Functional Analysis, Approximation and Computation 8 (1) (2016), 7–13

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/faac

Solutions to some solvable modular operator equations

Mehdi Mohammadzadeh Karizaki^a, Dragan S. Djordjević^b

^aKashmar Higher Education Institute, Kashmar, Iran ^bUniversity of Niš, Faculty of Sciences and Mathematics, Department of Mathematics, P.O. Box 224, 18000 Niš, Serbia

Abstract. We find explicit solution of the operator equation $TXT^* - SXS^* = A$ in the general setting of the adjointable operators between Hilbert *C*^{*}-modules, using some block operator matrices. Furthermore, we obtain solutions to the solvable operator equation TXR - SYQ = A over Hilbert *C*^{*}-modules, when both ran(T) + ran(S) and $ran(R^*) + ran(Q^*)$ are closed.

1. Introduction and Preliminary

Xu and Sheng [11] showed that a bounded adjointable operator between two Hilbert \mathcal{A} -modules admits a bounded Moore-Penrose inverse if and only if it has closed range. Djordjević in [3] obtain explicit solution of the operator equation $A^*X + X^*A = B$ for Hilbert space operators, such that this solution is expressed in terms of the Moore-Penrose inverse of the operator A. In this paper, using block operator matrices and the Moore-Penrose inverse properties, we provide a new approach to the study of the equation $TXT^* - SXS^* = A$ for adjointable Hilbert module operators with closed ranges.

The operator equation TXR - SYQ = A was studied by [1, 10, 12] for finite matrices. In this paper we obtain solutions to the operator equation TXR - SYQ = A when both ran(T) + ran(S) and $ran(R^*) + ran(Q^*)$ are closed in general setting of adjointable operators between in Hilbert C*-modules. This solution is also expressed in terms of the Moore- Penrose inverse of the operator A.

Throughout this paper, \mathcal{A} is a C^* -algebra. Let \mathcal{X} and \mathcal{Y} be two Hilbert \mathcal{A} -modules. A mapping $T : \mathcal{X} \to \mathcal{Y}$ is \mathcal{A} -linear, provided that for all $x, y \in \mathcal{X}$, all $\lambda, \mu \in \mathbb{C}$ and all $a \in A$ the following hold:

$$T(\lambda x + \mu y) = \lambda T x + \mu T y,$$
 $T(xa) = T(x)a.$

 \mathcal{A} -linear mappings will be called *operators*. An operator $T : X \to \mathcal{Y}$ is adjointable, if there exists an operator $T^* : \mathcal{Y} \to X$ such that for all $x \in X$ and all $y \in \mathcal{Y}$ the following holds:

$$\langle Tx, y \rangle = \langle x, T^*y \rangle.$$

Received: 22 September 2015; Accepted: 24 October 2015

Communicated by Dijana Mosić

²⁰¹⁰ Mathematics Subject Classification. Primary 47A62; Secondary 15A24; 46L08.

Keywords. Operator equation; Moore-Penrose inverse; Hilbert C*-module.

The second author is supported by the Ministy of Education, Science and Technological Development, Republic of Serbia, grant no. 174007.

Email addresses: mohammadzadehkarizaki@gmail.com (Mehdi Mohammadzadeh Karizaki), dragandjordjevic70@gmail.com (Dragan S. Djordjević)

If *T* is adjointable, then T^* is unique, and both *T* and T^* are bounded.

Let $\mathcal{L}(X, \mathcal{Y})$ be the set of the adjointable operators from X to \mathcal{Y} . For any $T \in \mathcal{L}(X, \mathcal{Y})$, the range, the null space of T are denoted by ran(T) and ker(T) respectively. In case $X = \mathcal{Y}$, $\mathcal{L}(X, X)$ which we abbreviate to $\mathcal{L}(X)$, is a C^* -algebra. The identity operator on X is denoted by 1_X or 1 if there is no ambiguity.

Theorem 1.1. (See Theorem 3.2 of [7]) Suppose that $T \in \mathcal{L}(X, \mathcal{Y})$ has closed range. Then

- ker(T) is orthogonally complemented in X, with complement $ran(T^*)$.
- ran(*T*) is orthogonally complemented in \mathcal{Y} , with complement ker(T^*).
- The map $T^* \in \mathcal{L}(\mathcal{Y}, X)$ has closed range.

The Moore-Penrose inverse of *T*, denoted by T^{\dagger} , is the unique operator $T^{\dagger} \in \mathcal{L}(\mathcal{Y}, \mathcal{X})$ satisfying the following conditions:

$$TT^{\dagger}T = T, \ T^{\dagger}TT^{\dagger} = T^{\dagger}, \ (TT^{\dagger})^{*} = TT^{\dagger}, \ (T^{\dagger}T)^{*} = T^{\dagger}T.$$

It is well-known that T^{\dagger} exists if and only if ran(*T*) is closed, and in this case $(T^{\dagger})^* = (T^*)^{\dagger}$ (see [11]).

Let $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ has a closed range. Then TT^{\dagger} is the orthogonal projection from \mathcal{Y} onto ran(T) and $T^{\dagger}T$ is the orthogonal projection from \mathcal{Y} onto ran(T^{*}). Here the term "projection" means a self adjoint idempotent operator.

A matrix form of a bounded adjointable operator $T \in \mathcal{L}(X, \mathcal{Y})$ can be induced by some natural decompositions of Hilbert *C*^{*}-modules. Indeed, if \mathcal{M} and \mathcal{N} are closed orthogonally complemented submodules of X and \mathcal{Y} , respectively, and $X = \mathcal{M} \oplus \mathcal{M}^{\perp}$, $\mathcal{Y} = \mathcal{N} \oplus \mathcal{N}^{\perp}$, then T can be written as the following 2×2 matrix

$$T = \begin{bmatrix} T_1 & T_2 \\ T_3 & T_4 \end{bmatrix}$$
(1.1)

where $T_1 \in \mathcal{L}(\mathcal{M}, \mathcal{N}), T_2 \in \mathcal{L}(\mathcal{M}^{\perp}, \mathcal{N}), T_3 \in \mathcal{L}(\mathcal{M}, \mathcal{N}^{\perp})$ and $T_4 \in \mathcal{L}(\mathcal{M}^{\perp}, \mathcal{N}^{\perp})$. Note that $P_{\mathcal{M}}$ denotes the projection corresponding to \mathcal{M} .

In fact $T_1 = P_N T P_M$, $T_2 = P_N T (1 - P_M)$, $T_3 = (1 - P_N) T P_M$, $T_4 = (1 - P_N) T (1 - P_M)$.

The proof of the following Lemma can be found [6, Corollary 1.2.] or [5, Lemma 1.1.].

Lemma 1.2. Suppose that $T \in \mathcal{L}(X, \mathcal{Y})$ has closed range. Then T has the following matrix decomposition with respect to the orthogonal decompositions of closed submodules $X = \operatorname{ran}(T^*) \oplus \ker(T)$ and $\mathcal{Y} = \operatorname{ran}(T) \oplus \ker(T^*)$:

$$T = \begin{bmatrix} T_1 & 0 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} \operatorname{ran}(T^*) \\ \operatorname{ker}(T) \end{bmatrix} \to \begin{bmatrix} \operatorname{ran}(T) \\ \operatorname{ker}(T^*) \end{bmatrix},$$

where T_1 is invertible. Moreover

$$T^{\dagger} = \begin{bmatrix} T_1^{-1} & 0\\ 0 & 0 \end{bmatrix} : \begin{bmatrix} \operatorname{ran}(T)\\ \operatorname{ker}(T^*) \end{bmatrix} \to \begin{bmatrix} \operatorname{ran}(T^*)\\ \operatorname{ker}(T) \end{bmatrix}$$

Lemma 1.3. Let $T \in \mathcal{L}(X, \mathcal{Y})$. Then T^*T is positive in $\mathcal{L}(X)$, and TT^* is positive in $\mathcal{L}(\mathcal{Y})$.

Proof. Since $\mathcal{L}(X)$ is a *C**-algebra, the proof is finished if $X = \mathcal{Y}$. In a general case, recall that *T* is positive in $\mathcal{L}(X)$ if and only if $\langle Tx, x \rangle$ is positive in $\mathcal{L}(X)$ for all $x \in X$ (see [8], Proposition 2.1.3). Now, for all $x \in X$ we have that $\langle T^*Tx, x \rangle = \langle Tx, Tx \rangle$ is positive in $\mathcal{L}(X)$, implying that T^*T is positive in $\mathcal{L}(X)$. Analogously, TT^* is positive in $\mathcal{L}(\mathcal{Y})$. \Box

Lemma 1.4. (See Lemma 1.2. of [9]) Suppose that $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ has closed range. Let $\mathcal{X}_1, \mathcal{X}_2$ be closed submodules of \mathcal{X} , and let $\mathcal{Y}_1, \mathcal{Y}_2$ be closed submodules of \mathcal{Y} such that $\mathcal{X} = \mathcal{X}_1 \oplus \mathcal{X}_2$ and $\mathcal{Y} = \mathcal{Y}_1 \oplus \mathcal{Y}_2$. Then the operator T has the following matrix representations with respect to the orthogonal sums of submodules $\mathcal{X} = \operatorname{ran}(T^*) \oplus \ker(T)$ and $\mathcal{Y} = \operatorname{ran}(T) \oplus \ker(T^*)$:

$$T = \begin{bmatrix} T_1 & T_2 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \rightarrow \begin{bmatrix} \operatorname{ran}(T) \\ \operatorname{ker}(T^*) \end{bmatrix}$$

Then $D = T_1T_1^* + T_2T_2^* \in \mathcal{L}(\operatorname{ran}(T))$ is positive and invertible. Moreover,

$$T^{\dagger} = \begin{bmatrix} T_1^* D^{-1} & 0\\ T_2^* D^{-1} & 0 \end{bmatrix}.$$
(1.2)

We also have:

$$T = \begin{bmatrix} T_1 & 0 \\ T_3 & 0 \end{bmatrix} : \begin{bmatrix} \operatorname{ran}(T^*) \\ \ker(T) \end{bmatrix} \to \begin{bmatrix} \mathcal{Y}_1 \\ \mathcal{Y}_2 \end{bmatrix},$$
(1.3)

where $F = T_1^*T_1 + T_3^*T_3 \in \mathcal{L}(\operatorname{ran}(T^*))$ is positive and invertible. Moreover,

$$T^{\dagger} = \begin{bmatrix} F^{-1}T_1^* & F^{-1}T_2^* \\ 0 & 0 \end{bmatrix}.$$
 (1.4)

Notice that positivity of *D* and *F* follow from Lemma 1.3.

2. The solutions to some operator equations

In this section, we will study the operator equations $TXT^* - SXS^* = A$ and TXQ - SYR = A where X and Y are the unknown operators.

The proof of the following lemma is the same as in the matrix case.

Lemma 2.1. Suppose that X, \mathcal{Y} are Hilbert \mathcal{A} -modules, $T \in \mathcal{L}(X, \mathcal{Y})$ and $S \in \mathcal{L}(\mathcal{Y}, X)$ have closed ranges, and let $A \in \mathcal{L}(\mathcal{Y})$. Then the equation

$$TXS = A,$$
(2.1)

has a solution $X \in \mathcal{L}(X)$ if and only if

$$TT^{\dagger}AS^{\dagger}S = A. ag{2.2}$$

In which case, any solution X to Eq. (2.1) is of the form

$$X = T^{\dagger}AS^{\dagger}.$$
 (2.3)

Lemma 2.2. Let $T \in \mathcal{L}(X, \mathcal{Y})$, let $Q \in \mathcal{L}(X)$ and $P \in \mathcal{L}(\mathcal{Y})$ be orthogonal projections, and let TQ and PT have closed ranges. Then

1. $(TQ)^{\dagger} = Q(TQ)^{\dagger}$,

2. $(PT)^{\dagger} = (PT)^{\dagger}P$.

Proof. (i) Since ran(TQ) is closed, the operator $(TQ)^{\dagger}$ exists, therefore $ran((TQ)^{\dagger}) = ran((TQ)^{\ast}) = ran(QT^{\ast}) \subseteq ran(Q)$. Hence $Q(TQ)^{\dagger} = (TQ)^{\dagger}$. The proof for (ii) is similar. \Box

Theorem 2.3. Suppose that X, \mathcal{Y} are Hilbert \mathcal{A} -modules, $T, S \in \mathcal{L}(X, \mathcal{Y})$ have closed ranges, $A \in \mathcal{L}(\mathcal{Y})$. If the operator equation

$$TXT^* - SXS^* = A , X \in \mathcal{L}(X),$$
(2.4)

is solvable, then

$$X = -S^{\dagger}A(S^{\dagger})^{*} + S^{\dagger}T((1 - SS^{\dagger})T)^{\dagger}A(T^{*}(1 - SS^{\dagger}))^{\dagger}T^{*}(S^{\dagger})^{*}$$

is a solution of Eq. (2.4).

Proof. Since *S*, *T* have closed ranges, we have $X = ran(T^*) \oplus ker(T)$ and $\mathcal{Y} = ran(S) \oplus ker(S^*)$. Hence by matrix form (1.1) with these orthogonally complemented submodules, we get

$$T = \begin{bmatrix} T_1 & 0 \\ T_3 & 0 \end{bmatrix} : \begin{bmatrix} \operatorname{ran}(T^*) \\ \ker(T) \end{bmatrix} \to \begin{bmatrix} \operatorname{ran}(S) \\ \ker(S^*) \end{bmatrix}$$
(2.5)

and

$$S = \begin{bmatrix} S_1 & S_2 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} \operatorname{ran}(T^*) \\ \ker(T) \end{bmatrix} \to \begin{bmatrix} \operatorname{ran}(S) \\ \ker(S^*) \end{bmatrix}$$
(2.6)

and $X = \begin{bmatrix} X_1 & X_2 \\ X_3 & X_4 \end{bmatrix} : \begin{bmatrix} \operatorname{ran}(T^*) \\ \ker(T) \end{bmatrix} \rightarrow \begin{bmatrix} \operatorname{ran}(T^*) \\ \ker(T) \end{bmatrix}$ and $A = \begin{bmatrix} A_1 & A_2 \\ A_3 & A_4 \end{bmatrix} : \begin{bmatrix} \operatorname{ran}(S) \\ \ker(S^*) \end{bmatrix} \rightarrow \begin{bmatrix} \operatorname{ran}(S) \\ \ker(S^*) \end{bmatrix}$. The Eq. (2.4) which can be written in an equivalent form

$$\begin{bmatrix} T_1 & 0 \\ T_3 & 0 \end{bmatrix} \begin{bmatrix} X_1 & X_2 \\ X_3 & X_4 \end{bmatrix} \begin{bmatrix} T_1^* & T_3^* \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} S_1 & S_2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} X_1 & X_2 \\ X_3 & X_4 \end{bmatrix} \begin{bmatrix} S_1^* & 0 \\ S_2^* & 0 \end{bmatrix}$$
$$= \begin{bmatrix} A_1 & A_2 \\ A_3 & A_4 \end{bmatrix}$$

that is

$$\begin{bmatrix} T_1 X_1 T_1^* - S_1 X_1 S_1^* - S_1 X_2 S_2^* - S_2 X_3 S_1^* - S_2 X_4 S_2^* & T_1 X_1 T_3^* \\ T_3 X_1 T_1^* & T_3 X_1 T_3^* \end{bmatrix} = \begin{bmatrix} A_1 & A_2 \\ A_3 & A_4 \end{bmatrix}$$

Therefore

$$T_1 X_1 T_1^* - S_1 X_1 S_1^* - S_1 X_2 S_2^* - S_2 X_3 S_1^* - S_2 X_4 S_2^* = A_1,$$
(2.7)

$$T_1 X_1 T_3^* = A_2,$$

$$T_3 X_1 T_1^* = A_3,$$
(2.8)
(2.9)

$$T_3 X_1 T_3^* = A_4. (2.10)$$

Using the matrix form (1.1) we get that $T_3 = (1 - P_{ran(S)})TP_{ran(T^*)} = (1 - P_{ran(S)})TT^{\dagger}T = (1 - P_{ran(S)})T$. Since ran(T) is closed, we get that ran(T₃) is closed [4]. Since Eq. (2.4) is solvable, we conclude that Eq. (2.10) is solvable. Then by Lemma 2.1, $X_1 = T_3^{\dagger}A_4(T_3^*)^{\dagger}$ is a solution to Eq. (2.10). Therefore, by Eq. (2.7), we have

$$S_1 X_1 S_1^* + S_1 X_2 S_2^* + S_2 X_3 S_1^* + S_2 X_4 S_2^* = -A_1 + T_1 T_3^{\dagger} A_4 (T_3^*)^{\dagger} T_1^*,$$
(2.11)

which can be written in an equivalent form

$$\begin{bmatrix} S_1 & S_2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} X_1 & X_2 \\ X_3 & X_4 \end{bmatrix} \begin{bmatrix} S_1^* & 0 \\ S_2^* & 0 \end{bmatrix} = \begin{bmatrix} -A_1 + T_1 T_3^{\dagger} A_4 (T_3^*)^{\dagger} T_1^* & 0 \\ 0 & 0 \end{bmatrix}.$$
 (2.12)

Eq. (2.4) is solvable, therefore Eq. (2.12) is solvable. By Lemma 2.1 a solution to Eq. (2.12) is

$$\begin{bmatrix} X_1 & X_2 \\ X_3 & X_4 \end{bmatrix} = \begin{bmatrix} S_1 & S_2 \\ 0 & 0 \end{bmatrix}^{\dagger} \begin{bmatrix} -A_1 + T_1 T_3^{\dagger} A_4 (T_3^*)^{\dagger} T_1^* & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} S_1^* & 0 \\ S_2^* & 0 \end{bmatrix}^{\dagger}.$$
 (2.13)

On the other hand, we have

$$SS^{\dagger}ASS^{\dagger} = \begin{bmatrix} A_{1} & 0 \\ 0 & 0 \end{bmatrix},$$

$$(1 - SS^{\dagger})A(1 - SS^{\dagger}) = \begin{bmatrix} 0 & 0 \\ 0 & A_{4} \end{bmatrix},$$

$$(1 - SS^{\dagger})T = \begin{bmatrix} 0 & 0 \\ T_{3} & 0 \end{bmatrix},$$

$$SS^{\dagger}T = \begin{bmatrix} T_{1} & 0 \\ 0 & 0 \end{bmatrix}.$$

 T_3 has closed range, hence $((1 - SS^{\dagger})T)^{\dagger} = \begin{bmatrix} 0 & T_3^{\dagger} \\ 0 & 0 \end{bmatrix}$ is the Moore-Penrose of $(1 - SS^{\dagger})T = \begin{bmatrix} 0 & 0 \\ T_3 & 0 \end{bmatrix}$. Therefore

$$\begin{bmatrix} -A_{1} + T_{1}T_{3}^{\dagger}A_{4}(T_{3}^{*})^{\dagger}T_{1}^{*} & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -A_{1} & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} T_{1} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & T_{3}^{\dagger} \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 \\ 0 & A_{4} \end{bmatrix} \begin{bmatrix} 0 & 0 \\ (T_{3}^{\dagger})^{*} & 0 \end{bmatrix} \begin{bmatrix} T_{1}^{*} & 0 \\ 0 & 0 \end{bmatrix}$$

$$= -SS^{\dagger}ASS^{\dagger} + SS^{\dagger}T((1 - SS^{\dagger})T)^{\dagger}(1 - SS^{\dagger})A(1 - SS^{\dagger}) \times (((1 - SS^{\dagger})T)^{\dagger})^{*}(SS^{\dagger}T)^{*}$$

$$= -SS^{\dagger}ASS^{\dagger} + SS^{\dagger}T(((1 - SS^{\dagger})T)^{\dagger}A(T^{*}(1 - SS^{\dagger}))^{\dagger}(T^{*}SS^{\dagger}). \qquad (2.15)$$

The last equality is obtained from (1) and (2) of Lemma 2.2. Now, by equations (2.13) and (2.15) and this fact that $SS^{\dagger}(S^{\dagger})^* = (S^{\dagger}SS^{\dagger})^* = (S^{\dagger})^*$, it follows that

$$X = -S^{\dagger}SS^{\dagger}ASS^{\dagger}(S^{\dagger})^{*} + S^{\dagger}SS^{\dagger}T((1 - SS^{\dagger})T)^{\dagger}A(T^{*}(1 - SS^{\dagger}))^{\dagger}T^{*}SS^{\dagger}(S^{\dagger})^{*}$$

= $-S^{\dagger}A(S^{\dagger})^{*} + S^{\dagger}T((1 - SS^{\dagger})T)^{\dagger}A(T^{*}(1 - SS^{\dagger}))^{\dagger}T^{*}(S^{\dagger})^{*}.$

Remark 2.4. Let X and Y be two Hilbert A-modules. We use the notation $X \oplus Y$ to denote the direct sum of X and Y, which is also a Hilbert A-module whose A-valued inner product is given by

$$\left\langle \left(\begin{array}{c} x_1 \\ y_1 \end{array}\right), \left(\begin{array}{c} x_2 \\ y_2 \end{array}\right) \right\rangle = \langle x_1, x_2 \rangle + \langle y_1, y_2 \rangle,$$

for $x_i \in X$ and $y_i \in \mathcal{Y}$, i = 1, 2. To simplify the notation, we use $x \oplus y$ to denote $\begin{pmatrix} x \\ y \end{pmatrix} \in X \oplus \mathcal{Y}$.

Proposition 2.5. Suppose that $X, \mathcal{Y}, \mathcal{Z}, \mathcal{W}$ are Hilbert \mathcal{A} -modules, $T, S \in \mathcal{L}(\mathcal{Z}, \mathcal{W})$, $R, Q \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$, $A \in \mathcal{L}(\mathcal{X}, \mathcal{W})$ such that $S, Q, T(1 - S^{\dagger}S)$ and $R(1 - Q^{\dagger}Q)$ have closed ranges. Suppose the equation

$$TXR - SYQ = A , X, Y \in \mathcal{L}(\mathcal{Y}, \mathcal{Z})$$
(2.16)

is solvable. Then

$$\left[\begin{array}{cc} X & 0 \\ 0 & -Y \end{array}\right] = \left[\begin{array}{cc} T & S \\ 0 & 0 \end{array}\right]^{\dagger} \left[\begin{array}{cc} A & 0 \\ 0 & 0 \end{array}\right] \left[\begin{array}{cc} R & 0 \\ Q & 0 \end{array}\right]^{\dagger}.$$

Proof. Taking $H = \begin{bmatrix} T & S \\ 0 & 0 \end{bmatrix}$: $\mathcal{Z} \oplus \mathcal{Z} \to \mathcal{W} \oplus \mathcal{W}$ has closed range, let $\{z_n \oplus x_n\}$ be sequence chosen in $\mathcal{W} \oplus \mathcal{W}$, such that $T(z_n) + S(x_n) \to y$ for some $y \in \mathcal{Z}$. Then

$$(1 - SS^{\dagger})T(z_n) = (1 - SS^{\dagger})(T(z_n) + S(x_n)) \rightarrow (1 - SS^{\dagger})(y).$$

Since ran($(1 - SS^{\dagger})T$) is assumed to be closed. Hence, $(1 - SS^{\dagger})(y) = (1 - SS^{\dagger})T(z_1)$ for some $z_1 \in \mathbb{Z}$. It follows that $y - T(x_1) \in \ker(1 - SS^{\dagger}) = \operatorname{ran}(S)$, hence $y = T(z_1) + S(x)$ for some $x \in \mathbb{Z}$. Therefore *H* has closed range, hence H^{\dagger} exists. Also, we take $K = \begin{bmatrix} R & 0 \\ Q & 0 \end{bmatrix} : \mathcal{X} \oplus \mathcal{X} \to \mathcal{Y} \oplus \mathcal{Y}$. Similar argument shows that K^* has closed range, hence by Theorem 3.2 of [7] implies that *K* has closed range, so K^{\dagger} exists. Finally, let $Z = \begin{bmatrix} X & 0 \\ 0 & -Y \end{bmatrix} : \mathcal{Y} \oplus \mathcal{Y} \to \mathbb{Z} \oplus \mathbb{Z}$ and $B = \begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix} : \mathcal{X} \oplus \mathcal{X} \to \mathcal{W} \oplus \mathcal{W}$, hence Eq. (2.18) get into HZK = B. (2.17)

Lemma 2.1 implies that

$$Z = H^{\dagger}AK^{\dagger}$$

Theorem 2.6. Suppose that $X, \mathcal{Y}, \mathcal{Z}, \mathcal{W}$ are Hilbert \mathcal{A} -modules, $T, S \in \mathcal{L}(\mathcal{Z}, \mathcal{W}), R, Q \in \mathcal{L}(X, \mathcal{Y}), A \in \mathcal{L}(X, \mathcal{W})$ such that $\operatorname{ran}(T) + \operatorname{ran}(S)$ and $\operatorname{ran}(\mathbb{R}^*) + \operatorname{ran}(\mathbb{Q}^*)$ are closed and operator equation

 $TXR - SYQ = A , \ X, Y \in \mathcal{L}(\mathcal{Y}, \mathcal{Z})$ (2.18)

is solvable, then

$$X = T^* (TT^* + SS^*)^{\dagger} A (R^*R + Q^*Q)^{\dagger} R^*,$$
(2.19)

$$Y = -S^* (TT^* + SS^*)^{\dagger} A (R^*R + Q^*Q)^{\dagger} Q^*.$$
(2.20)

Proof. Since ran(T) + ran(S) and ran(R^{*}) + ran(Q^{*}) are closed then by Lemma 4 of [2] and Corollary 5 of [2] respectively, imply that $\begin{bmatrix} T & S \\ 0 & 0 \end{bmatrix}$: $\mathcal{Z} \oplus \mathcal{Z} \to \mathcal{W} \oplus \mathcal{W}$ and $\begin{bmatrix} R & 0 \\ Q & 0 \end{bmatrix}$: $\mathcal{X} \oplus \mathcal{X} \to \mathcal{Y} \oplus \mathcal{Y}$. Since Eq. (2.18) is equivalent to

$$\begin{bmatrix} T & S \\ 0 & 0 \end{bmatrix} \begin{bmatrix} X & 0 \\ 0 & -Y \end{bmatrix} \begin{bmatrix} R & 0 \\ Q & 0 \end{bmatrix} = \begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix}.$$
(2.21)

So Eq. (2.21) is solvable. Again by applying Lemma 4 of [2] and Corollary 5 of [2] and Lemma 2.1 we have

$$\begin{bmatrix} X & 0 \\ 0 & -Y \end{bmatrix} = \begin{bmatrix} T & S \\ 0 & 0 \end{bmatrix}^{\dagger} \begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} R & 0 \\ Q & 0 \end{bmatrix}^{\dagger}$$
$$= \begin{bmatrix} T^{*}(TT^{*} + SS^{*})^{\dagger} & 0 \\ S^{*}(TT^{*} + SS^{*})^{\dagger} & 0 \end{bmatrix} \begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} (R^{*}R + Q^{*}Q)^{\dagger}R^{*} & (R^{*}R + Q^{*}Q)^{\dagger}Q^{*} \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} T^{*}(TT^{*} + SS^{*})^{\dagger}A(R^{*}R + Q^{*}Q)^{\dagger}R^{*} & T^{*}(TT^{*} + SS^{*})^{\dagger}A(R^{*}R + Q^{*}Q)^{\dagger}Q^{*} \\ S^{*}(TT^{*} + SS^{*})^{\dagger}A(R^{*}R + Q^{*}Q)^{\dagger}R^{*} & S^{*}(TT^{*} + SS^{*})^{\dagger}A(R^{*}R + Q^{*}Q)^{\dagger}Q^{*} \end{bmatrix}$$

Since Eq. (2.18) is solvable, then $S^*(TT^* + SS^*)^{\dagger}A(R^*R + Q^*Q)^{\dagger}R^* = T^*(TT^* + SS^*)^{\dagger}A(R^*R + Q^*Q)^{\dagger}Q^* = 0$ and

$$\begin{aligned} X &= T^*(TT^* + SS^*)^\dagger A(R^*R + Q^*Q)^\dagger R^*, \\ Y &= -S^*(TT^* + SS^*)^\dagger A(R^*R + Q^*Q)^\dagger Q^*. \end{aligned}$$

References

- [1] J. K. Baksalary, R. Kala, The matrix equation AXB + CYD = E, Linear Algebra Appl. 30 (1980), 141–147.
- C. Y. Deng, H. K. Du, Representations of the Moore-Penrose inverse for a class of 2 by 2 block operator valued partial matrices. Linear [2] Multilinear Algebra 58 (2010), 15–26.
- [3] D. S. Djordjević, Explicit solution of the operator equation $A^*X + X^*A = B$, J. Comput. Appl. Math. 200 (2007), 701–704.
- [4] D. S. Djordjević, Further results on the reverse order law for generalized inverses, SIAM J. Matrix Anal. Appl. 29 (4) (2007), 1242–1246.
- [5] D. S. Djordjević, N. C. Dinčić, Reverse order law for the Moore-Penrose inverse, J. Math. Anal. Appl. 361 (2010), 252–261.
- [6] M. Mohammadzadeh Karizaki, M. Hassani, M. Amyari and M. Khosravi, Operator matrix of Moore-Penrose inverse operators on Hilbert C*-modules, Colloq. Math. 140 (2015), 171–182
- [7] E. C. Lance, *Hilbert C*-Modules*, LMS Lecture Note Series 210, Cambridge Univ. Press, 1995.
 [8] V. M. Manuilov, E. V. Troitsky, *Hilbert C*-modules*, Translations of Mathematical Monographs, American Mathematical Society, Providence, Rhode Island, 2005.
- [9] K. Sharifi, B. Ahmadi Bonakdar, The reverse order law for Moore-Penrose inverses of operators on Hilbert C*-modules, Bull. Iranian Math. Soc. (to appear).
- [10] Q. Wang, H. Zhang, S. Yu, On solutions to the quaternion matrix equation AXB + CYD = E, Electron. J. Linear Algebra 17 (2008), 343-358.
- [11] Q. Xu, L. Sheng, Positive semi-definite matrices of adjointable operators on Hilbert C*-modules, Linear Algebra Appl. 428 (2008), 992-1000.
- [12] G. Xu, M. Wei, D. Zheng, On solutions of matrix equation AXB + CYD = F, Linear Algebra Appl. 279 (1998), 93–109.