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Abstract. We find explicit solution of the operator equation TXT∗ − SXS∗ = A in the general setting of the
adjointable operators between Hilbert C∗-modules, using some block operator matrices. Furthermore, we
obtain solutions to the solvable operator equation TXR − SYQ = A over Hilbert C∗-modules, when both
ran(T) + ran(S) and ran(R∗) + ran(Q∗) are closed.

1. Introduction and Preliminary

Xu and Sheng [11] showed that a bounded adjointable operator between two HilbertA-modules admits
a bounded Moore-Penrose inverse if and only if it has closed range. Djordjević in [3] obtain explicit solution
of the operator equation A∗X + X∗A = B for Hilbert space operators, such that this solution is expressed in
terms of the Moore- Penrose inverse of the operator A. In this paper, using block operator matrices and the
Moore-Penrose inverse properties, we provide a new approach to the study of the equation TXT∗−SXS∗ = A
for adjointable Hilbert module operators with closed ranges.

The operator equation TXR − SYQ = A was studied by [1, 10, 12] for finite matrices. In this paper we
obtain solutions to the operator equation TXR − SYQ = A when both ran(T) + ran(S) and ran(R∗) + ran(Q∗)
are closed in general setting of adjointable operators between in Hilbert C∗-modules. This solution is also
expressed in terms of the Moore- Penrose inverse of the operator A.

Throughout this paper,A is a C∗-algebra. LetX andY be two HilbertA-modules. A mapping T : X → Y
isA-linear, provided that for all x, y ∈ X, all λ, µ ∈ C and all a ∈ A the following hold:

T(λx + µy) = λTx + µTy, T(xa) = T(x)a.

A-linear mappings will be called operators. An operator T : X → Y is adjointable, if there exists an operator
T∗ : Y → X such that for all x ∈ X and all y ∈ Y the following holds:

⟨Tx, y⟩ = ⟨x,T∗y⟩.
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If T is adjointable, then T∗ is unique, and both T and T∗ are bounded.
LetL(X,Y) be the set of the adjointable operators fromX toY. For any T ∈ L(X,Y), the range, the null

space of T are denoted by ran(T) and ker(T) respectively. In case X = Y, L(X,X) which we abbreviate to
L(X), is a C∗-algebra. The identity operator on X is denoted by 1X or 1 if there is no ambiguity.

Theorem 1.1. (See Theorem 3.2 of [7]) Suppose that T ∈ L(X,Y) has closed range. Then

• ker(T) is orthogonally complemented in X, with complement ran(T∗).

• ran(T) is orthogonally complemented inY, with complement ker(T∗).

• The map T∗ ∈ L(Y,X) has closed range.

The Moore-Penrose inverse of T, denoted by T†, is the unique operator T† ∈ L(Y,X) satisfying the
following conditions:

TT†T = T, T†TT† = T†, (TT†)∗ = TT†, (T†T)∗ = T†T.

It is well-known that T† exists if and only if ran(T) is closed, and in this case (T†)∗ = (T∗)† (see [11]).
Let T ∈ L(X,Y) has a closed range. Then TT† is the orthogonal projection fromY onto ran(T) and T†T is

the orthogonal projection fromY onto ran(T∗). Here the term ”projection“ means a self adjoint idempotent
operator.

A matrix form of a bounded adjointable operator T ∈ L(X,Y) can be induced by some natural decom-
positions of Hilbert C∗-modules. Indeed, ifM and N are closed orthogonally complemented submodules
of X and Y, respectively, and X =M⊕M⊥, Y = N ⊕ N⊥, then T can be written as the following 2 × 2
matrix

T =
[

T1 T2
T3 T4

]
(1.1)

where T1 ∈ L(M,N), T2 ∈ L(M⊥,N), T3 ∈ L(M,N⊥) and T4 ∈ L(M⊥,N⊥). Note that PM denotes the
projection corresponding toM.

In fact T1 = PNTPM, T2 = PNT(1 − PM), T3 = (1 − PN )TPM, T4 = (1 − PN )T(1 − PM).
The proof of the following Lemma can be found [6, Corollary 1.2.] or [5, Lemma 1.1.].

Lemma 1.2. Suppose that T ∈ L(X,Y) has closed range. Then T has the following matrix decomposition with
respect to the orthogonal decompositions of closed submodules X = ran(T∗) ⊕ ker(T) andY = ran(T) ⊕ ker(T∗):

T =

[
T1 0
0 0

]
:
[

ran(T∗)
ker(T)

]
→

[
ran(T)
ker(T∗)

]
,

where T1 is invertible. Moreover

T† =
[

T−1
1 0
0 0

]
:
[

ran(T)
ker(T∗)

]
→

[
ran(T∗)
ker(T)

]
.

Lemma 1.3. Let T ∈ L(X,Y). Then T∗T is positive in L(X), and TT∗ is positive in L(Y).

Proof. SinceL(X) is a C∗-algebra, the proof is finished if X = Y. In a general case, recall that T is positive in
L(X) if and only if ⟨Tx, x⟩ is positive in L(X) for all x ∈ X (see [8], Proposition 2.1.3). Now, for all x ∈ X we
have that ⟨T∗Tx, x⟩ = ⟨Tx,Tx⟩ is positive in L(X), implying that T∗T is positive in L(X). Analogously, TT∗

is positive in L(Y).
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Lemma 1.4. ( See Lemma 1.2. of [9]) Suppose that T ∈ L(X,Y) has closed range. Let X1, X2 be closed
submodules ofX, and letY1,Y2 be closed submodules ofY such thatX = X1 ⊕X2 andY = Y1 ⊕Y2. Then
the operator T has the following matrix representations with respect to the orthogonal sums of submodules
X = ran(T∗) ⊕ ker(T) andY = ran(T) ⊕ ker(T∗):

T =

[
T1 T2
0 0

]
:
[
X1
X2

]
→

[
ran(T)
ker(T∗)

]
Then D = T1T∗1 + T2T∗2 ∈ L(ran(T)) is positive and invertible. Moreover,

T† =
[

T∗1D−1 0
T∗2D−1 0

]
. (1.2)

We also have:

T =

[
T1 0
T3 0

]
:
[

ran(T∗)
ker(T)

]
→

[
Y1
Y2

]
, (1.3)

where F = T∗1T1 + T∗3T3 ∈ L(ran(T∗)) is positive and invertible. Moreover,

T† =
[

F−1T∗1 F−1T∗2
0 0

]
. (1.4)

Notice that positivity of D and F follow from Lemma 1.3.

2. The solutions to some operator equations

In this section, we will study the operator equations TXT∗ −SXS∗ = A and TXQ−SYR = A where X and
Y are the unknown operators.

The proof of the following lemma is the same as in the matrix case.

Lemma 2.1. Suppose that X,Y are HilbertA-modules, T ∈ L(X,Y) and S ∈ L(Y,X) have closed ranges, and let
A ∈ L(Y). Then the equation

TXS = A, (2.1)

has a solution X ∈ L(X) if and only if

TT†AS†S = A. (2.2)

In which case, any solution X to Eq. (2.1) is of the form

X = T†AS†. (2.3)

Lemma 2.2. Let T ∈ L(X,Y), let Q ∈ L(X) and P ∈ L(Y) be orthogonal projections, and let TQ and PT have
closed ranges. Then

1. (TQ)† = Q(TQ)†,
2. (PT)† = (PT)†P.

Proof. (i) Since ran(TQ) is closed, the operator (TQ)† exists, therefore ran((TQ)†) = ran((TQ)∗) = ran(QT∗) ⊆
ran(Q). Hence Q(TQ)† = (TQ)†. The proof for (ii) is similar.

Theorem 2.3. Suppose that X,Y are Hilbert A-modules, T,S ∈ L(X,Y) have closed ranges, A ∈ L(Y). If the
operator equation

TXT∗ − SXS∗ = A , X ∈ L(X), (2.4)

is solvable, then

X = −S†A(S†)∗ + S†T((1 − SS†)T)†A(T∗(1 − SS†))†T∗(S†)∗

is a solution of Eq. (2.4).
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Proof. Since S,T have closed ranges, we have X = ran(T∗) ⊕ ker(T) and Y = ran(S) ⊕ ker(S∗). Hence by
matrix form (1.1) with these orthogonally complemented submodules, we get

T =
[

T1 0
T3 0

]
:
[

ran(T∗)
ker(T)

]
→

[
ran(S)
ker(S∗)

]
(2.5)

and

S =
[

S1 S2
0 0

]
:
[

ran(T∗)
ker(T)

]
→

[
ran(S)
ker(S∗)

]
(2.6)

and X =
[

X1 X2
X3 X4

]
:
[

ran(T∗)
ker(T)

]
→

[
ran(T∗)
ker(T)

]
and A =

[
A1 A2
A3 A4

]
:
[

ran(S)
ker(S∗)

]
→

[
ran(S)
ker(S∗)

]
. The Eq.

(2.4) which can be written in an equivalent form[
T1 0
T3 0

] [
X1 X2
X3 X4

] [
T∗1 T∗3
0 0

]
−

[
S1 S2
0 0

] [
X1 X2
X3 X4

] [
S∗1 0
S∗2 0

]
=

[
A1 A2
A3 A4

]
that is[

T1X1T∗1 − S1X1S∗1 − S1X2S∗2 − S2X3S∗1 − S2X4S∗2 T1X1T∗3
T3X1T∗1 T3X1T∗3

]
=

[
A1 A2
A3 A4

]
.

Therefore

T1X1T∗1 − S1X1S∗1 − S1X2S∗2 − S2X3S∗1 − S2X4S∗2 = A1, (2.7)
T1X1T∗3 = A2, (2.8)
T3X1T∗1 = A3, (2.9)
T3X1T∗3 = A4. (2.10)

Using the matrix form (1.1) we get that T3 = (1 − Pran(S))TPran(T∗) = (1 − Pran(S))TT†T = (1 − Pran(S))T. Since
ran(T) is closed, we get that ran(T3) is closed [4]. Since Eq. (2.4) is solvable, we conclude that Eq. (2.10) is
solvable. Then by Lemma 2.1, X1 = T†3A4(T∗3)† is a solution to Eq. (2.10). Therefore, by Eq. (2.7), we have

S1X1S∗1 + S1X2S∗2 + S2X3S∗1 + S2X4S∗2 = −A1 + T1T†3A4(T∗3)†T∗1, (2.11)

which can be written in an equivalent form[
S1 S2
0 0

] [
X1 X2
X3 X4

] [
S∗1 0
S∗2 0

]
=

[
−A1 + T1T†3A4(T∗3)†T∗1 0

0 0

]
. (2.12)

Eq. (2.4) is solvable, therefore Eq. (2.12) is solvable. By Lemma 2.1 a solution to Eq. (2.12) is

[
X1 X2
X3 X4

]
=

[
S1 S2
0 0

]† [ −A1 + T1T†3A4(T∗3)†T∗1 0
0 0

] [
S∗1 0
S∗2 0

]†
. (2.13)
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On the other hand, we have

SS†ASS† =
[

A1 0
0 0

]
,

(1 − SS†)A(1 − SS†) =
[

0 0
0 A4

]
,

(1 − SS†)T =
[

0 0
T3 0

]
,

SS†T =
[

T1 0
0 0

]
.

T3 has closed range, hence ((1 − SS†)T)† =
[

0 T†3
0 0

]
is the Moore-Penrose of (1 − SS†)T =

[
0 0

T3 0

]
.

Therefore

[
−A1 + T1T†3A4(T∗3)†T∗1 0

0 0

]
=

[
−A1 0

0 0

]
+

[
T1 0
0 0

] [
0 T†3
0 0

]
×[

0 0
0 A4

] [
0 0

(T†3)∗ 0

] [
T∗1 0
0 0

]
= −SS†ASS† + SS†T((1 − SS†)T)†(1 − SS†)A(1 − SS†) (2.14)
×(((1 − SS†)T)†)∗(SS†T)∗

= −SS†ASS† + SS†T((1 − SS†)T)†A(T∗(1 − SS†))†(T∗SS†). (2.15)

The last equality is obtained from (1) and (2) of Lemma 2.2.
Now, by equations (2.13) and (2.15) and this fact that SS†(S†)∗ = (S†SS†)∗ = (S†)∗, it follows that

X = −S†SS†ASS†(S†)∗ + S†SS†T((1 − SS†)T)†A(T∗(1 − SS†))†T∗SS†(S†)∗

= −S†A(S†)∗ + S†T((1 − SS†)T)†A(T∗(1 − SS†))†T∗(S†)∗.

Remark 2.4. Let X andY be two HilbertA-modules. We use the notation X⊕Y to denote the direct sum of X and
Y, which is also a HilbertA-module whoseA-valued inner product is given by⟨(

x1
y1

)
,

(
x2
y2

)⟩
= ⟨x1, x2⟩ + ⟨y1, y2⟩,

for xi ∈ X and yi ∈ Y, i = 1, 2. To simplify the notation, we use x ⊕ y to denote
(

x
y

)
∈ X ⊕Y.

Proposition 2.5. Suppose that X,Y,Z,W are Hilbert A-modules, T,S ∈ L(Z,W), R,Q ∈ L(X,Y), A ∈
L(X,W) such that S, Q, T(1 − S†S) and R(1 −Q†Q) have closed ranges. Suppose the equation

TXR − SYQ = A , X,Y ∈ L(Y,Z) (2.16)

is solvable. Then[
X 0
0 −Y

]
=

[
T S
0 0

]† [
A 0
0 0

] [
R 0
Q 0

]†
.
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Proof. Taking H =
[

T S
0 0

]
: Z⊕Z→W⊕W has closed range, let {zn⊕xn} be sequence chosen inW⊕W,

such that T(zn) + S(xn)→ y for some y ∈ Z. Then

(1 − SS†)T(zn) = (1 − SS†)(T(zn) + S(xn))→ (1 − SS†)(y).

Since ran((1 − SS†)T) is assumed to be closed. Hence, (1 − SS†)(y) = (1 − SS†)T(z1) for some z1 ∈ Z. It
follows that y − T(x1) ∈ ker(1 − SS†) = ran(S), hence y = T(z1) + S(x) for some x ∈ Z. Therefore H has

closed range, hence H† exists. Also, we take K =
[

R 0
Q 0

]
: X ⊕X → Y ⊕Y. Similar argument shows that

K∗ has closed range, hence by Theorem 3.2 of [7] implies that K has closed range, so K† exists. Finally, let

Z =
[

X 0
0 −Y

]
: Y ⊕Y → Z⊕Z and B =

[
A 0
0 0

]
: X ⊕X →W⊕W, hence Eq. (2.18) get into

HZK = B. (2.17)

Lemma 2.1 implies that

Z = H†AK†.

Theorem 2.6. Suppose that X,Y,Z,W are HilbertA-modules, T,S ∈ L(Z,W), R,Q ∈ L(X,Y), A ∈ L(X,W)
such that ran(T) + ran(S) and ran(R∗) + ran(Q∗) are closed and operator equation

TXR − SYQ = A , X,Y ∈ L(Y,Z) (2.18)

is solvable, then

X = T∗(TT∗ + SS∗)†A(R∗R +Q∗Q)†R∗, (2.19)
Y = −S∗(TT∗ + SS∗)†A(R∗R +Q∗Q)†Q∗. (2.20)

Proof. Since ran(T) + ran(S) and ran(R∗) + ran(Q∗) are closed then by Lemma 4 of [2] and Corollary 5 of [2]

respectively, imply that
[

T S
0 0

]
: Z ⊕Z →W ⊕W and

[
R 0
Q 0

]
: X ⊕ X → Y ⊕Y. Since Eq. (2.18) is

equivalent to[
T S
0 0

] [
X 0
0 −Y

] [
R 0
Q 0

]
=

[
A 0
0 0

]
. (2.21)

So Eq. (2.21) is solvable. Again by applying Lemma 4 of [2] and Corollary 5 of [2] and Lemma 2.1 we have[
X 0
0 −Y

]
=

[
T S
0 0

]† [
A 0
0 0

] [
R 0
Q 0

]†
=

[
T∗(TT∗ + SS∗)† 0
S∗(TT∗ + SS∗)† 0

] [
A 0
0 0

] [
(R∗R +Q∗Q)†R∗ (R∗R +Q∗Q)†Q∗

0 0

]
=

[
T∗(TT∗ + SS∗)†A(R∗R +Q∗Q)†R∗ T∗(TT∗ + SS∗)†A(R∗R +Q∗Q)†Q∗

S∗(TT∗ + SS∗)†A(R∗R +Q∗Q)†R∗ S∗(TT∗ + SS∗)†A(R∗R +Q∗Q)†Q∗

]
.

Since Eq. (2.18) is solvable, then S∗(TT∗ + SS∗)†A(R∗R +Q∗Q)†R∗ = T∗(TT∗ + SS∗)†A(R∗R +Q∗Q)†Q∗ = 0 and

X = T∗(TT∗ + SS∗)†A(R∗R +Q∗Q)†R∗,
Y = −S∗(TT∗ + SS∗)†A(R∗R +Q∗Q)†Q∗.
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