Solutions to some solvable modular operator equations

Mehdi Mohammadzadeh Karizaki ${ }^{\text {a }}$, Dragan S. Djordjević ${ }^{\text {b }}$
${ }^{a}$ Kashmar Higher Education Institute, Kashmar, Iran
${ }^{b}$ University of Niš, Faculty of Sciences and Mathematics, Department of Mathematics, P.O. Box 224, 18000 Niš, Serbia

Abstract

We find explicit solution of the operator equation $T X T^{*}-S X S^{*}=A$ in the general setting of the adjointable operators between Hilbert C^{*}-modules, using some block operator matrices. Furthermore, we obtain solutions to the solvable operator equation $T X R-S Y Q=A$ over Hilbert C^{*}-modules, when both $\operatorname{ran}(T)+\operatorname{ran}(S)$ and $\operatorname{ran}\left(R^{*}\right)+\operatorname{ran}\left(Q^{*}\right)$ are closed.

1. Introduction and Preliminary

Xu and Sheng [11] showed that a bounded adjointable operator between two Hilbert \mathcal{A}-modules admits a bounded Moore-Penrose inverse if and only if it has closed range. Djordjević in [3] obtain explicit solution of the operator equation $A^{*} X+X^{*} A=B$ for Hilbert space operators, such that this solution is expressed in terms of the Moore- Penrose inverse of the operator A. In this paper, using block operator matrices and the Moore-Penrose inverse properties, we provide a new approach to the study of the equation $T X T^{*}-S X S^{*}=A$ for adjointable Hilbert module operators with closed ranges.

The operator equation $T X R-S Y Q=A$ was studied by $[1,10,12]$ for finite matrices. In this paper we obtain solutions to the operator equation $T X R-S Y Q=A$ when both $\operatorname{ran}(T)+\operatorname{ran}(S)$ and $\operatorname{ran}\left(R^{*}\right)+\operatorname{ran}\left(Q^{*}\right)$ are closed in general setting of adjointable operators between in Hilbert C^{*}-modules. This solution is also expressed in terms of the Moore- Penrose inverse of the operator A.

Throughout this paper, \mathcal{A} is a C^{*}-algebra. Let \mathcal{X} and \mathcal{Y} be two Hilbert \mathcal{A}-modules. A mapping $T: \mathcal{X} \rightarrow \boldsymbol{y}$ is \mathcal{A}-linear, provided that for all $x, y \in \mathcal{X}$, all $\lambda, \mu \in \mathbb{C}$ and all $a \in A$ the following hold:

$$
T(\lambda x+\mu y)=\lambda T x+\mu T y, \quad T(x a)=T(x) a
$$

\mathcal{A}-linear mappings will be called operators. An operator $T: \mathcal{X} \rightarrow \boldsymbol{y}$ is adjointable, if there exists an operator $T^{*}: y \rightarrow \mathcal{X}$ such that for all $x \in \mathcal{X}$ and all $y \in \mathcal{y}$ the following holds:

$$
\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle .
$$

[^0]If T is adjointable, then T^{*} is unique, and both T and T^{*} are bounded.
Let $\mathcal{L}(\mathcal{X}, \mathcal{Y})$ be the set of the adjointable operators from \mathcal{X} to \mathcal{Y}. For any $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$, the range, the null space of T are denoted by $\operatorname{ran}(T)$ and $\operatorname{ker}(T)$ respectively. In case $\mathcal{X}=\boldsymbol{y}, \mathcal{L}(\mathcal{X}, \mathcal{X})$ which we abbreviate to $\mathcal{L}(\mathcal{X})$, is a C^{*}-algebra. The identity operator on \mathcal{X} is denoted by $1_{\mathcal{X}}$ or 1 if there is no ambiguity.

Theorem 1.1. (See Theorem 3.2 of [7]) Suppose that $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ has closed range. Then

- $\operatorname{ker}(T)$ is orthogonally complemented in \mathcal{X}, with complement $\operatorname{ran}\left(T^{*}\right)$.
- $\operatorname{ran}(T)$ is orthogonally complemented in \mathcal{Y}, with complement $\operatorname{ker}\left(T^{*}\right)$.
- The map $T^{*} \in \mathcal{L}(\boldsymbol{Y}, \mathcal{X})$ has closed range.

The Moore-Penrose inverse of T, denoted by T^{\dagger}, is the unique operator $T^{\dagger} \in \mathcal{L}(\boldsymbol{y}, \mathcal{X})$ satisfying the following conditions:

$$
T T^{\dagger} T=T, \quad T^{\dagger} T T^{\dagger}=T^{\dagger}, \quad\left(T T^{\dagger}\right)^{*}=T T^{\dagger}, \quad\left(T^{\dagger} T\right)^{*}=T^{\dagger} T .
$$

It is well-known that T^{\dagger} exists if and only if $\operatorname{ran}(T)$ is closed, and in this case $\left(T^{\dagger}\right)^{*}=\left(T^{*}\right)^{\dagger}$ (see [11]).
Let $T \in \mathcal{L}(\mathcal{X}, \boldsymbol{y})$ has a closed range. Then $T T^{+}$is the orthogonal projection from \mathcal{Y} onto $\operatorname{ran}(T)$ and $T^{\dagger} T$ is the orthogonal projection from \mathcal{Y} onto ran $\left(T^{*}\right)$. Here the term "projection" means a self adjoint idempotent operator.

A matrix form of a bounded adjointable operator $T \in \mathcal{L}(X, Y)$ can be induced by some natural decompositions of Hilbert C^{*}-modules. Indeed, if \mathcal{M} and \mathcal{N} are closed orthogonally complemented submodules of \mathcal{X} and \boldsymbol{y}, respectively, and $\mathcal{X}=\mathcal{M} \oplus \mathcal{M}^{\perp}, \quad y=\mathcal{N} \oplus \mathcal{N}^{\perp}$, then T can be written as the following 2×2 matrix

$$
T=\left[\begin{array}{ll}
T_{1} & T_{2} \tag{1.1}\\
T_{3} & T_{4}
\end{array}\right]
$$

where $T_{1} \in \mathcal{L}(\mathcal{M}, \mathcal{N}), T_{2} \in \mathcal{L}\left(\mathcal{M}^{\perp}, \mathcal{N}\right), T_{3} \in \mathcal{L}\left(\mathcal{M}, \mathcal{N}^{\perp}\right)$ and $T_{4} \in \mathcal{L}\left(\mathcal{M}^{\perp}, \mathcal{N}^{\perp}\right)$. Note that $P_{\mathcal{M}}$ denotes the projection corresponding to \mathcal{M}.

In fact $T_{1}=P_{\mathcal{N}} T P_{\mathcal{M}}, \quad T_{2}=P_{\mathcal{N}} T\left(1-P_{\mathcal{M}}\right), T_{3}=\left(1-P_{\mathcal{N}}\right) T P_{\mathcal{M}}, \quad T_{4}=\left(1-P_{\mathcal{N}}\right) T\left(1-P_{\mathcal{M}}\right)$.
The proof of the following Lemma can be found [6, Corollary 1.2.] or [5, Lemma 1.1.].
Lemma 1.2. Suppose that $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ has closed range. Then T has the following matrix decomposition with respect to the orthogonal decompositions of closed submodules $\mathcal{X}=\operatorname{ran}\left(T^{*}\right) \oplus \operatorname{ker}(T)$ and $\boldsymbol{Y}=\operatorname{ran}(T) \oplus \operatorname{ker}\left(T^{*}\right)$:

$$
T=\left[\begin{array}{cc}
T_{1} & 0 \\
0 & 0
\end{array}\right]:\left[\begin{array}{c}
\operatorname{ran}\left(T^{*}\right) \\
\operatorname{ker}(T)
\end{array}\right] \rightarrow\left[\begin{array}{c}
\operatorname{ran}(T) \\
\operatorname{ker}\left(T^{*}\right)
\end{array}\right]
$$

where T_{1} is invertible. Moreover

$$
T^{\dagger}=\left[\begin{array}{cc}
T_{1}^{-1} & 0 \\
0 & 0
\end{array}\right]:\left[\begin{array}{c}
\operatorname{ran}(T) \\
\operatorname{ker}\left(T^{*}\right)
\end{array}\right] \rightarrow\left[\begin{array}{c}
\operatorname{ran}\left(T^{*}\right) \\
\operatorname{ker}(T)
\end{array}\right]
$$

Lemma 1.3. Let $T \in \mathcal{L}(\mathcal{X}, \boldsymbol{Y})$. Then $T^{*} T$ is positive in $\mathcal{L}(\mathcal{X})$, and $T T^{*}$ is positive in $\mathcal{L}(\boldsymbol{Y})$.
Proof. Since $\mathcal{L}(\mathcal{X})$ is a C^{*}-algebra, the proof is finished if $\mathcal{X}=\boldsymbol{y}$. In a general case, recall that T is positive in $\mathcal{L}(\mathcal{X})$ if and only if $\langle T x, x\rangle$ is positive in $\mathcal{L}(\mathcal{X})$ for all $x \in \mathcal{X}$ (see [8], Proposition 2.1.3). Now, for all $x \in \mathcal{X}$ we have that $\left\langle T^{*} T x, x\right\rangle=\langle T x, T x\rangle$ is positive in $\mathcal{L}(\mathcal{X})$, implying that $T^{*} T$ is positive in $\mathcal{L}(\mathcal{X})$. Analogously, $T T^{*}$ is positive in $\mathcal{L}(y)$.

Lemma 1.4. (See Lemma 1.2. of [9]) Suppose that $T \in \mathcal{L}(\mathcal{X}, \boldsymbol{y})$ has closed range. Let $\mathcal{X}_{1}, \mathcal{X}_{2}$ be closed submodules of \mathcal{X}, and let $\boldsymbol{Y}_{1}, \boldsymbol{y}_{2}$ be closed submodules of \boldsymbol{y} such that $\mathcal{X}=\mathcal{X}_{1} \oplus \mathcal{X}_{2}$ and $\boldsymbol{y}=\boldsymbol{y}_{1} \oplus \boldsymbol{y}_{2}$. Then the operator T has the following matrix representations with respect to the orthogonal sums of submodules $\mathcal{X}=\operatorname{ran}\left(T^{*}\right) \oplus \operatorname{ker}(T)$ and $\boldsymbol{y}=\operatorname{ran}(T) \oplus \operatorname{ker}\left(T^{*}\right)$:

$$
T=\left[\begin{array}{cc}
T_{1} & T_{2} \\
0 & 0
\end{array}\right]:\left[\begin{array}{l}
\mathcal{X}_{1} \\
\mathcal{X}_{2}
\end{array}\right] \rightarrow\left[\begin{array}{c}
\operatorname{ran}(T) \\
\operatorname{ker}\left(T^{*}\right)
\end{array}\right]
$$

Then $D=T_{1} T_{1}^{*}+T_{2} T_{2}^{*} \in \mathcal{L}(\operatorname{ran}(T))$ is positive and invertible. Moreover,

$$
T^{+}=\left[\begin{array}{cc}
T_{1}^{*} D^{-1} & 0 \tag{1.2}\\
T_{2}^{*} D^{-1} & 0
\end{array}\right]
$$

We also have:

$$
T=\left[\begin{array}{ll}
T_{1} & 0 \tag{1.3}\\
T_{3} & 0
\end{array}\right]:\left[\begin{array}{c}
\operatorname{ran}\left(\mathrm{T}^{*}\right) \\
\operatorname{ker}(T)
\end{array}\right] \rightarrow\left[\begin{array}{l}
\boldsymbol{y}_{1} \\
\boldsymbol{y}_{2}
\end{array}\right]
$$

where $F=T_{1}^{*} T_{1}+T_{3}^{*} T_{3} \in \mathcal{L}\left(\operatorname{ran}\left(T^{*}\right)\right)$ is positive and invertible. Moreover,

$$
T^{+}=\left[\begin{array}{cc}
F^{-1} T_{1}^{*} & F^{-1} T_{2}^{*} \tag{1.4}\\
0 & 0
\end{array}\right]
$$

Notice that positivity of D and F follow from Lemma 1.3.

2. The solutions to some operator equations

In this section, we will study the operator equations $T X T^{*}-S X S^{*}=A$ and $T X Q-S Y R=A$ where X and Y are the unknown operators.

The proof of the following lemma is the same as in the matrix case.
Lemma 2.1. Suppose that $\mathcal{X}, \boldsymbol{y}$ are Hilbert \mathcal{A}-modules, $T \in \mathcal{L}(X, y)$ and $S \in \mathcal{L}(\boldsymbol{y}, \mathcal{X})$ have closed ranges, and let $A \in \mathcal{L}(\mathcal{Y})$. Then the equation

$$
\begin{equation*}
T X S=A \tag{2.1}
\end{equation*}
$$

has a solution $X \in \mathcal{L}(X)$ if and only if

$$
\begin{equation*}
T T^{\dagger} A S^{\dagger} S=A \tag{2.2}
\end{equation*}
$$

In which case, any solution X to Eq. (2.1) is of the form

$$
\begin{equation*}
X=T^{\dagger} A S^{\dagger} \tag{2.3}
\end{equation*}
$$

Lemma 2.2. Let $T \in \mathcal{L}(\mathcal{X}, \boldsymbol{y})$, let $Q \in \mathcal{L}(\mathcal{X})$ and $P \in \mathcal{L}(\boldsymbol{y})$ be orthogonal projections, and let $T Q$ and $P T$ have closed ranges. Then

1. $(T Q)^{\dagger}=Q(T Q)^{\dagger}$,
2. $(P T)^{\dagger}=(P T)^{\dagger} P$.

Proof. (i) Since $\operatorname{ran}(T Q)$ is closed, the operator $(T Q)^{\dagger}$ exists, therefore $\operatorname{ran}\left((T Q)^{\dagger}\right)=\operatorname{ran}\left((T Q)^{*}\right)=\operatorname{ran}\left(Q T^{*}\right) \subseteq$ $\operatorname{ran}(Q)$. Hence $Q(T Q)^{+}=(T Q)^{+}$. The proof for (ii) is similar.
Theorem 2.3. Suppose that \mathcal{X}, \mathcal{Y} are Hilbert \mathcal{A}-modules, $T, S \in \mathcal{L}(X, y)$ have closed ranges, $A \in \mathcal{L}(\mathcal{Y})$. If the operator equation

$$
\begin{equation*}
T X T^{*}-S X S^{*}=A, \quad X \in \mathcal{L}(X) \tag{2.4}
\end{equation*}
$$

is solvable, then

$$
X=-S^{\dagger} A\left(S^{\dagger}\right)^{*}+S^{\dagger} T\left(\left(1-S S^{\dagger}\right) T\right)^{\dagger} A\left(T^{*}\left(1-S S^{\dagger}\right)\right)^{\dagger} T^{*}\left(S^{\dagger}\right)^{*}
$$

is a solution of Eq. (2.4).

Proof. Since S, T have closed ranges, we have $\mathcal{X}=\operatorname{ran}\left(T^{*}\right) \oplus \operatorname{ker}(T)$ and $\boldsymbol{Y}=\operatorname{ran}(S) \oplus \operatorname{ker}\left(S^{*}\right)$. Hence by matrix form (1.1) with these orthogonally complemented submodules, we get

$$
T=\left[\begin{array}{ll}
T_{1} & 0 \tag{2.5}\\
T_{3} & 0
\end{array}\right]:\left[\begin{array}{c}
\operatorname{ran}\left(\mathrm{T}^{*}\right) \\
\operatorname{ker}(T)
\end{array}\right] \rightarrow\left[\begin{array}{c}
\operatorname{ran}(\mathrm{S}) \\
\operatorname{ker}\left(S^{*}\right)
\end{array}\right]
$$

and

$$
S=\left[\begin{array}{cc}
S_{1} & S_{2} \tag{2.6}\\
0 & 0
\end{array}\right]:\left[\begin{array}{c}
\operatorname{ran}\left(\mathrm{T}^{*}\right) \\
\operatorname{ker}(T)
\end{array}\right] \rightarrow\left[\begin{array}{c}
\operatorname{ran}(\mathrm{S}) \\
\operatorname{ker}\left(S^{*}\right)
\end{array}\right]
$$

and $X=\left[\begin{array}{ll}X_{1} & X_{2} \\ X_{3} & X_{4}\end{array}\right]:\left[\begin{array}{c}\operatorname{ran}\left(\mathrm{T}^{*}\right) \\ \operatorname{ker}(T)\end{array}\right] \rightarrow\left[\begin{array}{c}\operatorname{ran}\left(\mathrm{T}^{*}\right) \\ \operatorname{ker}(T)\end{array}\right]$ and $A=\left[\begin{array}{ll}A_{1} & A_{2} \\ A_{3} & A_{4}\end{array}\right]:\left[\begin{array}{c}\operatorname{ran}(\mathrm{S}) \\ \operatorname{ker}\left(S^{*}\right)\end{array}\right] \rightarrow\left[\begin{array}{c}\operatorname{ran}(\mathrm{S}) \\ \operatorname{ker}\left(S^{*}\right)\end{array}\right]$. The Eq. (2.4) which can be written in an equivalent form

$$
\begin{aligned}
& {\left[\begin{array}{ll}
T_{1} & 0 \\
T_{3} & 0
\end{array}\right]\left[\begin{array}{ll}
X_{1} & X_{2} \\
X_{3} & X_{4}
\end{array}\right]\left[\begin{array}{cc}
T_{1}^{*} & T_{3}^{*} \\
0 & 0
\end{array}\right]-\left[\begin{array}{cc}
S_{1} & S_{2} \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
X_{1} & X_{2} \\
X_{3} & X_{4}
\end{array}\right]\left[\begin{array}{ll}
S_{1}^{*} & 0 \\
S_{2}^{*} & 0
\end{array}\right] } \\
= & {\left[\begin{array}{ll}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right] }
\end{aligned}
$$

that is

$$
\left[\begin{array}{cc}
T_{1} X_{1} T_{1}^{*}-S_{1} X_{1} S_{1}^{*}-S_{1} X_{2} S_{2}^{*}-S_{2} X_{3} S_{1}^{*}-S_{2} X_{4} S_{2}^{*} & T_{1} X_{1} T_{3}^{*} \\
T_{3} X_{1} T_{1}^{*} & T_{3} X_{1} T_{3}^{*}
\end{array}\right]=\left[\begin{array}{cc}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right]
$$

Therefore

$$
\begin{align*}
& T_{1} X_{1} T_{1}^{*}-S_{1} X_{1} S_{1}^{*}-S_{1} X_{2} S_{2}^{*}-S_{2} X_{3} S_{1}^{*}-S_{2} X_{4} S_{2}^{*}=A_{1} \tag{2.7}\\
& T_{1} X_{1} T_{3}^{*}=A_{2} \tag{2.8}\\
& T_{3} X_{1} T_{1}^{*}=A_{3} \tag{2.9}\\
& T_{3} X_{1} T_{3}^{*}=A_{4} \tag{2.10}
\end{align*}
$$

Using the matrix form (1.1) we get that $T_{3}=\left(1-P_{\mathrm{ran}(\mathrm{S})}\right) T P_{\operatorname{ran}\left(\mathrm{T}^{*}\right)}=\left(1-P_{\mathrm{ran}(\mathrm{S})}\right) T T^{\dagger} T=\left(1-P_{\mathrm{ran}(\mathrm{S})}\right) T$. Since $\operatorname{ran}(\mathrm{T})$ is closed, we get that $\operatorname{ran}\left(\mathrm{T}_{3}\right)$ is closed [4]. Since Eq. (2.4) is solvable, we conclude that Eq. (2.10) is solvable. Then by Lemma 2.1, $X_{1}=T_{3}^{\dagger} A_{4}\left(T_{3}^{*}\right)^{\dagger}$ is a solution to Eq. (2.10). Therefore, by Eq. (2.7), we have

$$
\begin{equation*}
S_{1} X_{1} S_{1}^{*}+S_{1} X_{2} S_{2}^{*}+S_{2} X_{3} S_{1}^{*}+S_{2} X_{4} S_{2}^{*}=-A_{1}+T_{1} T_{3}^{\dagger} A_{4}\left(T_{3}^{*}\right)^{\dagger} T_{1}^{*} \tag{2.11}
\end{equation*}
$$

which can be written in an equivalent form

$$
\left[\begin{array}{cc}
S_{1} & S_{2} \tag{2.12}\\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
X_{1} & X_{2} \\
X_{3} & X_{4}
\end{array}\right]\left[\begin{array}{ll}
S_{1}^{*} & 0 \\
S_{2}^{*} & 0
\end{array}\right]=\left[\begin{array}{cc}
-A_{1}+T_{1} T_{3}^{\dagger} A_{4}\left(T_{3}^{*}\right)^{\dagger} T_{1}^{*} & 0 \\
0 & 0
\end{array}\right]
$$

Eq. (2.4) is solvable, therefore Eq. (2.12) is solvable. By Lemma 2.1 a solution to Eq. (2.12) is

$$
\left[\begin{array}{ll}
X_{1} & X_{2} \tag{2.13}\\
X_{3} & X_{4}
\end{array}\right]=\left[\begin{array}{cc}
S_{1} & S_{2} \\
0 & 0
\end{array}\right]^{\dagger}\left[\begin{array}{cc}
-A_{1}+T_{1} T_{3}^{\dagger} A_{4}\left(T_{3}^{*}\right)^{\dagger} T_{1}^{*} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
S_{1}^{*} & 0 \\
S_{2}^{*} & 0
\end{array}\right]^{\dagger}
$$

On the other hand, we have

$$
\begin{aligned}
& S S^{\dagger} A S S^{\dagger}=\left[\begin{array}{cc}
A_{1} & 0 \\
0 & 0
\end{array}\right] \\
& \left(1-S S^{\dagger}\right) A\left(1-S S^{\dagger}\right)=\left[\begin{array}{cc}
0 & 0 \\
0 & A_{4}
\end{array}\right] \\
& \left(1-S S^{\dagger}\right) T=\left[\begin{array}{cc}
0 & 0 \\
T_{3} & 0
\end{array}\right] \\
& S S^{\dagger} T=\left[\begin{array}{cc}
T_{1} & 0 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

T_{3} has closed range, hence $\left(\left(1-S S^{\dagger}\right) T\right)^{\dagger}=\left[\begin{array}{cc}0 & T_{3}^{\dagger} \\ 0 & 0\end{array}\right]$ is the Moore-Penrose of $\left(1-S S^{\dagger}\right) T=\left[\begin{array}{cc}0 & 0 \\ T_{3} & 0\end{array}\right]$. Therefore

$$
\begin{align*}
& {\left[\begin{array}{cc}
-A_{1}+T_{1} T_{3}^{\dagger} A_{4}\left(T_{3}^{*}\right)^{\dagger} T_{1}^{*} & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
-A_{1} & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{cc}
T_{1} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
0 & T_{3}^{+} \\
0 & 0
\end{array}\right] \times } \\
& {\left[\begin{array}{cc}
0 & 0 \\
0 & A_{4}
\end{array}\right]\left[\begin{array}{cc}
0 & 0 \\
\left(T_{3}^{\dagger}\right)^{*} & 0
\end{array}\right]\left[\begin{array}{cc}
T_{1}^{*} & 0 \\
0 & 0
\end{array}\right] } \\
= & -S S^{\dagger} A S S^{\dagger}+S S^{\dagger} T\left(\left(1-S S^{\dagger}\right) T\right)^{\dagger}\left(1-S S^{\dagger}\right) A\left(1-S S^{\dagger}\right) \tag{2.14}\\
& \times\left(\left(\left(1-S S^{\dagger}\right) T\right)^{\dagger}\right)^{*}\left(S S^{\dagger} T\right)^{*} \\
= & -S S^{\dagger} A S S^{\dagger}+S S^{\dagger} T\left(\left(1-S S^{\dagger}\right) T\right)^{\dagger} A\left(T^{*}\left(1-S S^{\dagger}\right)\right)^{\dagger}\left(T^{*} S S^{\dagger}\right) \tag{2.15}
\end{align*}
$$

The last equality is obtained from (1) and (2) of Lemma 2.2.
Now, by equations (2.13) and (2.15) and this fact that $S S^{\dagger}\left(S^{\dagger}\right)^{*}=\left(S^{\dagger} S S^{\dagger}\right)^{*}=\left(S^{\dagger}\right)^{*}$, it follows that

$$
\begin{aligned}
X & =-S^{\dagger} S S^{\dagger} A S S^{\dagger}\left(S^{\dagger}\right)^{*}+S^{\dagger} S S^{\dagger} T\left(\left(1-S S^{\dagger}\right) T\right)^{\dagger} A\left(T^{*}\left(1-S S^{\dagger}\right)\right)^{\dagger} T^{*} S S^{\dagger}\left(S^{\dagger}\right)^{*} \\
& =-S^{\dagger} A\left(S^{\dagger}\right)^{*}+S^{\dagger} T\left(\left(1-S S^{\dagger}\right) T\right)^{\dagger} A\left(T^{*}\left(1-S S^{\dagger}\right)\right)^{\dagger} T^{*}\left(S^{\dagger}\right)^{*}
\end{aligned}
$$

Remark 2.4. Let \mathcal{X} and \boldsymbol{Y} be two Hilbert \mathcal{A}-modules. We use the notation $\mathcal{X} \oplus \mathcal{Y}$ to denote the direct sum of \mathcal{X} and \boldsymbol{y}, which is also a Hilbert \mathcal{A}-module whose \mathcal{A}-valued inner product is given by

$$
\left\langle\binom{ x_{1}}{y_{1}},\binom{x_{2}}{y_{2}}\right\rangle=\left\langle x_{1}, x_{2}\right\rangle+\left\langle y_{1}, y_{2}\right\rangle
$$

for $x_{i} \in \mathcal{X}$ and $y_{i} \in \mathcal{Y}, i=1,2$. To simplify the notation, we use $x \oplus y$ to denote $\binom{x}{y} \in \mathcal{X} \oplus \mathcal{Y}$.
Proposition 2.5. Suppose that $\mathcal{X}, \mathcal{Y}, \mathcal{Z}, \mathcal{W}$ are Hilbert \mathcal{A}-modules, $T, S \in \mathcal{L}(\mathcal{Z}, \mathcal{W}), R, Q \in \mathcal{L}(\mathcal{X}, \mathcal{Y}), A \in$ $\mathcal{L}(\mathcal{X}, \mathcal{W})$ such that $S, Q, T\left(1-S^{\dagger} S\right)$ and $R\left(1-Q^{\dagger} Q\right)$ have closed ranges. Suppose the equation

$$
\begin{equation*}
T X R-S Y Q=A, \quad X, Y \in \mathcal{L}(\mathcal{y}, \mathcal{Z}) \tag{2.16}
\end{equation*}
$$

is solvable. Then

$$
\left[\begin{array}{cc}
X & 0 \\
0 & -Y
\end{array}\right]=\left[\begin{array}{ll}
T & S \\
0 & 0
\end{array}\right]^{+}\left[\begin{array}{cc}
A & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
R & 0 \\
Q & 0
\end{array}\right]^{+}
$$

Proof. Taking $H=\left[\begin{array}{ll}T & S \\ 0 & 0\end{array}\right]: \mathcal{Z} \oplus \mathcal{Z} \rightarrow \mathcal{W} \oplus \mathcal{W}$ has closed range, let $\left\{z_{n} \oplus x_{n}\right\}$ be sequence chosen in $\mathcal{W} \oplus \mathcal{W}$, such that $T\left(z_{n}\right)+S\left(x_{n}\right) \rightarrow y$ for some $y \in \mathcal{Z}$. Then

$$
\left(1-S S^{\dagger}\right) T\left(z_{n}\right)=\left(1-S S^{\dagger}\right)\left(T\left(z_{n}\right)+S\left(x_{n}\right)\right) \rightarrow\left(1-S S^{\dagger}\right)(y)
$$

Since $\operatorname{ran}\left(\left(1-S S^{\dagger}\right) T\right)$ is assumed to be closed. Hence, $\left(1-S S^{\dagger}\right)(y)=\left(1-S S^{\dagger}\right) T\left(z_{1}\right)$ for some $z_{1} \in \mathcal{Z}$. It follows that $y-T\left(x_{1}\right) \in \operatorname{ker}\left(1-S S^{\dagger}\right)=\operatorname{ran}(\mathrm{S})$, hence $y=T\left(z_{1}\right)+S(x)$ for some $x \in \mathcal{Z}$. Therefore H has closed range, hence H^{+}exists. Also, we take $K=\left[\begin{array}{ll}R & 0 \\ Q & 0\end{array}\right]: \mathcal{X} \oplus \mathcal{X} \rightarrow \boldsymbol{y} \oplus \mathcal{Y}$. Similar argument shows that K^{*} has closed range, hence by Theorem 3.2 of [7] implies that K has closed range, so K^{\dagger} exists. Finally, let $Z=\left[\begin{array}{cc}X & 0 \\ 0 & -Y\end{array}\right]: \boldsymbol{y} \oplus \boldsymbol{y} \rightarrow \mathcal{Z} \oplus \mathcal{Z}$ and $B=\left[\begin{array}{cc}A & 0 \\ 0 & 0\end{array}\right]: \mathcal{X} \oplus \mathcal{X} \rightarrow \mathcal{W} \oplus \mathcal{W}$, hence Eq. (2.18) get into

$$
\begin{equation*}
H Z K=B . \tag{2.17}
\end{equation*}
$$

Lemma 2.1 implies that

$$
Z=H^{\dagger} A K^{\dagger}
$$

Theorem 2.6. Suppose that $\mathcal{X}, \mathcal{Y}, \mathcal{Z}, \mathcal{W}$ are Hilbert \mathcal{A}-modules, $T, S \in \mathcal{L}(\mathcal{Z}, \mathcal{W}), R, Q \in \mathcal{L}(\mathcal{X}, \mathcal{Y}), A \in \mathcal{L}(\mathcal{X}, \mathcal{W})$ such that $\operatorname{ran}(\mathrm{T})+\operatorname{ran}(\mathrm{S})$ and $\operatorname{ran}\left(\mathrm{R}^{*}\right)+\operatorname{ran}\left(\mathrm{Q}^{*}\right)$ are closed and operator equation

$$
\begin{equation*}
T X R-S Y Q=A, X, Y \in \mathcal{L}(\boldsymbol{y}, \mathcal{Z}) \tag{2.18}
\end{equation*}
$$

is solvable, then

$$
\begin{align*}
X & =T^{*}\left(T T^{*}+S S^{*}\right)^{\dagger} A\left(R^{*} R+Q^{*} Q\right)^{\dagger} R^{*} \tag{2.19}\\
Y & =-S^{*}\left(T T^{*}+S S^{*}\right)^{\dagger} A\left(R^{*} R+Q^{*} Q\right)^{\dagger} Q^{*} \tag{2.20}
\end{align*}
$$

Proof. Since $\operatorname{ran}(T)+\operatorname{ran}(S)$ and $\operatorname{ran}\left(\mathrm{R}^{*}\right)+\operatorname{ran}\left(\mathrm{Q}^{*}\right)$ are closed then by Lemma 4 of [2] and Corollary 5 of [2] respectively, imply that $\left[\begin{array}{ll}T & S \\ 0 & 0\end{array}\right]: \mathcal{Z} \oplus \mathcal{Z} \rightarrow \mathcal{W} \oplus \mathcal{W}$ and $\left[\begin{array}{ll}R & 0 \\ Q & 0\end{array}\right]: \mathcal{X} \oplus \mathcal{X} \rightarrow \boldsymbol{y} \oplus \mathcal{Y}$. Since Eq. (2.18) is equivalent to

$$
\left[\begin{array}{ll}
T & S \tag{2.21}\\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
X & 0 \\
0 & -Y
\end{array}\right]\left[\begin{array}{ll}
R & 0 \\
Q & 0
\end{array}\right]=\left[\begin{array}{cc}
A & 0 \\
0 & 0
\end{array}\right]
$$

So Eq. (2.21) is solvable. Again by applying Lemma 4 of [2] and Corollary 5 of [2] and Lemma 2.1 we have

$$
\begin{aligned}
& {\left[\begin{array}{cc}
X & 0 \\
0 & -Y
\end{array}\right]=\left[\begin{array}{ll}
T & S \\
0 & 0
\end{array}\right]^{\dagger}\left[\begin{array}{cc}
A & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
R & 0 \\
Q & 0
\end{array}\right]^{\dagger} } \\
= & {\left[\begin{array}{cc}
T^{*}\left(T T^{*}+S S^{*}\right)^{\dagger} & 0 \\
S^{*}\left(T T^{*}+S S^{*}\right)^{\dagger} & 0
\end{array}\right]\left[\begin{array}{cc}
A & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
\left(R^{*} R+Q^{*} Q\right)^{\dagger} R^{*} & \left(R^{*} R+Q^{*} Q\right)^{\dagger} Q^{*} \\
0 & 0
\end{array}\right] } \\
= & {\left[\begin{array}{cc}
T^{*}\left(T T^{*}+S S^{*}\right)^{\dagger} A\left(R^{*} R+Q^{*} Q\right)^{\dagger} R^{*} & T^{*}\left(T T^{*}+S S^{*}\right)^{\dagger} A\left(R^{*} R+Q^{*} Q\right)^{\dagger} Q^{*} \\
S^{*}\left(T T^{*}+S S^{*}\right)^{\dagger} A\left(R^{*} R+Q^{*} Q\right)^{\dagger} R^{*} & S^{*}\left(T T^{*}+S S^{*}\right)^{\dagger} A\left(R^{*} R+Q^{*} Q\right)^{\dagger} Q^{*}
\end{array}\right] . }
\end{aligned}
$$

Since Eq. (2.18) is solvable, then $S^{*}\left(T T^{*}+S S^{*}\right)^{\dagger} A\left(R^{*} R+Q^{*} Q\right)^{\dagger} R^{*}=T^{*}\left(T T^{*}+S S^{*}\right)^{\dagger} A\left(R^{*} R+Q^{*} Q\right)^{\dagger} Q^{*}=0$ and

$$
\begin{aligned}
X & =T^{*}\left(T T^{*}+S S^{*}\right)^{\dagger} A\left(R^{*} R+Q^{*} Q\right)^{\dagger} R^{*} \\
Y & =-S^{*}\left(T T^{*}+S S^{*}\right)^{\dagger} A\left(R^{*} R+Q^{*} Q\right)^{\dagger} Q^{*}
\end{aligned}
$$

References

[1] J. K. Baksalary, R. Kala, The matrix equation $A X B+C Y D=E$, Linear Algebra Appl. 30 (1980), 141-147.
[2] C. Y. Deng, H. K. Du, Representations of the Moore-Penrose inverse for a class of 2 by 2 block operator valued partial matrices. Linear Multilinear Algebra 58 (2010), 15-26.
[3] D. S. Djordjević, Explicit solution of the operator equation $A^{*} X+X^{*} A=B$, J. Comput. Appl. Math. 200 (2007), 701-704.
[4] D. S. Djordjević, Further results on the reverse order law for generalized inverses, SIAM J. Matrix Anal. Appl. 29 (4) (2007), $1242-1246$.
[5] D. S. Djordjević, N. C. Dinčić, Reverse order law for the Moore-Penrose inverse, J. Math. Anal. Appl. 361 (2010), 252-261.
[6] M. Mohammadzadeh Karizaki, M. Hassani, M. Amyari and M. Khosravi, Operator matrix of Moore-Penrose inverse operators on Hilbert C*-modules, Colloq. Math. 140 (2015), 171-182
[7] E. C. Lance, Hilbert C*-Modules, LMS Lecture Note Series 210, Cambridge Univ. Press, 1995.
[8] V. M. Manuilov, E. V. Troitsky, Hilbert C*-modules, Translations of Mathematical Monographs, American Mathematical Society, Providence, Rhode Island, 2005.
[9] K. Sharifi, B. Ahmadi Bonakdar, The reverse order law for Moore-Penrose inverses of operators on Hilbert C*-modules, Bull. Iranian Math. Soc. (to appear).
[10] Q. Wang, H. Zhang, S. Yu, On solutions to the quaternion matrix equation $A X B+C Y D=E$, Electron. J. Linear Algebra 17 (2008), 343-358.
[11] Q. Xu, L. Sheng, Positive semi-definite matrices of adjointable operators on Hilbert C*-modules, Linear Algebra Appl. 428 (2008), 992-1000.
[12] G. Xu, M. Wei, D. Zheng, On solutions of matrix equation $A X B+C Y D=F$, Linear Algebra Appl. 279 (1998), 93-109.

[^0]: 2010 Mathematics Subject Classification. Primary 47A62; Secondary 15A24; 46L08.
 Keywords. Operator equation; Moore-Penrose inverse; Hilbert C^{*}-module.
 Received: 22 September 2015; Accepted: 24 October 2015
 Communicated by Dijana Mosić
 The second author is supported by the Ministy of Education, Science and Technological Development, Republic of Serbia, grant no. 174007.

 Email addresses: mohammadzadehkarizaki@gmail.com (Mehdi Mohammadzadeh Karizaki), dragandjordjevic70@gmail.com (Dragan S. Djordjević)

