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Abstract. It is shown that the property of a matrix being range symmetric in an indefinite inner product
space is preserved under the principal pivot transformation.

1. Introduction

An indefinite inner product in Cn is a conjugate symmetric sesquilinear form [x, y] together with the
regularity condition that [x, y] = 0 for all y ∈ Cn only when x = 0. Any indefinite inner product is associated
with a unique invertible complex matrix J (called a weight) such that [x, y] =< x, Jy > where <,> denotes
the Euclidean inner product on Cn. We also make an additional assumption on J, that is, J2 = I, to present
the results with much algebraic ease. There are two different values for dot product of vectors in indefinite
inner product spaces and to overcome these difficulties, a new matrix product, called indefinite matrix
multiplication is introduced and some of its properties are investigated in [7]. For A ∈ Cm×n,B ∈ Cn×k, the
indefinite matrix product of A and B (relative to J) is defined as A ◦ B = AJB. When J is the identity matrix
the product reduces to the usual product of matrices. It can be verified that with respect to the indefinite
matrix product, rank(A ◦ A[∗]) = rank(A[∗] ◦ A) = rank(A), where as this rank property fails under the usual
matrix multiplication, where A ◦ A[∗] = JnA∗ Jm is the adjoint of A relative to Jn and Jm, the weights in the
appropriate spaces. Thus the Moore Penrose inverse of a complex matrix over an indefinite inner product
space, with respect to the indefinite matrix product always exists and this is one of its main advantages.
Recently, in [6] we have extended the concept of range symmetric matrix to an indefinite inner product
space and presented some interesting characterizations of range symmetric matrices similar to EP matrices
in the setting of indefinite matrix product. Further, we have exhibited that the class of range symmetric
matrices in an indefinite inner product space coincides with the class of J-EP matrices studied in [3]. A set
of necessary and sufficient conditions for a Schur complement in an EP matrix to be EP are determined in
[4]. The aim of this manuscript is to discuss the range symmetry of a block matrix and the structure of
the principal pivot transform of a range symmetric block matrix in an indefinite inner product space. We
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Email address: arm−meenakshi@yahoo.co.in (AR. Meenakshi)



AR. Meenakshi / FAAC 8 (2) (2016), 37–43 38

recall the definitions and preliminary results on complex matrices over an indefinite inner product space
in Section 2. In Section 3, we deal with the main results. We present equivalent conditions for a block
matrix to be range symmetric in terms of Schur complements of the principal sub-matrices. We begin with
the principal pivot transform of a complex matrix and exhibit that it carries over as such for a matrix over
an indefinite inner product space, under the indefinite matrix multiplication. We prove that the principal
pivot transform of a range symmetric matrix is range symmetric. In general, rank of a matrix and that of its
principal pivot are not the same. Here, we have determined certain conditions under which they are equal.
Wherever possible, we provide examples to illustrate our results.

2. Preliminaries

First we shall state a well known lemma concerning the invariance of the usual matrix product involving
generalized inverses.
Lemma 2.1: ([8],p.21) If X and Y are generalized inverses of A, then CXB = CYB ⇔ N(A) ⊆ N(C) and
N(A∗) ⊆ N(B∗)⇔ C = CA−A and B = AA−B for every A−.
Definition 2.1: For A ∈ Cn×n, in an indefinite inner product space ℘,with weight J, a matrix X ∈ Cnn

satisfying A ◦ X ◦ A = A is called a generalized inverse of A relative to the weight J. AJ{1} is the set of all
generalized inverses of A relative to the weight J.

Remark 2.1: It can be easily verified that X is a generalized inverse of A under the indefinite matrix
product if and only if JnXJm is a generalized inverse of A under the usual product of matrices. Hence
AJ{1} = {X/JnXJm is a generalized inverse of A}.
Definition 2.2: For A ∈ Cn×n a matrix X ∈ Cn×n is called the Moore-Penrose inverse of A relative to the
weight J if it satisfies the following equations:

A ◦ X ◦ A = A,X ◦ A ◦ X = X, (A ◦ X)[∗] = A ◦ X, (X ◦ A)[∗] = X ◦ A.

Such an X is denoted by A[†] and represented as A[†] = JnA†Jn.
The indefinite matrix product C ◦X− ◦B is said to be invariant for all choice of X− ∈ AJ{1} if C ◦X− ◦B =

C ◦ Y− ◦ B for X−,Y− ∈ AJ{1}.
Lemma 2.2: The indefinite matrix product C ◦ X− ◦ B is invariant for all choice of X− ◦ AJ{1} if and only if
the usual matrix product CXB is invariant for all choice of X ∈ A{1}.
Proof: From Definition 2.1 and Remark 2.1,

CXB = CYB f orX,Y ∈ A{1} ⇔ C ◦ JnXJm ◦ B = C ◦ JnYJm ◦ B f or X,Y ∈ A{1}
⇔ C ◦ X− ◦ B = C ◦ Y− ◦ B f or X−,Y− ∈ AJ{1}.

Hence the Lemma holds.

Definition 2.3: The Range space of A ∈ Cm×n is defined by R(A) = {y = A ◦ x ∈ Cn/x ∈ Cn}.The Null space
of A is defined by Nu(A) = {x ∈ Cn/A ◦ x = 0}. It is clear that Nu(A[∗]) = N(A∗).
Lemma 2.3: For A,B,C ∈ Cn×n,

(i) N(A) ⊆ N(C)⇔ Nu(A) ⊆ Nu(C).
(ii) N(A∗) ⊆ N(B∗)⇔ Nu(A[∗]) ⊆ Nu(B[∗])

Property 2.1: For A ∈ Cn×n the following hold:

(i) (A[∗])[∗] = A.
(ii) (A[†])[†] = A

Definition 2.2: A ∈ Cn×n is said to be range symmetric in an indefinite inner product space ℘ with weight
J, that is, A is range symmetric relative to J if R(A) = R(A[∗]).
In particular if J is the identity matrix, it reduces to EP matrix [1].
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In the sequel we shall use the following result found in [6].

Theorem 2.1: For A ∈ Cn×n the following are equivalent:

(i) Ais range symmetric in ℘
(ii) AJ is EP

(iii) JA is EP
(iv) A is J-EP
(v) N(A) = N(A[∗])

(vi) [AA†][∗] = J(AA†)J = A†A

Let us consider M ∈ C(m+n)×(m+n), a block matrix of the form

(2.1)
[

A B
C D

]
, where A and D are square matrices of orders m and n respectively. With respect to this

partitioning, a Schur complement of A in M is a matrix of the form M/A = D − CA−B [2], where A−, a
generalized inverse of A is a solution of AXA = A. On account of Remark (2.1), Lemma (2.1) and Lemma
(2.2), it is obvious that under certain conditions M/A is independent of the choice of generalized inverse of
A and it turns out that the definition of a Schur complement carries over as such to indefinite inner product
spaces. However, in the sequel we shall always assume that M/A is given in terms of specific choice of A−.
Let J, Jm and Jn be the weights associated with the indefinite inner products in Cm+n,Cm and Cn respectively.
Since Jm = Jm

∗ = Jm
−1 and Jn = Jn

∗ = Jn
−1, it can be verified that J is of the form

(2.2)
[

Jm 0
0 Jn

]
.

Theorem 2.2(Theorem 1 of [4]): Let M be a matrix of the form (2.1) with N(A) ⊆ N(C) and N(M/A) ⊆ N(B),
then the following are equivalent:

(i) M is an EP matrix.
(ii) A and M/A are EP, N(A∗) ⊆ N(B∗) and N(M/A)∗ ⊆ N(C∗).

(iii) Both the matrices[
A 0
C M/A

]
and
[

A B
0 M/A

]
are EP.

3. Principal pivot on a matrix

In [5], we have introduced the concept of principal pivot transform for a block complex matrix and

proved that M =
[

A B
C D

]
satisfying N(A) ⊆ N(C) and N(A∗) ⊆ N(B∗) can be transformed into the matrix

(3.1) M̂ =
[

A† −A†B
CA† S

]
Where S = D − CA†B is the Schur complement of A in M. M̂ is called a principal

pivot transform of M. The operation that transforms M → M̂ is called a principal pivot by pivoting the
block A. If A is non-singular it reduces to the principal pivot by pivoting the block A [9]. Properties and
applications of the principal pivot transforms are well recognized in Mathematical programming [9 and
10].

A system of linear equations M ◦ z = t in an indefinite inner product space ℘ with weight J is identical

with the system MJz = t, where M =
[

A B
C D

]
and J =

[
Jm 0
0 Jn

]
. Further, by Lemma (2.3), the conditions

on the matrix M to be transformed into its principal pivot are equivalent under the indefinite matrix
multiplication with respect to the weight J. Hence it turns out that a principal pivot transform of a complex
matrix in℘ is the same as that of a matrix in Euclidean space. In this section, we are concerned with complex
matrices over an indefinite inner product space ℘ with weight J. We shall discuss the relation between
the principal transforms of the block matrices M, JM,MJ and PMPT for some permutation matrix P. For
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A ∈ Cm×m,A is J-EP and A is range symmetric in ℘ are equivalent by Theorem (2.1), hence forth we use, A
is J − EPr if A is range symmetric in ℘ and of rank r.
Lemma 3.1: Let A ∈ Cm×m and U ∈ Cm×m be any nonsingular matrix. Then, A is EP⇔ UAU∗ is EP.
Proof:

A is EP ⇔ R(A) = R(A∗).
⇔ R(UAU∗) = R(UA∗U∗) (By Lemma 3 of [1]).
⇔ R(UAU∗) = R(UAU∗)∗.
⇔ UAU∗isEP.

Theorem 3.1: Let M of the form (2.1) with N(A) ⊆ N(C) and N(A[∗]) ⊆ N(B[∗]) be a J-EP matrix, then, M̂ the
principal pivot transform of M is J-EP.

Proof: For M of the form (2.1) and J of the form (2.2), under the usual matrix product, JM =
[

JmA JmB
JnC JnD

]
with N(JmA) = N(A) ⊆ N(C) = N(JnC) and N(JmA)∗ = N(A∗ Jm) = N(A[∗]) ⊆ N(B[∗]) = N(B∗ Jm) = N(JmB)∗. By
using (JmA)† = A†Jm, the principal pivot transform of JM reduces to the form

ĴM =
[

A†Jm −A†B
JnA†Jm JnC

]
.

M̂J =
[

A† −A†B
CA† S

] [
Jm 0
0 Jn

]
=

[
A†Jm −A†BJn

CA†Jm SJn

]
. Let us define

(3.2) Pm =

[
Jm 0
0 In

]
and Pn =

[
Im 0
0 Jn

]
. Since Jm and Jn are nonsingular Pm and Pn are nonsingular.

Further,
(3.3) JPn = PnJ = Pm, Pm

∗ = Pm and JPm = PmJ = Pn.

PnM̂Pm =

[
Jm 0
0 Jn

] [
A† −A†B

CA†Jm S

] [
Jm 0
0 In

]
=

[
A†Jm −A†B

JnCA†Jm JnS

]
= ĴM.

Then by using JPn = PnJ = Pm,Pm
∗ = Pm and J2 = Im+n,

(3.4) ĴM = PnM̂Pm = (PnJ)(JM̂)Pm = Pm(JM̂)Pm
∗. Since M is J-EP, by Theorem (2.1) (iii), JM is EP and by

Theorem 1 of [5], ĴM is EP. Since Pm is invertible, by Lemma 3.1, Pm ĴMPm
∗ = JM̂ is EP. Again, by Theorem

(2.1) (iv) it follows that M̂ is J-EP. Hence the Theorem holds.
Corollary 3.1: Let M be of the form (2.1) with N(A) ⊆ N(C) and N(A[∗]) ⊆ N(B[∗]) and J of the form (2.2) . Let
Pm and Pn be defined as in (3.2). Then the following hold:

(i) ĴM = PnM̂Pm = Pm(ĴM)Pm
∗ = PnM̂JPn

∗.
(ii) M̂J = PmM̂Pn = Pn(JM̂)Pn

∗ = Pm(M̂J)Pm
∗.

(iii) ĴM = J(M̂J)J.

Proof: (i) directly follows from (3.4) and using (3.3). (ii) can be proved in the same manner as that of (i) for
the matrix MJ and hence omitted. (iii)ĴM = Pn.M̂.Pm = PnPmM̂JPnPm = JM̂JJ, by using PnPm = PmPn = J.
Thus (iii) holds.
Remark 3.1: For M of the form (2.1), if N(A) ⊆ N(C) and N(A∗) ⊆ N(B∗), then by Lemma (2.1) C = CA†A

and B = AA†B. Hence, M =
[

I 0
CA† I

]
·
[

A 0
0 M/A

]
·
[

I A†B
0 I

]
and rank(M) = rank(A) + rank(M/A). In

the same manner for the matrix M̂ in (3.1), rank(M̂) = rank(A)+ rank(D).Thus in general, rank(M) , rank(M̂).
Here, we shall determine conditions for the equality of the ranks of a matrix and its principal transform.
First , we discuss the range symmetry of a block matrix.
Theorem3.2: Let M be a matrix of the form (2.1) with N(A) ⊆ N(C) and N(S) ⊆ N(B), S is the Schur comple-
ment of A in M. Then the following are equivalent:
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(i) M is a J-EP matrix.
(ii) A is Jm − EP and S is Jn − EP, N(A[∗]) ⊆ N(B[∗]) and N(S[∗]) ⊆ N(C[∗]).

Proof: (i) ⇒ (ii). Since M is a matrix of the form (2.1), the weight J in conformity with that of M is of the

form(2.2), JM =
[

JmA JmB
JnC JnD

]
. Since M is a J-EP matrix by Theorem(2.1) (iii), JM is an EP matrix. In the EP

matrix JM, the Schur complement of JmA in JM , that is, JM/JmA = JnD−(JnC)(JmA)†JmB = Jn(D−CA†B) = JnS.
The matrix JM satisfies the conditions N(JmA) = N(A) ⊆ N(C) = N(JnC) and N(JnS) = N(S) ⊆ N(B) = N(JmB).
Now by applying Theorem(2.2) for the EP matrix JM and by using Theorem(2.1) (iv),we conclude that A
is Jm-EP and S is Jn-EP, N(A[∗]) = N(JmA∗ Jm) = N(JmA)∗ ⊆ N(JmB)∗ = N(JmB∗ Jm) = N(B[∗]) and N(S[∗]) =
N(JnS)∗ ⊆ N(JnC)∗ = N(C[∗]). Thus (ii) holds.
(ii)⇒ (i): Since A is Jm-EP and S is Jn-EP, by Theorem(2.1) (iii) JmA is EP and the Schur complement of JmA
in JM = JM/JmA = JnS is EP. N(JmA)∗ = N(A[∗]) ⊆ N(B[∗]) = N(JmB)∗ and N(JnS)∗ = N(S[∗]) ⊆ N(C[∗]) = N(JnC)∗

. Then by Theorem (2.2) JM is EP and finally, M is J-EP follows from Theorem (2.1) (iv). Hence the Theorem
holds.
Lemma 3.2: Let M be of the form (2.1) and J of the form (2.2). Let S = D − CA†B be the Schur complement
of A in M and S1 = A−BD†C be the Schur complement of D in M. Let N(A) ⊆ N(C) and N(D) ⊆ N(B). Then
the following are equivalent:

(i) M is J-EP with N(S) ⊆ N(B) and N(S1) ⊆ N(C).
(ii) A and S1 are Jm-EP matrices, D and S are Jn-EP matrices with N(A) = N(S1) ⊆ N(B[∗]) and N(D) =

N(S) ⊆ N(C[∗]).

Proof : (i) ⇒ (ii). Since M is J-EP with N(A) ⊆ N(C) and N(S) ⊆ N(B), by Theorem (3.2), it follows that A
is Jm-EP and S is Jn-EP, N(A) = N(A[∗] ⊆ N(B[∗]) and N(S) = N(S[∗]) ⊆ N(C[∗]). Since M is J-EP, by Theo-

rem (2.1) (iii) JM =
[

JmA JmB
JnC JnD

]
is EP. For some permutation matrix P, let M1 = PMPT =

[
D C
B A

]
and

J1 = PJPT. Then,J1M1 = PJMPT =

[
JnD JnC
JmB JmA

]
. Since JM is EP,by Lemma (3.1),J1M1 is EP. By Theorem

(2.1) (iv), M1 is J1-EP,with N(D) ⊆ N(B) and N(S1) ⊆ N(C). Therefore by Theorem (3.2) it follows that D
is Jn-EP and S1 is Jm-EP, N(D) = N(D[∗]) ⊆ N(C[∗]) and N(S1) = N(S[∗]

1 ) ⊆ N(B[∗]). Finally, to prove that
N(A) = N(S1) and N(D) = N(S), it is enough to prove that A†A = S1

†S1 and D†D = S†S. Since we have
N(A) ⊆ N(C),N(A∗) ⊆ N(B∗),N(S) ⊆ N(B) and N(S∗) ⊆ N(C∗) , according to the assumptions of Theorem 1
(v) of [2], we have

(3.5) M† =

[
A† + A†BS†CA† −A†BS†

−S†CA† S†

]
By using Lemma (2.1), for the conditions N(A∗) ⊆ N(B∗) and

N(S∗) ⊆ N(C∗), we have AA†B = B and C = SS†C. Hence, on computation MM† reduces to the form MM† =[
AA† 0

0 SS†

]
. Beside N(D) ⊆ N(B),N(D∗) ⊆ N(C∗),N(S1) ⊆ N(C) and N(S1

∗) ⊆ N(B∗) and by corollary 1 of

[2], M† is also given by

(3.6) M† =

[
S1
† −A†BS†

−D†CS1
† S†

]
. Again by using Lemma (2.1), on computation we have MM† =[

S1S1
† 0

0 SS†

]
. On comparing the corresponding blocks of MM† we get AA† = S1S†1. Since both A

and S1 are Jm-EP, by Theorem (2.1) (vi) JmAA†Jm = JmS1S1
†Jm. Implies A†A = S1

†S1 and hence, N(A) = N(S1).
In the same manner, by using the formulae (3.5) and (3.6), we obtain two more expressions for M†M and
comparing the corresponding block yields D†D = S†S, hence N(D) = N(S). Thus (ii) holds.
(ii) ⇒ (i) : N(S) ⊆ N(B) follows directly from N(S) = N(D) ⊆ N(B). Similarly, N(S1) ⊆ N(C) follows from
N(S1) = N(A) ⊆ N(C). Since, A and S1 are Jm-EP matrices, A is Jm-EP and S is Jn-EP, N(A[∗]) ⊆ N(B[∗]) and
N(S[∗]) ⊆ N(C[∗]) with N(A) ⊆ N(C), N(S) ⊆ N(B) by Theorem (3.2) M is J-EP. Hence the Lemma holds.
Theorem 3.3: Let M be of the form (2.1) and J of the form (2.2). Let S = D−CA†B be the Schur complement
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of A in M and S1 = A − BD†C be the Schur complement of D in M. If M is J − EPr with N(A) ⊆ N(C),
N(D) ⊆ N(B),N(S) ⊆ N(B) and N(S1) ⊆ N(C), then the following hold:

(i) Principal sub-matrices A is Jm-EP and D is Jn-EP.
(ii) The Schur complements S is Jn-EP and S1 is Jm-EP.

(iii) The principal pivot transform M̂ of M by pivoting the block A is J-EP and rank M̂ = r.

(iv) The principal pivot transform M̂1o f M1 by pivoting the block D is J1EP where J1 = PJPT and M1 = PMPT

for some permutation matrix P and rank M̂1 = r.

Proof: (i) and (ii) are consequences of Lemma 3.2.
(iii):The principal pivot transform M̂ is J-EP, whenever M is J-EP has been proved in Theorem(3.1). Here
we prove the equality of ranks of M and its principal pivot M̂. The proof runs as follows:

rank(M̂) = rank(A†) + rank(D).(By Remark (3.1))
= rank(A) + rank(S)(By usin1 N(D) = N(S))
= rank(M).(By Remark (3.1)).

(iv): Let M1 =

[
D C
B A

]
and J1 =

[
Jn 0
0 Jm

]
. By the assumption N(D) ⊆ N(B) holds . Since D is Jn-EP

and M is J-EP, N(D∗) = N(D[∗]) ⊆ N(C[∗]) = N(C∗) holds. Hence M1 can be transformed into its principal

pivot transform by pivoting the block D and M̂1 =

[
D† −D†C

BD† S1

]
. where S1 = A − BD†C is the Schur

complement of D in M. We claim that M̂1 is J1-EP. By proceeding as in the proof of Theorem (3.1) for the
matrix J1M1, corresponding to(3.4)we get

(3.7) Ĵ1M1 = UnM̂1Um = UnM̂1 J1Un = UmJ1M̂1Um, where Um =

[
In 0
0 Jm

]
. and

[
Jn 0
0 Im

]
. The rest of the

proof runs as follows.

MisJ − EP ⇔ JM is EP (By Theorem (2.1)).
⇔ PJMPT is EP (By Lemma 3.1)
⇔ (PJPT)(PMPT) is EP.
⇔ J1M1 is EP.

Then, by Theorem 1 of [5], Ĵ1M1, is EP. Since Um in (3.7) is invertible, by Lemma 3 .1, J1M̂1 is EP. Then
M̂1 is J1-EP follows from Theorem(2.1) (ii). rank(M̂1) = rank(D†) + rank(M̂1/D†) = rank(D) + rank(A) =
rank(S) + rank(A) = rank(M), by using N(D) = N(S).Thus (iv) holds. Hence the Theorem holds.
Remark 3.2: In particular if M is non-singular with A and D are non-singular, then the conditions N(A) ⊆
N(C), N(D) ⊆ N(B) automatically hold and by Remark (3.1), S and S1 are non-singular, further rank(M̂) =
rank(A)+rank(D). Hence it follows that the principal pivot transform of a non-singular matrix is nonsingular.
However , we note that the non-singularity of M̂ need not imply that M is non-singular. This is illustrated
in the following Example.

Let us consider M =
[

A B
C D

]
with A =

[
1 0
0 1

]
, B = C∗ =

[
0 0
0 1

]
and D =

[
2 1
1 1

]
Here, S = D−CA†B =[

1 1
1 1

]
. rank(M) = rank(A) + rank(S) = 3. For J =

[
J2 0
0 J2

]
, where J2 =

[
1 0
0 −1

]
. On computation we

can see that the vector [oxxx]t ∈ N(MJ) and [oxxx]t < N(JM) = N(MJ)∗. Hence MJ is not EP and by Theorem
(2.1) M is not J-EP. Here A and D are non-singular. By Remark (3.1), rank(M̂) = rank(D)+ rank(A) = 2+2 = 4.
M̂ is non-singular. Hence, ĴM is EP being nonsingular and by Theorem (2.1) (iv) M̂ is J-EP.
Conclusion: We have discussed the range symmetry of the principal pivot transform of a block matrix M,
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in an indefinite inner product space with weight J. We have determined the relation between the principal
pivot transforms of M, JM,MJ and PTMP for some permutation matrix P.
Acknowledgement: The author wishes to express her sincere thanks to the anonymous referee for com-
ments and suggestions that have improved the manuscript.
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