt

=

(
1

2k+1(2m + 1)

) 1
2


(

f
( n̂ + t

2k

)
(Lm+1(t) − Lm−1(t))

)1

−1
−

1∫
−1

f ′
( n̂ + t

2k

) (Lm+1(t) − Lm−1(t))
2k

dt

 ,
, inter1ratin1 by parts

= −
(

1
23k+1(2m + 1)

) 1
2

1∫
−1

f ′
( n̂ + t

2k

)
(Lm+1(t) − Lm−1(t)) dt

= −
(

1
23k+1(2m + 1)

) 1
2

1∫
−1

f ′
( n̂ + t

2k

)
Lm+1(t) dt +

(
1

23k+1(2m + 1)

) 1
2

1∫
−1

f ′
( n̂ + t

2k

)
Lm−1(t) dt

= I1 + I2, say. (11)

I1 = −
(

1
23k+1(2m + 1)

) 1
2

1∫
−1

f ′
( n̂ + t

2k

) L′m+2(t) − L′m(t)
2m + 3

dt, Lm+1(t) =
L′m+2(t) − L′m(t)

2m + 3

= −
(

1
23k+1(2m + 1)

) 1
2

1∫
−1

f ′
( n̂ + t

2k

) d
dt

(
Lm+2(t) − Lm(t)

2m + 3

)
dt

= −
(

1
23k+1(2m + 1)

) 1
2 1

2m + 3


(

f ′
( n̂ + t

2k

)
(Lm+2(t) − Lm(t))

)1

−1
−

1∫
−1

f ′′
( n̂ + t

2k

) 1
2k

(Lm+2(t) − Lm(t)) dt

 ,
, inte1ratin1 by parts

= −
(

1
23k+1(2m + 1)

) 1
2 1

2m + 3

0 −
1∫

−1

f ′′
( n̂ + t

2k

) 1
2k

(Lm+2(t) − Lm(t)) dt


=

(
1

25k+1(2m + 1)

) 1
2

1∫
−1

f ′′
( n̂ + t

2k

) (Lm+2(t) − Lm(t))
2m + 3

dt (12)

Similarly,

I2 =

(
1

23k+1(2m + 1)

) 1
2

1∫
−1

f ′
( n̂ + t

2k

) L′m(t) − L′m−2(t)
2m − 1

dt, Lm−1(t) =
L′m(t) − L′m−2(t)

2m − 1
, m ≥ 2

=

(
1

23k+1(2m + 1)

) 1
2

1∫
−1

f ′
( n̂ + t

2k

) d
dt

(
Lm(t) − Lm−2(t)

2m − 1

)
dt

=

(
1

23k+1(2m + 1)

) 1
2 1

2m − 1


(

f ′
( n̂ + t

2k

)
(Lm(t) − Lm−2(t))

)1

−1
−

1∫
−1

f ′′
( n̂ + t

2k

) 1
2k

(Lm(t) − Lm−2(t)) dt

 ,
, inte1ratin1 by parts

=

(
1

23k+1(2m + 1)

) 1
2 1

2m − 1

0 −
1∫

−1

f ′′
( n̂ + t

2k

) 1
2k

(Lm(t) − Lm−2(t)) dt


= −

(
1

25k+1(2m + 1)

) 1
2

1∫
−1

f ′′
( n̂ + t

2k

) (Lm(t) − Lm−2(t))
2m − 1

dt. (13)



Shyam Lal, Vivek Kumar Sharma / FAAC 9 (2) (2017), 11–19 17

By equation (11), (12) and (13), we have

cn,m =

(
1

25k+1(2m + 1)

) 1
2

1∫
−1

f ′′
( n̂ + t

2k

) {
(Lm+2(t) − Lm(t))

2m + 3
− (Lm(t) − Lm−2(t))

2m − 1

}
dt. (14)

Thus,

∣∣∣cn,m

∣∣∣2 =

∣∣∣∣∣∣∣∣
(

1
25k+1(2m + 1)

) 1
2

1∫
−1

f ′′
( n̂ + t

2k

) {
(Lm+2(t) − Lm(t))

2m + 3
− (Lm(t) − Lm−2(t))

2m − 1

}
dt

∣∣∣∣∣∣∣∣
2

=

(
1

25k+1(2m + 1)

) ∣∣∣∣∣∣∣∣
1∫

−1

f ′′
( n̂ + t

2k

) {
(Lm+2(t) − Lm(t))

2m + 3
− (Lm(t) − Lm−2(t))

2m − 1

}
dt

∣∣∣∣∣∣∣∣
2

=

(
1

25k+1(2m + 1)

) ∣∣∣∣∣∣∣∣
1∫

−1

f ′′
( n̂ + t

2k

) {
(2m − 1)Lm+2(t) − (4m + 2)Lm(t) + (2m + 3)Lm−2(t)

(2m + 3)(2m − 1)

}
dt

∣∣∣∣∣∣∣∣
2

≤
(

1
25k+1(2m + 1)

) 1∫
−1

∣∣∣∣∣ f ′′ ( n̂ + t
2k

)∣∣∣∣∣2 dt

1∫
−1

∣∣∣∣∣∣
{

(2m − 1)Lm+2(t) − (4m + 2)Lm(t) + (2m + 3)Lm−2(t)
(2m + 3)(2m − 1)

}∣∣∣∣∣∣2 dt

≤
(

1
25k+1(2m + 1)

) 1∫
−1

A2dt

1∫
−1

∣∣∣∣∣∣
{

(2m − 1)Lm+2(t) − (4m + 2)Lm(t) + (2m + 3)Lm−2(t)
(2m + 3)(2m − 1)

}∣∣∣∣∣∣2 dt

≤
(

2A2

25k+1(2m + 1)

) 1∫
−1

∣∣∣∣∣∣
{

(2m − 1)Lm+2(t) − (4m + 2)Lm(t) + (2m + 3)Lm−2(t)
(2m + 3)(2m − 1)

}∣∣∣∣∣∣2 dt

≤
(

2A2

25k+1(2m + 1)

) 1∫
−1

{
|(2m − 1)Lm+2(t) − (4m + 2)Lm(t) + (2m + 3)Lm−2(t)|2

(2m + 3)2(2m − 1)2

}
dt

≤
(

2A2

25k+1(2m + 1)

) 1∫
−1

{
(2m − 1)2L2

m+2(t) + (4m + 2)2L2
m(t) + (2m + 3)2L2

m−2(t)
(2m + 3)2(2m − 1)2

}
dt

, other terms vanish due to ortho1onal property o f Le1endre polynomial

≤
(

2A2

25k+1(2m+1)

)(
1

(2m + 3)2(2m−1)2

)(2m−1)2

1∫
−1

L2
m+2(t)dt + (4m+2)2

1∫
−1

L2
m(t)dt+(2m+3)2

1∫
−1

L2
m−2(t)dt


≤

(
2A2

25k+1(2m + 1)

)(
1

(2m + 3)2(2m − 1)2

)[
(2m − 1)2 2

2m + 5
+ (4m + 2)2 2

2m + 1
+ (2m + 3)2 2

2m − 3

]
≤

(
2A2

25k+1(2m + 1)

)(
1

(2m + 3)2(2m − 1)2

)[
(2m − 1)2 2

2m − 3
+ (4m + 2)2 2

2m − 3
+ (2m + 3)2 2

2m − 3

]
≤

(
2A2

25k+1(2m + 1)

)(
1

(2m + 3)2(2m − 1)2

)[
12(2m + 3)2

(2m − 3)

]
≤

(
24A2

25k+1(2m + 1)(2m − 1)2(2m − 3)

)
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Hence,∣∣∣cn,m

∣∣∣2 ≤ 24A2

25k+1(2m + 1)(2m − 1)2(2m − 3)

≤ 12 A2

25k(2m − 3)4
, m ≥ 2. (15)

By equation (9) and (15), we have

∥∥∥ f − S2k−1,M

∥∥∥2

2
≤

2k−1∑
n=1

∞∑
m=M

12A2

(2m − 3)4

1
25k

≤ 12A2

24k+1(2M − 3)3
, M ≥ 2. (16)

Hence,∥∥∥ f − S2k−1,M

∥∥∥
2
= O

(
1

(2M − 3)
3
2 22k

)
, M ≥ 2

Thus, this theorem (3.1) is completely established.

4.2. Proof of the Theorem (3.2)
A function f is M times differentiable therefore by Taylor’s expansion, we have

f (a + h) = fM+1 = f (a) +
h
1!

f ′(a) + ... +
hM−1

(M − 1)!
f (M−1)(a) +

hM

M!
f (M)(a + θh)

fM+1 = fM +
hM

M!
f M(a + θh), where 0 < θ < 1 and fM = f (a) +

h
1!

f ′(a) + ... +
hM−1

(M − 1)!
f (M−1)(a)

Then,

fM+1 − fM =
hM

M!
f M(a + θh), where 0 < θ < 1.

Using this and dividing the interval [0, 1] in
[

l
2k ,

l+1
2k

]
subintervals, we have,

∥∥∥ f − S2k−1,M

∥∥∥2

2
=

1∫
0

∣∣∣∣∣∣∣ f (x) −
2k−1∑
n=1

M−1∑
m=0

cn,mψn,m

∣∣∣∣∣∣∣
2

dx

=

2k−1∑
l=0

l+1
2k∫

l
2k

∣∣∣∣∣∣∣ f (x) −
2k−1∑
n=1

M−1∑
m=0

cn,mψn,m

∣∣∣∣∣∣∣
2

dx

≤
2k−1∑
l=0

l+1
2k∫

l
2k

 1
M!

( 1
2k

)M

sup
x∈[0,1]

∣∣∣ f (M)(x)
∣∣∣2

dx

=

1∫
0

 1
M!

( 1
2k

)M

sup
x∈[0,1]

∣∣∣ f (M)(x)
∣∣∣2

dx

=
( 1

M!

)2 ( 1
2Mk

)2

sup
x∈[0,1]

∣∣∣ f (M)(x)
∣∣∣2
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∥∥∥2

2
≤

( 1
M!

1
2Mk

)2

sup
x∈[0,1]

∣∣∣ f (M)(x)
∣∣∣2

Hence,∥∥∥ f − S2k−1,M

∥∥∥
2
≤

( 1
M!

1
2Mk

)
sup

x∈[0,1]

∣∣∣ f (M)(x)
∣∣∣

Therefore,

E2k ,M( f ) =
∥∥∥ f − S2k−1,M

∥∥∥
2
≤

( 1
M!

1
2Mk

)
sup

x∈[0,1]

∣∣∣ f (M)(x)
∣∣∣ = O

( 1
M!2Mk

)
.

Hence, this has been proved.

5. Conclusions

Since M! 2Mk ≥ (2M−3)
3
2 22k,M ≥ 2. Therefore

1
M! 2Mk

≤ 1

(2M−3)
3
2 22k

, M ≥ 2. Thus, estimate of a function

having more bounded derivative is better and sharper than the function of less bounded derivative.

6. Remarks

In the Theorem(3.1),

E2k,M( f ) = O
(

1

22k (2M − 3)
3
2

)
=

C1

22k (2M − 3)
3
2

→ 0 as k→∞, M→∞

and also in Theorem(3.2),

E2k,M( f ) = O
( 1

M! 2Mk

)
=

C2

M! 2Mk
→ 0 as k→∞, M→∞,

where C1 and C2 are positive constants.
Therefore, Legendre Wavelet approximation estimated is best possible in each of the Theorems (3.1) and
(3.2).
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