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On upper and lower generalized Drazin invertible operators
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aFaculty of Sciences and Mathematics, Višegradska 33, PO Box 224, 18000 Niš, Serbia

Abstract. Upper and lower generalized Drazin invertible operators were introduced in [5]. We will
characterize these operators and their properties will be studied. In addition, we make connection between
the above mentioned operators and operators founded in Fredholm theory. In particular, a bounded
operator is Riesz and generalized Drazin invertible if and only if it is Riesz and upper (resp. lower)
generalized Drazin invertible.

1. Introduction

Drazin and generalized Drazin invertible operators have been investigated by many authors; see for ex-
ample [3, 4, 6, 7, 12–15]. Recently, upper and lower generalized Drazin invertible operators were introduced
[5, Definition 3.1, Definition 3.3], though under different name: left and right generalized Drazin invertible
operators. We find that the term upper (lower) generalized Drazin invertible operators is more appropriate
because of the connection of these operators with upper (lower) semi-Browder operators. Namely, accord-
ing to [11, Theorem 20.10] an operator T is upper (resp. lower) semi-Browder if and only if there exists a
decomposition X = X1 ⊕ X2 such that dimX1 < ∞, TXi ⊂ Xi (i=1,2), Ti = TXi , (i=1,2), T = T1 ⊕ T2, T1 is
nilpotent and T2 is bounded below (resp. surjective), while from the proof of Proposition 3.2 (resp. 3.4)
in [5] it is obvious that an operator T is upper (resp. lower) generalized Drazin invertible if and only if
T = T1 ⊕T2, where T1 is quasinilpotent and T2 is bounded below (resp. surjective). One more reason is that
these operators are characterized via approximate point (surjective) spectrum [5, Theorem 3.8, Theorem
3.10]. Actually, if an operator T is upper (resp. lower) generalized Drazin invertible, then 0 < acc σap(T)
(resp. 0 < accσsu(T)), where σap(T) and σsu(T) denote approximate point and surjective spectrum of T,
respectively. The main objective of this article is to continue studying these operators. Section 2 presents
some definitions and preliminary facts. Our results are contained in Section 3. Firstly, we give a new
characterization of upper (resp. lower) generalized Drazin invertible operators in a sense that T ∈ B(X)
is upper (resp. lower) generalized Drazin invertible if and only if there exists a projection P ∈ B(X) such
that TP = PT, T + P is bounded below (resp. surjective) and TP is quasinilpotent. Further, we show that
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a bounded operator is upper semi-Browder if and only if it is upper generalized Drazin invertible and
has finite-dimensional quasinilpotent part. Similarly, an operator is lower semi-Browder if and only if
it is lower generalized Drazin invertible and its analytical core has finite codimension. We also connect
upper (resp. lower) generalized Drazin invertible operators with Riesz operators. In particular, we show
that a bounded operator is Riesz and generalized Drazin invertible if and only if it is Riesz and upper
(resp. lower) generalized Drazin invertible. What is more, Hilbert space case is also considered. Namely,
if T ∈ B(H),H Hilbert space, is self-adjoint and upper generalized Drazin invertible then it is generalized
Drazin invertible.

2. Preliminaries

Let X be an infinite dimensional Banach space and B(X) the Banach algebra of all bounded linear
operators acting on X. Given T ∈ B(X), we denote by N(T),R(T) and σ(T) the kernel, the range and the
spectrum of T, respectively. Let N (N0) denote the set of all positive (non-negative) integers, and let C
denote the set of all complex numbers. Recall that T is said to be nilpotent (resp. quasinilpotent) when Tn = 0
for some n ∈N (resp. σ(T) = {0}). An operator T ∈ B(X) is bounded below if there exists some c > 0 such that
c∥x∥ ≤ ∥Tx∥ for every x ∈ X. It is known that T is bounded below if and only if it is injective with closed
range. If R(T) is closed andN(T) is finite-dimensional, then T ∈ B(X) is said to be upper semi-Fredholm. An
operator T ∈ B(X) is lower semi-Fredholm if X/R(T) is finite-dimensional. The set of upper semi-Fredholm
operators (resp. lower semi-Fredholm operators) is denoted by Φ+(X) (resp. Φ−(X)). It is also well known
that ifN(Tn) = N(Tn+1) for some n ∈N0, thenN(Tk) = N(Tn) for k ≥ n. In this case, the ascent of T, denoted
by asc(T), is the smallest n ∈ N0 such that N(Tn) = N(Tn+1). If such n does not exist, then asc(T) = ∞.
Similarly, if R(Tn+1) = R(Tn) for n ∈ N0, then R(Tk) = R(Tn) for k ≥ n. In this case, the descent of T, denoted
by dsc(T), is the smallest n ∈ N0 such that R(Tn) = R(Tn+1). If such an n does not exist, then dsc(T) = ∞.
An operator T ∈ B(X) is upper semi-Browder if T is upper semi-Fredholm and asc(T) < ∞. If T ∈ B(X) is
lower semi-Fredholm and dsc(T) < ∞, then T is lower semi-Browder. Let B+(X) (resp. B−(X)) denote the set
of all upper (resp. lower) semi-Browder operators. As usual, K (X) is the set of all compact operators on X.
Consider C(X) the Calkin algebra over X, i.e. the quotient algebra C(X) = B(X)/K (X). Recall that C(X) is
itself a Banach algebra with the quotient norm. Let π : B(X)→ C(X) denote the quotient map. An operator
T ∈ B(X) is Riesz if its coset π(T) is quasinilpotent in C(X). An operator T ∈ B(X) is semi-regular if R(T) is
closed andN(T) ⊂ R(Tn), n ∈ N0. It is obvious that bounded below and surjective operators belong to the
class of semi-regular operators. If K ⊂ C, then acc K is the set of limit points of K and iso K = K \ acc K is the
set of isolated points of K.

The quasinilpotent part H0(T) of an operator T ∈ B(X) is defined by

H0(T) = {x ∈ X : lim
n→+∞

∥Tnx∥1/n = 0}.

The analytical core of T, denoted by K(T), is the set of all x ∈ X for which there exist c > 0 and a sequence
(xn)n in X satisfying

Tx1 = x, Txn+1 = xn for all n ∈N, ∥xn∥ ≤ cn∥x∥ for all n ∈N.

The basic properties of H0(T) and K(T) are summarized in the following two lemmas; see [1, 9, 10].

Lemma 2.1. Let T ∈ B(X). The following statements hold.
(i) H0(T) is a (not necessarily closed) subspace of X;
(ii) for each j ≥ 0,N(T j) ⊂ H0(T);
(iii) x ∈ H0(T) if and only if Tx ∈ H0(T);
(iv) H0(T) = X if and only if T is quasinilpotent;
(v) for λ , 0, (T − λI)(H0(T)) = H0(T);
(vi) if T is bounded below, then H0(T) = {0}.
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Lemma 2.2. Let T ∈ B(X). The following statements hold.
(i) K(T) is a (not necessarily closed) subspace of X;
(ii) T(K(T)) = K(T);
(iii) if X0 is a closed subspace of X and T(X0) = X0, then X0 ⊂ K(T);
(iv) if T is quasinilpotent, then K(T) = {0};
(v) if T is surjective, then K(T) = X.

If M is a subspace of X such that T(M) ⊂ M, T ∈ B(X), it is said that M is T-invariant. We define
TM : M → M as TMx = Tx, x ∈ M. Moreover, if M is closed it is clear that M is itself a Banach space
and TM ∈ B(M). If M and N are two closed T-invariant subspaces of X such that X = M ⊕ N (it means
X = M + N and M ∩ N = {0}), we say that T is completely reduced by the pair (M,N) and it is denoted by
(M,N) ∈ Red(T). We haveN(T) = N(TM) ⊕N(TN) and R(T) = R(TM) ⊕ R(TN).

Proposition 2.3. Let T ∈ B(X) and suppose (M,N) ∈ Red(T). Then, the following statements hold.
(i) T is surjective if and only if TM and TN are surjective;
(ii) T is bounded below if and only if TM and TN are bounded below.

Let H be a Hilbert space equipped with the scalar product ⟨ , ⟩. Two elements x, y ∈ H are orthogonal
if ⟨x, y⟩ = 0. If E ⊂ H , then E⊥ denotes the set of all y ∈ H that satisfy ⟨y, x⟩ = 0 for every x ∈ E. It is well
known that E⊥ is closed subspace ofH . In addition, if E is a closed subspace ofH , we also have E⊕E⊥ = H .
For T ∈ B(H) there is a unique operator T∗ ∈ B(H) such that

⟨Tx, y⟩ = ⟨x,T∗y⟩ for every x, y ∈ H .

The operator T∗ is called Hilbert-adjoint operator of T. If T = T∗, we say that T is self-adjoint operator.
An operator A ∈ B(X) is said to be Drazin invertible, if there exists B ∈ B(X) and some k ∈N such that

AB = BA, BAB = B, AkBA = Ak.

For details see [4, 6, 15]. This concept was generalized by Koliha [7]. An operator A ∈ B(X) is said to be
generalized Drazin invertible, if there exists B ∈ B(X) such that

AB = BA, BAB = B, ABA − A is quasinilpotent.

Necessary and sufficient for T ∈ B(X) to be generalized Drazin invertible is that 0 < accσ(T), equivalently
K(T) and H0(T) are closed and X = K(T) ⊕H0(T); see [7, Theorem 4.2], [9, Théorème 1.6] and [16, Theorem
4]. Also, it is well known that T ∈ B(X) is generalized Drazin invertible if and only if there exists a pair
(M,N) ∈ Red(T) such that TM is invertible and TN is quasinilpotent.

An operator T ∈ B(X) is said to admit a generalized Kato decomposition, abbreviated as GKD, if there exists
a pair (M,N) ∈ Red(T) such that TM is semi-regular and TN is quasinilpotent. Many classes of operators
satisfy GKD property. Some examples are semi-regular operators, upper semi-Fredholm operators, lower
semi-Fredholm operators, generalized Drazin invertible operators.

Upper and lower generalized Drazin invertible operators were defined in [5].

Definition 2.4. An operator T ∈ B(X) is said to be upper generalized Drazin invertible if H0(T) is closed and
complemented with a subspace M ⊂ X such that T(M) ⊂M and T(M) is closed.

Definition 2.5. An operator T ∈ B(X) is said to be lower generalized Drazin invertible if K(T) is closed and
complemented with a subspace N ⊂ X such that T(N) ⊂ N and N ⊂ H0(T).
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3. Results

We start with a characterization of upper (resp. lower) generalized Drazin invertible operators.

Theorem 3.1. An operator T ∈ B(X) is upper generalized Drazin invertible if and only if there exists a projection
P ∈ B(X) such that

TP = PT, T + P is bounded below, TP is quasinilpotent. (1)

If T is upper generalized Drazin invertible, then every projection P from (1) has uniquely determined range and
R(P) = H0(T).

Proof. Let T ∈ B(X) be upper generalized Drazin invertible operator. Then H0(T) is closed and there exists
a closed T-invariant subspace M of X such that M ⊕ H0(T) = X and T(M) is closed. Using Lemma 2.1(ii)
we find N(TM) = M ∩ N(T) ⊂ M ∩ H0(T) = {0}, so TM is injective and thus T1 = TM is bounded below.
It is evident that T2 = TH0(T) is quasinilpotent. Let P ∈ B(X) be a projection such that R(P) = H0(T) and
N(P) = M. From T(H0(T)) ⊂ H0(T) and T(M) ⊂ M we conclude TP = PT. Consider arbitrary element
x = x1 + x2 ∈ X, x1 ∈M, x2 ∈ H0(T) and n ∈N. Then

∥(TP)nx∥ 1
n = ∥TnPnx∥ 1

n = ∥TnPx∥ 1
n = ∥Tnx2∥

1
n → 0 (n→∞).

We see that H0(TP) = X and thus TP is quasinilpotent. It is not difficult to see that (T + P)M = T1 and
(T + P)H0(T) = T2 + I2, where I2 is identity on H0(T). Thus (T + P)M is bounded below and (T + P)H0(T) is
invertible. Applying Proposition 2.3(ii) we obtain that T + P is bounded below.

Conversely, suppose that there exists a projection P ∈ B(X) such that

TP = PT, T + P is bounded below, TP is quasinilpotent.

Then X = N(P) ⊕ R(P). Also, N(P) and R(P) are T-invariant subspaces because T and P commute. The
operator (T + P)N(P) = TN(P) is bounded below by Proposition 2.3(ii). For x ∈ R(P) we have

∥Tn
R(P)x∥

1
n = ∥TnPnx∥ 1

n = ∥(TP)nx∥ 1
n → 0 (n→∞).

This means that H0(TR(P)) = R(P) and TR(P) is quasinilpotent. From Lemma 2.1(vi) it follows that H0(TN(P)) =
{0}. The operator T admits a GKD, so H0(T) = H0(TN(P)) ⊕H0(TR(P)) = R(P) by [2, Corollary 1.69] and hence
H0(T) is closed. If we remark that T(N(P)) = TN(P)(N(P)) is closed then the result follows.

We state the similar result for lower generalized Drazin invertible operators.

Theorem 3.2. An operator T ∈ B(X) is lower generalized Drazin invertible if and only if there exists a projection
P ∈ B(X) such that

TP = PT, T + P is surjective, TP is quasinilpotent. (2)

If T is lower generalized Drazin invertible, then every projection P from (2) has uniquely determined kernel and
N(P) = K(T).

Proof. Apply the analysis similar to that in the proof of Theorem 3.1 using in particular [2, Theorem 1.41]
instead [2, Corollary 1.69].

Proposition 3.3. Let X be a Banach space and T ∈ B(X). The following statements hold.
(i) T is upper generalized Drazin invertible and dim H0(T) < ∞ if and only if T ∈ B+(X);
(ii) T is lower generalized Drazin invertible and dimX/K(T) < ∞ if and only if T ∈ B−(X).
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Proof. (i). Let T be upper generalized Drazin invertible operator such that dim H0(T) < ∞. From the proof
of Theorem 3.1 we know that there exist two closed T-invariant subspaces of X, say X1 and X2, such that
X = X1 ⊕X2, X1 = H0(T), TX1 is quasinilpotent and TX2 is bounded below. We see that dimX1 < ∞ and TX1

is nilpotent, since every quasinilpotent operator on a finite-dimensional space is nilpotent. Applying [11,
Theorem 20.10] completes the proof.

If T is upper semi-Browder then [11, Theorem 20.10] ensures that there exists a decomposition X =
X1 ⊕ X2, dimX1 < ∞, where X1 and X2 are closed T-invariant subspaces of X, such that TX1 is nilpotent
and TX2 is bounded below. The operator T admits a GKD, so H0(T) = X1 ⊕ H0(TX2 ) by [2, Corollary 1.69].
Since H0(TX2 ) = {0} it follows that X1 = H0(T), so H0(T) is finite-dimensional. In addition, T(X2) = TX2 (X2)
is closed and hence T is upper generalized Drazin invertible.
(ii). Follows similarly as part (i).

Example 3.4. The condition dim H0(T) < ∞ can not be omitted from Proposition 3.3(i). Indeed, if Q ∈ B(X)
is quasinilpotent operator, then Q is upper generalized Drazin invertible and dim H0(T) = ∞, but Q < B+(X).
Similarly, Q is also lower generalized Drazin invertible operator and dimX/K(T) = ∞, but it is not lower
semi-Browder.

Proposition 3.3 and Example 3.4 prove that the set of upper (resp. lower) semi-Browder operators is a
proper subset of the set of upper (resp. lower) generalized Drazin invertible operators.

For two upper (resp. lower) generalized Drazin invertible operators A and B it is said to have equal
projections if there exists some projection P ∈ B(X) such that pairs (A,P) and (B,P) satisfy equation (1) (resp.
(2)).

Proposition 3.5. (i) Let A1,A2 ∈ B(X) be commuting upper (resp. lower) generalized Drazin invertible operators
with equal projections. Then A1A2 is upper (resp. lower) generalized Drazin invertible and has equal projection with
A1 and A2;
(ii) If T ∈ B(X) is upper (resp. lower) generalized Drazin invertible then Tn is also upper (resp. lower) generalized
Drazin invertible for all n ∈N.

Proof. We give proof for upper generalized Drazin invertible operators. The second case follows analo-
gously.
(i). According to Theorem 3.1 and assumption there exists a projection P ∈ B(X) such that

AiP = PAi, Ai + P is bounded below, AiP is quasinilpotent, i = 1, 2.

It is easy to see that A1A2 and P commute. Since A1 and A2P commute and A2P is quasinilpotent, then
A1A2P is quasinilpotent. Further, we have

(A1 + P)(A2 + P) = (A1A2 + P) + (A1P + PA2).

The operator (A1 + P)(A2 + P) is bounded below and commutes with quasinilpotent operator A1P+ PA2, so
A1A2 + P is also bounded below. The assertion follows from Theorem 3.1.
(ii). Apply part (i) and use induction.

Lemma 3.6. Let A ∈ B(X) and let B ∈ B(X) be invertible operator such that AB = BA. Then H0(AB) = H0(A) and
K(AB) = K(A).

Proof. Fix x ∈ H0(A). Then ∥(AB)nx∥ 1
n = ∥BnAnx∥ 1

n ≤ ∥Bn∥ 1
n ∥Anx∥ 1

n ≤ ∥B∥∥Anx∥ 1
n . Since ∥Anx∥ 1

n → 0 (n→ ∞),
then ∥(AB)nx∥ 1

n → 0 (n→∞), and thus x ∈ H0(AB). If we apply the inclusion that has just been demonstrated
to operators AB and B−1 we obtain the desired result.

For x ∈ K(A) there exist a sequence (xn)n ⊂ X and constant c > 0 such that

Ax1 = x, Axn+1 = xn for all n ∈N and ∥xn∥ ≤ cn∥x∥ for all n ∈N.
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An easy computation shows that sequence yn = (B−1)nxn, n ∈N, and constant δ = ∥B−1∥c > 0 satisfy

ABy1 = x, AByn+1 = yn for all n ∈N and ∥yn∥ ≤ δn∥x∥ for all n ∈N,

so x ∈ K(AB). We now apply this argument again, with A replaced by AB and B replaced by B−1, to obtain
K(AB) ⊂ K(A).

Proposition 3.7. (i) Let A ∈ B(X) be upper generalized Drazin invertible operator and let M be the subspace from
Definition 2.4. If B ∈ B(X) is invertible operator commuting with A such that B(M) ⊂ M, then AB is also upper
generalized Drazin invertible.
(ii) Let A ∈ B(X) be lower generalized Drazin invertible operator and let N be the subspace from Definition 2.5. If
B ∈ B(X) is invertible operator commuting with A such that B(N) ⊂ N, then AB is also lower generalized Drazin
invertible.

Proof. (i). According to Lemma 3.6 we have H0(AB) = H0(A). It follows that H0(AB) is closed and comple-
mented with M. It is obvious that AB(M) ⊂ M. The set AB(M) = B(A(M)) is closed because A(M) is closed
and B is invertible and the proof is complete.
(ii). Apply Lemma 3.6.

Corollary 3.8. If A ∈ B(X) is upper (resp. lower) generalized Drazin invertible and λ ∈ C, then λA is also upper
(resp. lower) generalized Drazin invertible.

Proof. Case λ = 0 is evident. For λ , 0 the result follows from Proposition 3.7 if we put B = λI.

Example 3.9. Let A ∈ B(X) be upper generalized Drazin invertible and let M be the subspace as in Definition
2.4. Suppose that H0(A) is non-trivial subspace, i.e. 0  H0(A)  X. If projection P ∈ B(X) is such that
R(P) = H0(A) and N(P) = M, then the operator B = λP + µ(I − P), where λ and µ are nonzero complex
numbers, satisfies the conditions of Proposition 3.7(i). If λ = µ then it is evident. Consider the case λ , µ.
The expression for B can be rewritten as B = (λ − µ)(P − µ

µ−λ I). From µ
µ−λ < {0, 1} = σ(P), we see that B is

invertible. It is clear that AB = BA and B(M) ⊂ M. We can find an operator that satisfies the conditions of
Proposition 3.7(ii) in a similar way.

Further, Hilbert space case will be considered.

Remark 3.10. LetH be a Hilbert space and let T ∈ B(H) be self-adjoint. If a subspace M ⊂ H is invariant
for T, then M⊥ is also invariant for T. Indeed, let y ∈ M⊥. Then ⟨y,Tx⟩ = 0 for every x ∈ M. Hence
⟨Ty, x⟩ = ⟨y,T∗x⟩ = ⟨y,Tx⟩ = 0 and Ty ∈M⊥.

Proposition 3.11. Let H be a Hilbert space. If T ∈ B(H) is self-adjoint and upper generalized Drazin invertible,
then it is generalized Drazin invertible. Moreover, there is only one projection which satisfies (1).

Proof. According to Theorem 3.1 there exists a projection P ∈ B(H) such that

TP = PT, T + P is bounded below, TP is quasinilpotent.

The subspace R(T + P) is closed and T-invariant. The subspace R(T + P)⊥ is also closed and T(R(T +
P)⊥) ⊂ R(T + P)⊥ by Remark 3.10. From the bounded inverse theorem it follows that we can find an
operator W ∈ B(R(T + P),H) such that W(T + P) = I (identity on H). It will be shown that the operator
B =WQ(I − P) ∈ B(H), where Q ∈ B(H) is the orthogonal projection on R(T + P), satisfies

TB = BT, BTB = B, T − TBT is quasinilpotent.

Firstly, we show that operators T and WQ ∈ B(H) commute. Choose x ∈ H . Then x = x1 + x2, x1 ∈
R(T + P), x2 ∈ R(T + P)⊥. Also x1 = (T + P)z for some z ∈ H . We have

TWQx = TWx1 = TW(T + P)z = Tz,
WQTx =WQ(Tx1 + Tx2) =WTx1 =WT(T + P)z =W(T + P)Tz = Tz.
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Now, BT =WQ(I − P)T = TWQ(I − P) = TB. Let remark that WQ(T + P) = I (identity onH). The operator

T − TBT = T − TWQ(I − P)T = T − TWQ(I − P)(T + P) = T − T(I − P) = TP

is quasinilpotent. Finally,

BTB = BTWQ(I − P) = BWQ(T + P)(I − P) = B(I − P) = B.

We have just shown that T is generalized Drazin invertible. According to [7, Theorem 3.1 and Theorem
5.4] there exists only one projection P1 ∈ B(X) such that

TP1 = P1T, T + P1 is invertible, TP1 is quasinilpotent,

and it is given by P1 = I − BT. We take expression for B and obtain

P1 = I −WQ(I − P)T = I −WQ(T + P)(I − P) = P,

so there is no other projections that satisfy (1) except P = P1.

Proposition 3.11 motivates us to put the following question.

Question. Suppose that T ∈ B(X) is upper generalized Drazin invertible operator that is also generalized
Drazin invertible. There exists only one projection P ∈ B(X) that commutes with T such that T + P is
invertible and TP is quasinilpotent. Obviously, P satisfies (1). Does it exist a projection Q ∈ B(X) which
commutes with T such that T + Q is bounded below but not invertible and TQ is quasinilpotent? Some
answers are possible in the context of a Hilbert space. From Proposition 3.11 we see that if T is self-adjoint
and upper generalized Drazin invertible (and hence generalized Drazin invertible) the answer is negative.
Similar question can be asked for lower generalized Drazin invertible operators that are generalized Drazin
invertible.

Finally, we are going to characterize operators that are Riesz and upper (resp. lower) generalized Drazin
invertible at the same time. In order to do that, some preparation is needed. We recall some properties of
Riesz operators.

Remark 3.12. Let T ∈ B(X). The following statements are equivalent.
(i) T is Riesz;
(ii) {λ ∈ C : T − λ ∈ Φ+(X)} = C \ {0};
(iii) {λ ∈ C : T − λ ∈ Φ−(X)} = C \ {0}.

If T ∈ B(X) is Riesz, then the following hold.
(iv) 0 ∈ σ(T);
(v) σ(T) is finite or a sequence which converges to 0;
(vi) If M is a closed T-invariant subspace of X, then TM is Riesz.

If M is a closed subspace of X, then QM : X → X/M is the natural epimorphism. The following two
classes of operators were introduced by Aiena. For more details we refer the reader to [1, 2].

Ω+(X) =
{

T ∈ B(X) :
TM is an (into) isomorphism for no infinite-
dimensional, T-invariant subspace M ofX

}
,

Ω−(X) =
{

T ∈ B(X) :
QMT is surjective for no infinite-
codimensional, T-invariant subspace M ofX

}
.

We are able to establish the aforementioned characterization.
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Theorem 3.13. Let T ∈ B(X). The following statements are equivalent.
(i) T ∈ Ω+(X) and σ(T) is finite;
(ii) T ∈ Ω−(X) and σ(T) is finite;
(iii) T is Riesz and generalized Drazin invertible;
(iv) T is Riesz and upper generalized Drazin invertible;
(v) T is Riesz and lower generalized Drazin invertible.

Proof. (i) =⇒ (iii). Suppose T ∈ Ω+(X) and σ(T) is finite. T is Riesz by [1, Theorem 3.21]. The spectrum of T
is finite and 0 ∈ σ(T), so 0 ∈ iso σ(T). It proves that T is generalized Drazin invertible.
(iii) =⇒ (i). Let T be Riesz and generalized Drazin invertible. From [1, Theorem 3.21] it follows that
T ∈ Ω+(X) and that the spectrum σ(T) is either finite or a sequence which converges to 0. The spectrum
must be finite, because in the second case 0 ∈ acc σ(T), which contradicts the fact that T is generalized
Drazin invertible.
(ii)⇐⇒ (iii) follows similarly as (i)⇐⇒ (iii). Implications (iii) =⇒ (iv) and (iii) =⇒ (v) are clear.
(iv) =⇒ (iii). Suppose that T is Riesz and upper generalized Drazin invertible. There exists a closed
T-invariant subspace M of X such that H0(T) ⊕M = X and T(M) is closed. From the proof of Theorem
3.1 we know that TH0(T) is quasinilpotent and TM is bounded below. Bounded below operators are upper
semi-Fredholm, then TM ∈ Φ+(M). On the other hand, TM is Riesz. From the point of view of Remark 3.12
this is impossible, so M is finite-dimensional. We conclude that TM is invertible and we obtain the desired
result.
(v) =⇒ (iii). Suppose that T is Riesz and lower generalized Drazin invertible. Then K(T) is closed and there
exists a closed T-invariant subspace N of X such that K(T) ⊕N = X and N ⊂ H0(T). That TK(T) is surjective
follows from T(K(T)) = K(T). The assumption N ⊂ H0(T) implies that TN is quasinilpotent. Obviously,
TK(T) is Riesz and lower semi-Fredholm. Remark 3.12 gives that K(T) is finite-dimensional and thus TK(T) is
invertible, so T is generalized Drazin invertible.
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References

[1] P. Aiena, Semi-Fredholm operators, perturbation theory and localized SVEP, Mérida, Venezuela (2007).
[2] P. Aiena, Fredholm and local spectral theory, with applications to multipliers, Kluwer Academic Publishers (2004).
[3] E. Boasso, Drazin spectra of Banach space operators and Banach algebra elements, J. Math. Anal. Appl. 359 (2009) 48–55.
[4] M. P. Drazin, Pseudo-inverses in associative rings and semigroups, Amer. Math. Mounthly 65 (1958) 506–514.
[5] K. Hocine, M. Benharrat, B. Messirdi, Left and right generalized Drazin invertible operators, Linear and Multilinear Algebra, 63

(2015) 1635–1648.
[6] C. King, A note on Drazin inverses, Pacific J. Math. 70 (1977) 383–390.
[7] J. J. Koliha, A generalized Drazin inverse, Glasgow Math. J. 38 (1996) 367–381.
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