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Abstract. In this paper we introduce a generalization of eigenvalues called determinant spectrum for an
element in the matrix algebra, CN×N. For ϵ > 0, the ϵ-determinant spectrum of A ∈ CN×N is denoted by dϵ(A)
and is defined as

dϵ(A) := {z ∈ C : |det(zI − A)| ≤ ϵ}.

The importance of determinant spectrum is reflected from the application of lemniscates. Determinant
spectrum is also useful in various other fields of mathematics, especially in the numerical solution of matrix
equations. Determinant spectrum shares some properties of eigenvalues, at the same time, it has many
properties that are different from the properties of eigenvalues. In this paper we study about the linear
map preserving determinant spectrum on CN×N. We prove that the linear map preserving determinant
spectrum on CN×N preserves eigenvalues and their multiplicity. We also prove an analogue of the Spectral
Mapping Theorem for determinant spectrum in the matrix algebra. The usual Spectral Mapping Theorem
is proved as a special case of this result. The results developed are illustrated with examples and pictures
using matlab.

1. Introduction

Let CN×N denote the algebra of all N ×N complex matrices and I denote the N ×N identity matrix. The
set of all eigenvalues (spectrum) of A ∈ CN×N is denoted by σ(A) and is defined as

σ(A) := {z ∈ C : zI − A is not invertible}.

The spectrum is generalized for various important and necessary reasons and there are several generaliza-
tions of spectrum. Some well known generalizations of spectrum are Ransford spectrum [14], pseudospec-
trum [17] and condition spectrum [9]. In [14], the author introduced Ransford spectrum as a generalization
of spectrum in a normed linear space.
Let A ∈ CN×N and s1(A) ≥ s2(A) ≥ · · · ≥ sN(A) be the singular values of A. For ϵ > 0, the ϵ-pseudospectrum
of A is denoted by Λϵ(A) and is defined as ([17])

Λϵ(A) := {z ∈ C : sN(zI − A) ≤ ϵ}.
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Pseudospectra provide an analytical and graphical alternative for investigating non-normal matrices and
operators, gives a quantitative estimate of departure from non-normality. It also give information about
stability of a linear system. For more information on various applications of pseudospectrum, one may
refer to [17].
For 0 < ϵ < 1, the ϵ-condition spectrum of A is denoted by σϵ(A) and is defined as ([9])

σϵ(A) :=
{

z ∈ C :
sN(zI − A)
s1(zI − A)

≤ ϵ
}
.

Condition spectrum is expected to be useful for solving operator equations. For more information on
condition spectrum, one may refer to [7, 9].
The eigenvalues and the generalized eigenvalues of a matrix are studied to get information on various
aspects of the matrix. It has been proved that the eigenvalues, pseudospectra and condition spectra are
failing to characterize norm related properties of the matrix, [16, 17]. Since that time the researchers have
been trying to determine the precise conditions which guarantees identical norm behavior of matrices, see
[15–17]. At the time of this writing we don’t have an answer to it and the problem appears to be still open.
From the definition of pseudospectrum and condition spectrum of an element A ∈ CN×N it follows that
we are only using the information about the smallest and largest singular values of the matrix zI − A to
define the same. This motivates us to introduce a generalized eigenvalue of A using all the singular values
of zI − A. This generalized eigenvalue is expected to give more information about A than eigenvalues,
pseudospectrum and condition spectrum of A.

Definition 1.1. Let A ∈ CN×N and ϵ > 0. The ϵ-determinant spectrum of A is denoted by dϵ(A) and is defined as

dϵ(A) := {z ∈ C : s1(zI − A) s2(zI − A) · · · sN(zI − A) ≤ ϵ}.

Since dϵ(A) use all the singular values of zI−A to get defined, it is expected to give more information about
A than eigenvalues, pseudospectrum and condition spectrum. Since we have

|det(A)| = s1(A) s2(A) · · · sN(A)

the following is an equivalent definition of determinant spectrum.

Definition 1.2. Let A ∈ CN×N and ϵ > 0. Then

dϵ(A) := {z ∈ C : |det(zI − A)| ≤ ϵ}.

Since the definition use idea of “determinant” the generalization of eigenvalues defined above is named
as determinant spectrum. The definition of determinant spectrum gives, for each A ∈ CN×N and ϵ > 0,
σ(A) ⊆ dϵ(A) and σ(A) = d0(A).

Let T : CN → CN be a linear map and x, y ∈ CN. For λ ∈ C, consider the matrix equation Tx − λx = y.
Then

• λ < σ(T) =⇒ the above linear system is solvable.

• λ < dϵ(T) =⇒ the linear system is solvable and have a stable solution for ϵ > 0.

In view of this, the ϵ-determinant spectrum is expected to be a useful tool in the numerical solution of
system of linear equations.

Let Pn denote the set of all monic polynomials of degree n. For ϵ > 0, the ϵ-lemniscate of p ∈ Pn is
denoted by Lϵ(p) and is defined as, [6],

Lϵ(p) = {z ∈ C : |p(z)| ≤ ϵ}.

Thus for ϵ > 0 the ϵ-determinant spectrum of A ∈ CN×N is the ϵ-lemniscate of the characteristic polynomial
of A. The importance of determinant spectrum is reflected through the application of lemniscate on various
fields, [6, 18, 19]. For ϵ > 0, the ϵ-pseudozero set of p ∈ Pn is denoted by Zϵ(p) and is defined as, [6],

Zϵ(p) = {z ∈ C : ∃ q ∈ Pn, q(z) = 0 with ∥p − q∥ ≤ ϵ}.
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The following is an equivalent definition of pseudospectra of an element A ∈ CN×N. For ϵ > 0,

Λϵ(A) = {z ∈ C : zI − A is not invertible or ∥(zI − A)−1∥ ≥ ϵ−1}.

In [6], the authors proved the relation connecting Lϵ(p),Zϵ(p) and Λϵ(Ap); where Ap denote the companion
matrix associated with the monic polynomial p.

Linear preserver problems (LPP) is an active research area in matrix and operator theory. A brief
discussion on LPP can be found in [10]. The most popular among these is the problem of characterizing
spectrum and spectrum related linear preserving maps. This has been studied by many authors [1, 2, 5,
7, 10, 13]. In [7], the authors characterized the linear map preserving pseudospectrum between Banach
algebras. It is shown that the linear map preserving pseudospectrum also preserves spectrum. [1] and [2]
study about the preservers of pseudospectrum on CN×N and BL(H); for a Hilbert space H. In this paper we
study the linear map preserving determinant spectrum onCN×N. It turns out that the linear map preserving
determinant spectrum also preserves spectrum. This result leads to many interesting corollaries.

The Spectral Mapping Theorem is a fundamental result in functional analysis of great importance. Let
A be a complex unital Banach algebra and a ∈ A, the Spectral Mapping Theorem says that if f is an analytic
function on an open set containing σ(a), then

f (σ(a)) = σ( f (a)).

It is natural to ask whether there are any results similar to the Spectral Mapping Theorem for the generalized
spectrum. An analogue of the Spectral Mapping Theorem for pseudospectrum is given in [11, 12]. An
analogue of the Spectral Mapping Theorem for condition spectrum is done in [8]. In this paper we give an
analogue of the Spectral Mapping Theorem for determinant spectrum.

The following is the outline of the paper. In section 2, we develop some basic properties of the
determinant spectrum and justifies the connection between determinant spectrum and algebraic multiplicity
of the eigenvalues (Theorem 2.3, Theorem 2.4). In Section 3, we prove various results on linear map
preserving determinant spectrum. We prove that any linear map on CN×N which preserves ϵ-determinant
spectrum for some ϵ > 0 also preserves eigenvalues and their algebraic multiplicity (Theorem 3.5). We give
an analogue of the Gleason-Kahane-Zelazko theorem for determinant spectrum (Theorem 3.9). In section
4, the Spectral Mapping Theorem for determinant spectrum is stated and proved in the form of two set
inclusions (Theorem 4.2). It is shown that the usual Spectral Mapping Theorem is a special cases of this
result (Remark 4.4). It is also shown that the set inclusions reduce to an equality if the mapping is an affine
function (Remark refth4). The results proved are illustrated with examples and pictures in section 5. The
computations are done using matlab.

2. Basic Properties

This section gives some basic properties of the determinant spectrum. For ϵ > 0, A ∈ CN×N is said to be
invertible with respect to the ϵ-determinant spectrum, if 0 < dϵ(A), that is, A is invertible and |det(A)| > ϵ.
It is easily seen that

Ω := {A ∈ CN×N : |det(A)| > ϵ}

is not a Ransford set [14]. Hence the determinant spectrum is not a Ransford spectrum. The following
theorem gives some properties of the determinant spectrum that follow in a straightforward manner from
Definition 1.2.

Theorem 2.1. Let A ∈ CN×N and ϵ > 0. Then the following holds.

1. dϵ(A) is a nonempty compact subset of C.
2. dϵ(αI) = {z ∈ C : |z − α| ≤ ϵ1/N} for all α ∈ C.
3. If 0 < ϵ1 ≤ ϵ2 then dϵ1 (A) ⊆ dϵ2 (A).
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4. σ(A) ⊆ dϵ(A) for all ϵ > 0 and σ(A) =
∩

0<ϵ<1
dϵ(A).

5. The map A 7→ dϵ(A) is an upper semicontinuous function from CN×N to compact subsets of C.
6. Let A = SBS−1 for some B,S ∈ CN×N: then dϵ(A) = dϵ(B).
7. dϵ(αI + βA) = α + β d ϵ

|β|N
(A) for all α, β ∈ C.

Proof. Since

z 7→ |det(zI − A)|

is a continuous map fromC to [0,∞), dϵ(A) is a compact set in the complex plane containing the eigenvalues of
A. (2), (3), (4) and (5) follows from the definition of dϵ(A). Since |det(zI−A)| = |det(zI−SBS−1)| = |det(zI−B)|,
(6) follows. Finally we have

dϵ(αI + βA) = {z ∈ C : |det(zI − αI − βA)| ≤ ϵ}

=

{
z ∈ C : |β|N

∣∣∣∣∣∣det
(

zI − αI
β

− A
)∣∣∣∣∣∣ ≤ ϵ

}
=

{
z ∈ C :

∣∣∣∣∣∣det
(

zI − αI
β

− A
)∣∣∣∣∣∣ ≤ ϵ

|β|N

}
.

Hence

z ∈ dϵ(αI + βA)⇐⇒ z − α
β
∈ d ϵ

|β|N
(A)⇐⇒ z ∈ α + β d ϵ

|β|N
(A).

This proves (7).

Example 3.1 gives matrices having same spectrum but different ϵ-determinant spectrum for all ϵ > 0. It
is also true that determinant spectrum of similar matrices coincide, Theorem 2.1. The following example
shows that the converse of the result is not true.

Example 2.2. Let A = I2 and B =
[
1 2
0 1

]
. Then A and B are not similar and for ϵ > 0

dϵ(A) = dϵ(B) = {z ∈ C : |z − 1| ≤
√
ϵ}.

The following theorems justifies the connection between determinant spectrum and algebraic multiplicity
of eigenvalues. We show that the algebraic multiplicity of an eigenvalue of a matrix can be identified from
the determinant spectrum of the matrix.

Theorem 2.3. Let A ∈ CN×N, ϵ > 0 and λ1, · · · , λk be the distinct eigenvalues of A with algebraic multiplicity
r1, · · · , rk respectively. Then

dϵ(A) = {z ∈ C : |z − λ1|r1 · · · |z − λk|rk ≤ ϵ}.

Proof. By Schur decomposition there exist an upper triangular matrix U ∈ CN×N with diagonal entries as
eigenvalues of A and a unitary matrix Q such that A = QUQ−1. From Theorem 2.1,

dϵ(A) = dϵ(U) = {z ∈ C : |det(zI −U)| ≤ ϵ}
= {z ∈ C : |z − λ1|r1 · · · |z − λk|rk ≤ ϵ}.

Theorem 2.4. Let A,B ∈ CN×N and ϵ > 0. Suppose dϵ(A) = dϵ(B). Then the characteristic polynomial of A and B
are same.
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Proof. Let p(A), p(B) be the characteristic polynomials of A,B respectively. Then p(A), p(B) are of same degree
equal to N. Since dϵ(A) = dϵ(B) we have

{z ∈ C : |p(A)| ≤ ϵ} = {z ∈ C : |p(B)| ≤ ϵ}.

This is true if and only if p(A) = p(B), [3, 4].

3. Linear maps preserving determinant spectrum

In this section we discuss about the linear map on CN×N preserving determinant spectrum. We begin
by giving sufficient conditions for a map on CN×N to preserve ϵ-determinant spectrum for all ϵ > 0. We
prove that every ϵ-determinant spectrum preserving map on CN×N for some ϵ > 0 preserves eigenvalues
and their algebraic multiplicity. This result leads to many interesting corollaries. This section also contain
an analogue of the Gleason-Kahane-Zelazko theorem for determinant spectrum. The following example
shows that; for matrices, the eigenvalues coincide does not imply that the determinant spectrum also
coincides.

Example 3.1. Let A =

1 0 0
0 1 0
0 0 2

 and B =

1 0 0
0 2 0
0 0 2

. Then σ(A) = σ(B) = {1, 2} and for all ϵ > 0,

dϵ(A) = {z ∈ C : |z − 1|2|z − 2| ≤ ϵ} , dϵ(B) = {z ∈ C : |z − 1||z − 2|2 ≤ ϵ}.

Theorem 3.2. Let A,B ∈ CN×N preserves eigenvalues and their algebraic multiplicity. Then A,B have same ϵ-
determinant spectrum for all ϵ > 0.

Proof. Since A,B preserves eigenvalues and their algebraic multiplicity, the characteristic polynomial of A
and B are same. The result follows from the definition of determinant spectrum.

Theorem 3.3. Suppose Φ : CN×N → CN×N be linear, unital and determinant preserving map. Then Φ preserves
ϵ-determinant spectrum for all ϵ > 0.

Proof. Let A ∈ CN×N and ϵ > 0. If λ ∈ dϵ(A), then

|det(λI − A)| ≤ ϵ.

Since Φ preserves determinant

|det[Φ(λI − A)]| ≤ ϵ.

Since Φ is linear and unital

|det(λI −Φ(A))| ≤ ϵ.

Hence λ ∈ dϵ(Φ(A)) and dϵ(A) ⊆ dϵ(Φ(A)). By symmetry we can show that dϵ(Φ(A)) ⊆ dϵ(A).

Theorem 3.4. Let Φ : CN×N → CN×N be a spectrum preserving linear onto map. Then Φ preserves ϵ-determinant
spectrum for all ϵ > 0.

Proof. Since Φ preserves spectrum, Φ(A) = TAT−1 or Φ(A) = TAtT−1 for some T ∈ CN×N [13]. In both the
cases Φ is linear, unital and determinant preserving. Hence the result follows from Theorem 3.3.

The following theorem shows that the converse of this result is also true.

Theorem 3.5. Let Φ : CN×N → CN×N be an ϵ-determinant spectrum preserving linear onto map for some ϵ > 0.
Then Φ preserves the eigenvalues.
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Proof. We have

dϵ(Φ(A)) = dϵ(A) for all A ∈ CN×N.

Let λ < σ(A), choose t > 0 such that

tN >
ϵ

|det(λI − A)| .

Then |det(tλI − tA)| > ϵ. Thus

tλ < dϵ(tA) = dϵ(Φ(tA)) ⊇ σ((Φ(tA))) = tσ(Φ(A))

Thus λ < σ(Φ(A)) and σ(Φ(A)) ⊆ σ(A). In a similar way we can prove that σ(A) ⊆ σ(Φ(A)). Hence
σ(Φ(A)) = σ(A).

Corollary 3.6. Let Φ : CN×N → CN×N be an ϵ-determinant spectrum preserving linear onto map for some ϵ > 0.
Then Φ(A) = TAT−1 or Φ(A) = TAtT−1.

Proof. Since Φ preserves ϵ-determinant spectrum for some ϵ > 0, Φ preserves eigenvalues (Theorem 3.5).
The result follows from [13].

Theorem 3.7. Let Φ : CN×N → CN×N be an ϵ-determinant spectrum preserving linear map for some ϵ > 0. Then Φ
preserves the determinant of matrices.

Proof. Suppose there exist A ∈ CN×N such that det(Φ(A)) , det(A). Assume |det(A)| < |det(Φ(A))|. Choose
t > 0 such that

|det(A)|
ϵ

<
1
tN <

|det(Φ(A))|
ϵ

.

Then |det(tA)| < ϵ and |det(Φ(tA))| > ϵ, i.e, 0 ∈ dϵ(tA) and 0 < dϵ(Φ(tA)). This contradicts the fact that Φ
preserves ϵ-determinant spectrum.

The following example shows that the converse of the result is not true. i.e, there exist a linear map
preserving determinant which may not preserve ϵ-determinant spectrum for all ϵ > 0.

Example 3.8. Let T =
[
2 0
0 1

2

]
and define Φ : C2×2 → C2×2 such that Φ(A) = TA. Then Φ is linear, bijective

and determinant preserving map. Let A =
[
a1 a3
0 a2

]
. Then Φ(A) = TA =

[
2a1

a3
2

0 a2
2

]
. Thus σ(A) = {a1, a2} and

σ(Φ(A)) = {2a1,
a2
2 }. Hence Φ is not preserving spectrum and so the ϵ-determinant spectrum for all ϵ > 0.

The following is an analogue to the classical Gleason-Kahane-Zelazko theorem for determinant spec-
trum.

Theorem 3.9. Let ϕ : CN×N → C be linear such that ϕ(I) = 1 and ϕ(A) ∈ dϵ(A) for all A ∈ CN×N and for some
ϵ > 0. Then ϕ is multiplicative.

Proof. We claim that ϕ(A) ∈ σ(A) for all A ∈ CN×N. Let ϕ(A) = λ and suppose λ < σ(A). Choose t > 0 such
that

tN >
ϵ

|det(λI − A)| .

Then |det(tλI − tA)| > ϵ. Thus tλ = tϕ(A) = ϕ(tA) < dϵ(tA). This gives a contradiction. Now the conclusion
follows from the Gleason-Kahane-Zelazko theorem, [20].

Theorem 3.10. Let Φ : CN×N → CN×N be a linear map. Then the following are equivalent
1. Φ preserves ϵ- determinant spectrum for some ϵ > 0.
2. Φ preserves the eigenvalues and their algebraic multiplicity.
3. Φ preserves the determinant of matrices.
4. Φ preserves ϵ- determinant spectrum for all ϵ > 0.

Proof. (1)=⇒(2), by Theorem 3.5. (2)=⇒(3) by [13]. (3) =⇒ (4), by Theorem 3.3, (4)=⇒(1) is trivial.
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4. Determinant Spectral Mapping Theorem

In this section we give an analogous result on Spectral Mapping Theorem for determinant spectrum.
The usual Spectral Mapping Theorem is proved as a special case of this result. We also illustrate the result
developed with the help of some examples. We begin by an example shows that the Spectral Mapping
Theorem fails for determinant spectrum.

Example 4.1. Let A =
[
1 0
0 1

]
and f (z) = z2. We have f (A) =

[
1 0
0 1

]
and

dϵ( f (A)) = {z : |z − 1| ≤ ϵ1/2},
f (dϵ(A)) = {z2 : |z − 1| ≤ ϵ1/2}.

Thus f (dϵ(A)) , dϵ( f (A)) for all ϵ , 1.

The following is the determinant spectral mapping theorem for complex analytic functions. It is sharp in
the sense that the pair of functions defining the sizes of the determinant spectra are optimal. Actually, the
theorem is an easy consequence of the definition of these functions.

Theorem 4.2. Let A ∈ CN×N and f be an analytic function defined on Ω, an open set containing σ(A). For ϵ > 0,
define

ϕ(ϵ) = max
z∈dϵ(A)

|det[ f (z)I − f (A)]|.

Then ϕ(ϵ) is well defined, lim
ϵ→0

ϕ(ϵ) = 0 and f (dϵ(A)) ⊆ dϕ(ϵ)( f (A)). Further suppose there exists ϵ′ with dϵ′ ( f (A)) ⊆
f (Ω). For 0 < ϵ < ϵ′ define

ψ(ϵ) = max
µ∈ f−1(dϵ( f (A)))∩Ω

|det(µI − A)|.

Then ψ(ϵ) is well defined, lim
ϵ→0

ψ(ϵ) = 0 and dϵ( f (A)) ⊆ f (dψ(ϵ)(A)).

Proof. First we show that ϕ(ϵ) is well defined. Define 1 : C→ R by

1(z) = |det[ f (z)I − f (A)]|.
Then 1 is continuous. Next for ϵ > 0, dϵ(A) is a compact subset of C and ϕ(ϵ) = max{1(z) : z ∈ dϵ(A)}. Hence
ϕ(ϵ) is well defined, that is, finite. It is easy to observe that ϕ is a monotonically non-decreasing function
and ϕ(ϵ) goes to zero as ϵ goes to zero. Now let z ∈ dϵ(A). Then 1(z) ≤ ϕ(ϵ). Hence

|det( f (z)I − f (A))| = 1(z) ≤ ϕ(ϵ).

This means that f (z) ∈ dϕ(ϵ)( f (A)). Thus

f (dϵ(A)) ⊆ dϕ(ϵ)( f (A)).

Next assume that there exists ϵ′ such that dϵ′ ( f (A)) ⊆ f (Ω). We show that for each ϵ with 0 < ϵ ≤ ϵ′, ψ(ϵ) is
well defined. Define h : C→ R by,

h(µ) = |det(µI − A)|.
Then h is continuous and hence ψ(ϵ) is well defined. It is also observed that ψ is a monotonically non-
decreasing function and ψ(ϵ) goes to zero as ϵ goes to zero. Let z ∈ dϵ( f (A)) ⊆ dϵ′( f (A)) ⊆ f (Ω). Consider
µ ∈ Ω such that z = f (µ). Then µ ∈ f−1(dϵ( f (A))), hence h(µ) ≤ ψ(ϵ), that is

|det(µI − A)| ≤ h(µ) ≤ ψ(ϵ).

Thus µ ∈ dψ(ϵ)(A). Hence z = f (µ) ∈ f (dψ(ϵ)(A)). This proves

dϵ( f (A)) ⊆ f (dψ(ϵ)(A)).
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Remark 4.3. Combining the two inclusions, we get

f (dϵ(A)) ⊆ dϕ(ϵ)( f (A)) ⊆ f (dψ(ϕ(ϵ))(A)),

and

dϵ( f (A)) ⊆ f (dψ(ϵ)(A)) ⊆ dϕ(ψ(ϵ))( f (A)).

Remark 4.4. Since for every A ∈ CN×N, lim
ϵ→0

ϕ(ϵ) = 0 = lim
ϵ→0

ψ(ϵ), we have

σ( f (A)) = f (σ(A)).

Thus the usual Spectral Mapping Theorem can be deduced from Theorem 4.2. It is to be noted that the determinant
spectral mapping theorem uses the usual Spectral Mapping Theorem.

Remark 4.5. Let A ∈ CN×N, ϵ > 0 and f (z) = α + βz where α, β are complex numbers with β , 0. Then

ϕ(ϵ) = max
z∈dϵ(A)

|det[(α + βz)I − αI − βA]|

= max
z∈dϵ(A)

|det[β(zI − A)]|

= |β|Nϵ.

We also have

ψ(ϵ) = max
µ∈ d ϵ

|β|N
(A)
|det(µI − A)|

=
ϵ

|β|N

Thus ϕ(ψ(ϵ)) = ϵ and ψ(ϕ(ϵ)) = ϵ. Hence f (dϵ(A)) = dϵ( f (A)). This leads to the following question.

Question 4.6. Let f be a non constant analytic function defined on a nonempty open setΩ containing σ(A). Suppose
f (σϵ(A)) = σϕ(ϵ)( f (A)) for all A ∈ CN×N. Then does it follow that ϕ(ϵ) = ϵ and f (z) = α + βz.

In the following we consider a 2 × 2 matrix and give estimates for the functions ϕ and ψ in Theorem 4.2.

Example 4.7. Let A =
[
1 a
0 −1

]
where a ∈ C and f (z) = z2. The matrix is non-normal and everything can be worked

out analytically. The eigenvalues of A are {1,−1}. For ϵ > 0,

ϕ(ϵ) = max
z∈dϵ(A)

|det(z2I − A2)|

= max
|z2−1|≤ϵ

|z2 − 1|2 = ϵ2.

ψ(ϵ) = max
z∈ f−1(dϵ( f (A))

|det(zI − A)|

= max
|z2−1|≤

√
ϵ
|z2 − 1| =

√
ϵ.

Thus we have

dϵ(A)2 ⊆ dϵ2 (A2).

dϵ(A2) ⊆ d√ϵ(A)2.
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In the following we consider a 5×5 Toeplitz matrix and give estimates for the functions ϕ andψ in Theorem
4.2.

Example 4.8. Let us considered the following 5 × 5 Toeplitz matrix.

T =


1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 1


5×5

.

(1) Let f (z) = z2. Then f (T) = T2 is also a Toeplitz matrix and

T2 =


1 2 1 0 0
0 1 2 1 0
0 0 1 2 1
0 0 0 1 2
0 0 0 0 1


5×5

.

For ϵ > 0

dϵ(T) = {z ∈ C : |z − 1| ≤ ϵ1/5}.

From Theorem 4.2,

ϕ(ϵ) = max
z∈D(1,ϵ1/5)

|det(z2I − T2)|.

= max
z∈D(1,ϵ1/5)

|z2 − 1|5.

= ϵ(2 + ϵ1/5)5.

ψ(ϵ) = max
µ2∈D(1,ϵ1/5)

|det(µI − T)|.

= max
µ2∈D(1,ϵ1/5)

|µ − 1|5.

= [(1 + ϵ1/5)1/2 − 1]5.

For ϵ > 0, we have

dϵ(T)2 ⊆ dϵ(2+ϵ1/5)5 (T2).

dϵ(T2) ⊆ d[(1+ϵ1/5)1/4−1]5 (T)2.

(2) Let f (z) = ez. Then f̃ (T) = exp(T) is also a Toeplitz matrix and

exp(T) =


e e 1.35914 0.45305 0.11326
0 e e 1.35914 0.45305
0 0 e e 1.35914
0 0 0 e e
0 0 0 0 e


5×5

.

For ϵ > 0

dϵ(T) = {z ∈ C : |z − 1| ≤ ϵ1/5}.
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From Theorem 4.2,

ϕ(ϵ) = max
z∈D(1,ϵ1/5)

|det(ezI − exp(T))|.

= max
z∈D(1,ϵ1/5)

|ez − e|5.

= e5(eϵ
1
5 − 1)5.

ψ(ϵ) = max
eµ∈D(e,ϵ1/5)

|det(µI − T)|.

= max
eµ∈D(e,ϵ1/5)

|µ − 1|5.

= [ln(e + ϵ1/5) − 1]5.

For ϵ > 0, we have

dϵ(T)2 ⊆ d
e5(eϵ

1
5 −1)5

(T2).

dϵ(T2) ⊆ d[ln(e+ϵ1/5)−1]5 (T)2.

5. Numerical results

In this section we report the results of some numerical experiments done using matlab. The determinant
spectrum of a matrix A can be computed as follows. Since for each ϵ > 0, dϵ(A) is a compact subset of C,
we can consider certain number of uniformly distributed points from a bounded rectangular disc enclosing
dϵ(A), evaluate |det(zI−A)| in the disc and include and save those points in the disc satisfying |det(zI−A)| ≤ ϵ.
This gives dϵ(A). Since we aim at illustrating the results developed in the previous sections we do not make
any claim about the efficiency of the algorithm used for this. In the following we consider the 10× 10 Grcar
matrix and find the ϵ-determinant spectrum for different values of ϵ.

Example 5.1. Let A =



1 1 1 1
−1 1 1 1 1

. . .
. . .

. . .
. . .

. . .
−1 1 1 1 1

−1 1 1 1
−1 1 1

−1 1


10×10

.

In the following, Figure 1 represents d1(A), Figure 2 represents d2(A), Figure 3 represents d3(A) and Figure 4
represents d4(A).

Next we consider a 3 × 3 upper triangular matrix and give approximate estimates for ϕ(ϵ) and ψ(ϵ) in
Theorem 4.2. To calculate approximate value of ϕ(ϵ) in Theorem 4.2 we choose a certain number of
uniformly distributed points in dϵ(A), compute |det[ f (z)I − f (A)]| at each of these points and take the
maximum of these values as an approximation of ϕ(ϵ). Similarly ψ(ϵ) is also computed.

Example 5.2. Let A =

1 a b
0 1 c
0 0 2

 where a, b, c ∈ C, f (z) = z3 and ϵ > 0. We have

dϵ(A) = {z ∈ C : |z − 1|2|z − 2| ≤ ϵ}.
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From Theorem 4.2,

ϕ(ϵ) = max
|z−1|2 |z−2|≤ϵ

|det(z3I − A3)|.

= max
|z−1|2 |z−2|≤ϵ

|z3 − 1|2 |z3 − 8|.

= ϵ max
|z−1|2 |z−2|≤ϵ

|z2 + z + 1|2 |z2 + 2z + 4|.

We also have

ψ(ϵ) = max
µ3∈dϵ(A3)

|det(µI − A)|.

= max
|µ3−1|2 |µ3−8|≤ϵ

|det(µI − A)|.

= max
|µ3−1|2 |µ3−8|≤ϵ

|µ − 1|2|µ − 2|.

The following table gives ϕ(ϵ) and ψ(ϵ) for various values of ϵ.

ϵ ϕ(ϵ) ψ(ϵ)
0.001 0.5886 1.5296 × e−5

0.005 2.9656 8.0641 × e−5

0.01 5.9886 1.6225 × e−4

0.05 32.079 8.5186 × e−5

0.1 69.0789 0.0018
0.5 509.744 0.0102
1 1367.3 0.023
5 16992 0.2446
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