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Abstract. The properties (Bw), (Baw), (Bab) and (Bb) were introduced in [9] and [15]. In this paper
we give characterizations of these spectral properties for a bounded linear operator having SVEP on
the complementary of the B-Weyl spectrum. We also study their stability under commuting Riesz-type
perturbations.

1. Introduction and preliminaries

For T in the Banach algebra L(X) of bounded linear operators acting on a Banach space X,we will denote by
σ(T) the spectrum of T, by σa(T) the approximate point spectrum of T, by N(T) the null space of T, by n(T)
the nullity of T, by R(T) the range of T and by d(T) its defect. If n(T) < ∞ and d(T) < ∞, then T is called a
Fredholm operator and its index is defined by ind(T) = n(T) − d(T). A Weyl operator is a Fredholm operator
of index 0 and the Weyl spectrum is defined by σW(T) = {λ ∈ C : T − λI is not a Weyl operator}.

For a bounded linear operator T and n ∈ N, let T[n] : R(Tn) → R(Tn) be the restriction of T to R(Tn).
T ∈ L(X) is said to be B-Weyl if for some integer n ≥ 0 the range R(Tn) is closed and T[n] is Weyl; its
index is defined as the index of the Weyl operator T[n]. The respective B-Weyl spectrum is defined by
σBW(T) = {λ ∈ C : T − λI is not a B-Weyl operator}.

The ascent a(T) of an operator T is defined by a(T) = inf{n ∈ N : N(Tn) = N(Tn+1)}, and the descent δ(T)
of T is defined by δ(T) = inf{n ∈N : R(Tn) = R(Tn+1)},with inf ∅ = ∞. According to [10], a complex number
λ ∈ σ(T) is a pole of the resolvent of T if T − λI has finite ascent and finite descent, and in this case they are
equal. We recall that a complex number λ ∈ σa(T) is a left pole of T if a(T−λI) < ∞ and R(Ta(T−λI)+1) is closed.

We summarize in the following list the usual notations and symbols needed later.
Notations and symbols:
F (X): the ideal of finite rank operators in L(X),
K (X): the ideal of compact operators in L(X),
N(X): the class of nilpotent operators on X,
Q(X): the class of quasi-nilpotent operators on X,
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R(X): the class of Riesz operators acting on X,
iso A: isolated points of a subset A ⊂ C,
acc A: accumulations points of a subset A ⊂ C,
D(0, 1): the closed unit disc in C,
C(0, 1): the unit circle of C,
Π(T): poles of T,
Π0(T): poles of T of finite rank,
Πa(T): left poles of T,
Π0

a(T): left poles of T of finite rank,
σp(T): eigenvalues of T,
σ f

p(T): eigenvalues of T of finite multiplicity,

E0(T) := iso σ(T) ∩ σ f
p(T),

E(T) := iso σ(T) ∩ σp(T),
E0

a(T) := iso σa(T) ∩ σ f
p(T),

Ea(T) := iso σa(T) ∩ σp(T),
σb(T) = σ(T) \Π0(T): Browder spectrum of T,
σub(T) = σa(T) \Π0

a(T): upper-Browder spectrum of T,
σW(T): Weyl spectrum of T,
σBW(T): B-Weyl spectrum of T.

Definition 1.1. Let T ∈ L(X). T is said to satisfy
i) Weyl’s theorem if σ(T) \ σW(T) = E0(T).
ii) Browder’s theorem if σ(T) \ σW(T) = Π0(T).
iii) generalized Browder’s theorem if σ(T) \ σBW(T) = Π(T).
iv) property (ab) if σ(T) \ σW(T) = Π0

a(T).
v) property (aw) if σ(T) \ σW(T) = E0

a(T).

Definition 1.2. [9], [15] Let T ∈ L(X).We say that:
i) T satisfies property (Bw) if σ(T) \ σBW(T) = E0(T).
ii) T satisfies property (Bb) if σ(T) \ σBW(T) = Π0(T).
iii) T satisfies property (Baw) if σ(T) \ σBW(T) = E0

a(T).
iv) T satisfies property (Bab) if σ(T) \ σBW(T) = Π0

a(T).

The relationship between properties and theorems given in the precedent definitions was studied in
[15], and is summarized in the following diagram. (arrows signify implications and numbers near the
arrows are references to the bibliography therein).

property (Baw)
[15]−−−−−→ property (Bw)

[15]−−−−−→ Weyl’s theoremy[15]
y[15]

y[3]

property (Bab) −−−−−→
[15]

property (Bb) −−−−−→
[15]

Browder’s theorem

Moreover, in [15] counterexamples were given to show that the reverse of each implication in the
diagram is not true. Nonetheless, it was proved that under some additional hypothesis, these implications
are equivalences as we can see in the next theorem.

Theorem 1.3. [15] Let T ∈ L(X).
i) If σBW(T) = σW(T), then property (Bw) holds for T if and only if Weyl’s theorem holds for T; and property (Bb)
holds for T if and only if Browder’s theorem holds for T.
ii) If E0(T) = Π(T), then property (Bw) holds for T if and only if property (Bb) holds for T.
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iii) If Π(T) = Π0
a(T), then property (Bab) holds for T if and only if property (Bb) holds for T.

iv) If E0(T) = E0
a(T), then property (Baw) holds for T if and only if property (Bw) holds for T.

iv) If E0
a(T) = Π0

a(T), then property (Baw) holds for T if and only if property (Bab) holds for T.

For every T ∈ L(X) we know that σBW(T) ⊂ σW(T), but generally this inclusion is proper. Indeed, let T
on ℓ2(N) defined by T(x1, x2, ...) = (0, x1

2 , 0, 0, ...), then σBW(T) = ∅  σW(T) = {0}. In the following lemma, we
explicit the defect set σW(T) \ σBW(T).

Lemma 1.4. (See also [6]) Let T ∈ L(X). Then σW(T) = σBW(T) ∪ iso σW(T).

Proof. Let λ0 ∈ σW(T) \ σBW(T) be arbitrary, then T − λ0I is a B-Weyl operator. From the punctured
neighborhood theorem for B-Weyl operators, there exists ε > 0 such that if 0 < |µ| < ε, then T − λ0I − µI is a
Weyl operator and ind(T−λ0I−µI) = ind(T−λ0I). Thus for every scalar z such that 0 < |z−λ0| < ε,we have
T − λ0I − (z − λ0)I = T − zI is a Weyl operator with ind(T − zI) = 0. This implies that D(λ0, ε) ∩ σW(T) = {λ0}
and as λ0 ∈ σW(T), then λ0 ∈ iso σW(T). Hence σW(T) = σBW(T) ∪ iso σW(T).

Corollary 1.5. Let T ∈ L(X) such that iso σW(T) = ∅. The following statements hold.
i) T satisfies property (Bw) if and only if T satisfies Weyl’s Theorem.
ii) T satisfies property (Bb) if and only if T satisfies Browder’s Theorem.
iii) T satisfies property (Bab) if and only if T satisfies property (ab).
iv) T satisfies property (Baw) if and only if T satisfies property (aw).

Proof. The proof of i) and ii) is a consequence of Theorem 1.3 and Lemma 1.4. The proof of iii) and iv)
follows directly from Lemma 1.4, Definition 1.1 and Definition 1.2.

The paper is organized as follows: after giving an introduction and some preliminaries in the first
section, we characterize in the second section the properties (Bw), (Baw), (Bab) and (Bb) for bounded linear
operators having SVEP on the complementary of the B-weyl spectrum. In the third section, we study the
preservation of properties (Bw) and (Baw) under Riesz-type perturbations. Similar results are obtained for
(Bb) and (Bab) in the fourth section. Several examples are given in each section to show that the results
obtained fail without adequate hypothesis.

2. Browder spectral properties and SVEP

The following property has relevant role in local spectral theory: a bounded linear operator T ∈ L(X) is said
to have the single-valued extension property (SVEP for short) at λ ∈ C if for every open neighborhood Uλ of
λ, the function f ≡ 0 is the only analytic solution of the equation (T − µI) f (µ) = 0 ∀µ ∈ Uλ.We denote by
S(T) = {λ ∈ C : T does not have SVEP at λ} and we say that T has SVEP if S(T) = ∅.We say that T has SVEP
on A ⊂ C, if T has SVEP at every λ ∈ A.

Theorem 2.1. Let T ∈ L(X). If T or T∗ has SVEP on σ(T) \ σBW(T), then T satisfies property (Bb) if and only if
Π(T) = Π0(T).

Proof. =⇒) Assume that T satisfies property (Bb). Let λ0 ∈ σ(T) \ σW(T) be arbitrary then λ0 ∈ σ(T) \ σBW(T).
As T satisfies property (Bb) then λ0 ∈ Π0(T). Thus σ(T) \ σW(T) ⊆ Π0(T) and since the opposite inclusion is
always true, it follows that σ(T) \ σW(T) = Π0(T). But this is equivalent from [2, Theorem 2.1] to say that
σ(T) \ σBW(T) = Π(T). Hence Π(T) = Π0(T). Observe that in this implication, the condition of SVEP for T or
T∗ is not necessary.
⇐=) Assume thatΠ(T) = Π0(T).Note that T has SVEP on σ(T) \ σBW(T)⇐⇒ T has SVEP on σBW(T)C⇐⇒ T∗

has SVEP on σBW(T)C ⇐⇒ T∗ has SVEP on σ(T) \ σBW(T); where σBW(T)C is the complement of the B-Weyl
spectrum of T. From [1, Theorem 3.2], T satisfies generalized Browder’s theorem σ(T)\σBW(T) = Π(T). Thus
T satisfies property (Bb).
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Remark 2.2. The assumption T or T∗ has SVEP on σ(T) \ σBW(T) is essential as shown in the next example.
Define the operator U on ℓ2(N) by U(x1, x2, x3, . . .) = (0, x1, x2, x3, . . .).
On ℓ2(N) ⊕ ℓ2(N), put T = U ⊕U∗. Since σ(U) = σBW(U) = D(0, 1) and σ(U∗) = σBW(U∗) = D(0, 1). It follows
that σ(T) = D(0, 1) and hence Π(T) = Π0(T) = ∅. But as n(T) = d(T) = 1, 0 ∈ σ(T) \ σBW(T). Thus property
(Bb) does not hold for T. Notice that T and T∗ do not have SVEP at 0 which lies in σ(T) \ σBW(T), since
S(T) = S(T∗) = S(U∗) = {λ ∈ C : 0 ≤ |λ| < 1}.

Corollary 2.3. Let T ∈ L(X). If T or T∗ has SVEP on σ(T) \ σBW(T), then T satisfies property (Bab) if and only if
Π(T) = Π0

a(T).

Proof. It’s a consequence of the precedent theorem and [15, Corollary 3.8]. (Note that the direct implication
is always true (see [15, Corollary 3.8]).

Corollary 2.4. Let T ∈ L(X). If T or T∗ has SVEP on σ(T) \ σBW(T), then T satisfies property (Baw) if and only if
Π(T) = E0

a(T).

Proof. If T satisfies (Baw) then from [15, Theorem 3.2], it satisfies property (Bab) and Π0
a(T) = E0

a(T), and
from Corollary 2.3 we have Π(T) = E0

a(T). Conversely, if Π(T) = E0
a(T), then Π(T) = E0

a(T) = Π0
a(T). From

Corollary 2.3 it follows that T satisfies property (Bab) and property (Baw) too.

Remark 2.5. The assumption T or T∗ has SVEP on σ(T)\σBW(T) is essential in corollaries 2.3 and 2.4. Indeed,
the operator T given in Remark 2.2 does not satisfy property (Bb) and hence it does not satisfy the properties
(Bab) and (Baw); though we have Π(T) = Π0

a(T) = E0
a(T).

3. Properties (Baw), (Bw) and Riesz-type perturbations

We recall that an operator R ∈ L(X) is said to be Riesz if R − µI is Fredholm for every non-zero complex µ,
that is, π(R) is quasinilpotent in the Calkin algebra C(X) = L(X)/K (X) where π is the canonical mapping of
L(X) into C(X).

We denote by F 0(X), the class of power finite rank operators as follows:

F 0(X) = {S ∈ L(X) : Sn ∈ F (X) for some n ∈N}

and by R(X) the class of Riesz operators acting on X. Clearly,

F (X) ∪N(X) ⊂ F 0(X) ⊂ R(X), andK (X) ∪ Q(X) ⊂ R(X).

We start this section by the following nilpotent perturbation result.

Proposition 3.1. Let T ∈ L(X) and let N ∈ N(X) which commutes with T. Then T satisfies property (s) if and only
if T +N satisfies property (s); where (s) ∈ {(Bw), (Bb), (Bab), (Baw)}.

Proof. Since N is nilpotent and commutes with T,we know that σ(T+N) = σ(T) and σa(T+N) = σa(T). From
the proof of [5, Theorem 3.5], it follows that 0 < n(T + N) ⇐⇒ 0 < n(T) and n(T + N) < ∞ ⇐⇒ n(T) < ∞.
Thus E0

a(T + N) = E0
a(T), E(T + N) = E(T), Ea(T + N) = Ea(T) and E0(T + N) = E0(T). We also have from

[4, Lemma 22] that Π(T + N) = Π(T) which implies that Π0(T + N) = Π0(T). From [16, Corollary 3.8] we
know that Πa(T +N) = Πa(T) and so Π0

a(T +N) = Π0
a(T). On the other hand, σBW(T +N) = σBW(T), see [16,

Corollary 3.1]. This finishes the proof.

Remark 3.2. We notice that the assumption of commutativity in the Proposition 3.1 is crucial.
1) Let T and N be defined on ℓ2(N) by

T(x1, x2, . . .) = (0,
x1

2
,

x2

3
, . . .) and N(x1, x2, . . .) = (0,

−x1

2
, 0, 0, . . .).
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Clearly N is nilpotent and does not commute with T. The properties (Baw) and (Bw) are satisfied by T, since
σ(T) = {0} = σBW(T) and E0

a(T) = ∅. But T + N does not satisfy neither property (Bw) nor property (Baw) as
we have σ(T +N) = σBW(T +N) = {0} and {0} = E0(T +N).
2) Let T and N be defined by

T =
(

U∗ U∗

0 U

)
and N =

(
0 U∗

0 0

)
,

where U is defined in Remark 2.2. Obviously, N is nilpotent and does not commute with T. Since σa(U∗) ⊂
σa(T) ⊂ σa(U∗) ∪ σa(U), see [8, Proposition 1.1], it follows that σa(T) = D(0, 1) and since U has SVEP,
then σBW(T) = σ(T) = σ(U∗) ∪ σ(U) = D(0, 1). Moreover, Π0(T) = Π0

a(T) = ∅. Consequently, T satisfies
properties (Bab) and (Bb). But T −N does not satisfy neither property (Bb) nor property (Bab). To see this, as
T − N = U∗ ⊕ U then σa(T − N) = σ(T − N) = D(0, 1) and Π0

a(T − N) = Π0(T − N) = ∅. But from Remark 2.2
we have σ(T −N) \ σBW(T −N) , ∅.

Corollary 3.3. Let T ∈ Q(X) be an injective quasi-nilpotent and let F ∈ F (X) which commutes with T. Then T
satisfies property (s) if and only if T + F satisfies property (s); where (s) ∈ {(Bw), (Bb), (Bab), (Baw)}.

Proof. If T is injective, as TF is a finite rank quasi-nilpotent operator, then TF is a nilpotent operator. Since
T is injective, then F is nilpotent. Thus the result follows from Proposition 3.1.

The stability of properties (Baw) and (Bw) showed in Proposition 3.1 cannot be extended to commuting
quasi-nilpotent operators, as we can see in the next remark.

Remark 3.4. In general, the properties (Bw) and (Baw) are unstable under quasi-nilpotent perturbations.
For this we consider the operators T and R defined on ℓ2(N) ⊕ ℓ2(N) by

T = 0 ⊕Q and R = Q ⊕ 0,

where Q is defined on ℓ2(N) by Q(x1, x2, . . .) = ( x2
2 ,

x3
3 , . . .). Clearly R is compact and quasi-nilpotent and

verifies TR = RT = 0. On the other hand, T satisfies properties (Bw) and (Baw), because σ(T) = {0} = σBW(T)
and E0

a(T) = ∅. But T + R = Q ⊕ Q does not satisfy neither property (Bw) nor property (Baw), since
σ(T + R) = {0} = σBW(T + R) and E0(T + R) = {0}. Note that here Π(T + R) = ∅.

However, in Theorem 3.6 below we give necessary and sufficient conditions to ensure the stability of
these properties under commuting perturbations by Riesz operators which are not necessary nilpotent. The
case of nilpotent operators is studied in Proposition 3.1. But before that we need the following lemma in
the proof of the next main results.

Lemma 3.5. Let T ∈ L(X). If S ∈ F 0(X) and R ∈ R(X) are commuting operators with T, then the following
statements hold.
i) T satisfies Browder’s theorem if and only if T + R satisfies Browder’s theorem.
ii) If T satisfies property (Bb), then Π(T + S) = Π0(T + S). In particular, this equality holds if T satisfies property
(Bab) or (Bw).

Proof. i) As T satisfies Browder’s theorem, then σb(T) = σW(T). Since TR = RT then from [14] we have
σb(T + R) = σb(T) and from [13, Lemma 2.2] we have σW(T) = σW(T + R). So σb(T + R) = σW(T + R). Thus
T + R satisfies Browder’s theorem, and consequently T + R satisfies generalized Browder’s theorem too.
Conversely, assume that T + R satisfies Browder’s theorem. Since (T + R)R = R(T + R) and T = (T + R) − R,
we conclude similarly.

ii) The inclusionΠ0(T+ S) ⊂ Π(T+ S) is always true. Conversely let λ ∈ Π(T+ S), as T satisfies property
(Bb), then from [15, Theorem 2.4] we have σBW(T) = σW(T). Since S ∈ F 0(X) and TS = ST, then from [16,
Theorem 2.8] we have σBW(T) = σBW(T+S).Hence λ < σBW(T+S) = σBW(T) = σW(T+S). So n(T+S−λI) < ∞.
In particular, if T satisfies property (Bab) or (Bw) then it satisfies property (Bb).
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Theorem 3.6. Let R ∈ R(X) and let T ∈ L(X) which commutes with R.
i) If T satisfies property (Bw), then T + R satisfies property (Bw) if and only if Π(T + R) = E0(T + R).
ii) If T satisfies property (Baw), then T + R satisfies property (Baw) if and only if Π(T + R) = E0

a(T + R).

Proof. i) If T+R satisfies (Bw), then from [9, Theorem 2.5] we have E0(T+R) = Π(T+R).Conversely, suppose
that E0(T + R) = Π(T + R). Since T satisfies (Bw) then from [9, Theorem 2.4], it satisfies Browder’s theorem.
From Lemma 3.5, T + R satisfies generalized Browder’s theorem, that is σ(T + R) \ σBW(T + R) = Π(T + R).
So T + R satisfies property (Bw).

ii) If T + R satisfies (Baw), then from [15] we have E0
a(T + R) = Π(T + R). Conversely, suppose that

E0
a(T+R) = Π(T+R). Since T satisfies (Baw) then from [15, Corollary 3.5], it satisfies property (Bw).Hence T+R

satisfies generalized Browder’s theoremσ(T+R)\σBW(T+R) = Π(T+R).Soσ(T+R)\σBW(T+R) = E0
a(T+R).

Now if we restrict to the class F 0(X), we obtain the following perturbation result concerning property
(Bw). The same result holds for property (Baw) with similar proof.

Theorem 3.7. Let S ∈ F 0(X). If T ∈ L(X) satisfies property (Bw) and commutes with S, then the following statements
are equivalent.
i) T + S satisfies property (Bw);
ii) Π(T + S) = E0(T + S).
iii) E0(T + S) ∩ σ(T) ⊂ Π0(T).

Proof. i)⇐⇒ ii) Since F 0(X) ⊂ R(X), this equivalence follows from Theorem 3.6.
ii) =⇒ iii) Suppose that Π(T + S) = E0(T + S) and let λ0 ∈ E0(T + S) ∩ σ(T) be arbitrary. Then λ0 ∈

Π0(T + S) ∩ σ(T) and so λ0 < σb(T + S) = σb(T). Thus λ0 ∈ Π0(T). This proves that E0(T + S) ∩ σ(T) ⊂ Π0(T).
iii)=⇒ ii) Suppose that E0(T+S)∩σ(T) ⊂ Π0(T).Firstly, we show that E0(T+S) ⊂ Π(T+S).Letµ0 ∈ E0(T+S)

be arbitrary. We distinguish two cases: the first is µ0 ∈ σ(T). Then µ0 ∈ E0(T + S) ∩ σ(T) ⊂ Π0(T). It follows
that µ0 < σb(T) = σb(T + S) and since µ0 ∈ σ(T + S), then µ0 ∈ Π(T + S). The second case is µ0 < σ(T). This
implies that µ0 < σb(T) = σb(T + S). Thus µ0 ∈ Π0(T + S) ⊂ Π(T + S). Consequently, E0(T + S) ⊂ Π(T + S).
From Lemma 3.5, we conclude that Π(T + S) = E0(T + S).

Theorem 3.8. Let S ∈ F 0(X). If T ∈ L(X) satisfies property (Baw) and commutes with S, then the following
statements are equivalent.
i) T + S satisfies property (Baw);
ii) Π(T + S) = E0

a(T + S).
iii) E0

a(T + S) ∩ σ(T) ⊂ Π0(T).

Proof. Goes similarly with the proof of Theorem 3.7.

The following example proves that in general, property (Baw) is not preserved under commuting finite
rank power perturbations.

Example 3.9. On ℓ2(N), let U defined in Remark 2.2. For fixed 0 < ε < 1, let Fε be the finite rank operator
defined on ℓ2(N) by Fϵ(x1, x2, x3, . . .) = (−εx1, 0, 0, 0, . . .). We consider the operators T and F defined by
T = U ⊕ I and F = 0 ⊕ Fε, respectively. Then F is a finite rank operator and TF = FT.We have,

σ(T) = σ(U) ∪ σ(I) = D(0, 1), σa(T) = σa(U) ∪ σa(I) = C(0, 1), σBW(T) = D(0, 1),

σ(T + F) = σ(U) ∪ σ(I + Fε) = D(0, 1), σBW(T + F) = D(0, 1) and

σa(T + F) = σa(U) ∪ σa(I + Fε) = C(0, 1) ∪ {1 − ε}.
Moreover, E0

a(T) = ∅ and E0
a(T + F) = {1 − ε}. Thus T satisfies property (Baw), but T + F does not satisfy

property (Baw). Note that here Π(T + F) = ∅.

We say that an operator T ∈ L(X) is finitely polaroid if iso σ(T) = Π0(T) and is said to be finitely a-polaroid
if iso σa(T) = Π0

a(T).
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Lemma 3.10. Let T ∈ L(X) and let S ∈ F 0(X) which commutes with T.
i) T is finitely polaroid if and only if T + S is finitely polaroid.
ii) T is finitely a-polaroid if and only if T + S is finitely a-polaroid.

Proof. i) Let T be finitely polaroid and S ∈ F 0(X). Then acc σ(T) = σb(T). Since S commutes with T we have
σb(T+S) = σb(T) and from [17, Theorem 2.2] we know that acc σ(T+S) = accσ(T). So σb(T+S) = acc σ(T+S)
and T + S is finitely polaroid. The proof of the reverse implication is similar, since T = (T + S)− S and T + S
commutes with −S.

ii) Proof similar to the first assertion since σub(T + S) = σub(T), see [14] and acc σa(T + S) = acc σa(T), see
[17, Theorem 2.2].

Corollary 3.11. Let T ∈ L(X) and let S ∈ F 0(X) which commutes with T.
i) If T is finitely polaroid, then T satisfies property (Bw) if and only if T + S satisfies property (Bw).
ii) If T is finitely a-polaroid, then T satisfies property (Baw) if and only if T + S satisfies property (Baw).

Proof. i) Suppose that T satisfies property (Bw). Let λ0 ∈ E0(T+S)∩σ(T) be arbitrary, then λ0 < acc σ(T+S) =
acc σ(T). So λ0 ∈ iso σ(T) = Π0(T). Hence E0(T + S) ∩ σ(T) ⊂ Π0(T), but this is equivalent by Theorem 3.7 to
say that T + S satisfies property (Bw). The proof of the reverse is similar, since T + S is finitely polaroid.
ii) Let λ0 ∈ E0

a(T + S) ∩ σ(T) be arbitrary, then λ0 < accσa(T + S) = acc σa(T). So λ0 ∈ iso σa(T) = Π0
a(T). As T

satisfies (Baw), then from [15, Corollary 3.8] we haveΠ0
a(T) = Π0(T).Hence E0

a(T+S)∩σ(T) ⊂ Π0(T), but this
is equivalent by Theorem 3.8 to say that T + S satisfies property (Baw). Analogously, we prove the reverse,
since T + S is finitely a-polaroid.

4. Properties (Bab), (Bb) and Riesz-type perturbations

We begin this section by the following proposition in which, we improve Proposition 3.1 and show that the
property (Bb) is stable under commuting perturbations by operators of power finite rank.

Proposition 4.1. If T ∈ L(X) satisfies property (Bb) and if S ∈ F 0(X) commutes with T, then T+S satisfies property
(Bb). In particular, if S ∈ F (X) and commutes with T then T + S satisfies property (Bb).

Proof. Since S ∈ F 0(X) and ST = TS, then from Lemma 3.5 we have Π(T + S) = Π0(T + S). As T satisfies
property (Bb), then from [15, Theorem 2.4], it satisfies generalized Browder’s theorem and from Lemma 3.5,
T + S satisfies generalized Browder’s theorem. Thus σ(T + S) \ σBW(T + S) = Π(T + S) = Π0(T + S). So T + S
satisfies property (Bb).

As we have observed in the precedent section, we also cannot extend Proposition 3.1 concerning
properties (Bab) and (Bb) to commuting quasi-nilpotent perturbations, as shown in the next example.

Example 4.2. Let T be the operator defined on ℓ2(N) by T(x1, x2, . . .) = ( x2
2 ,

x3
3 , . . .). Put R = −T, clearly R is

quasi-nilpotent, compact and commutes with T. Moreover, we have σ(T) = {0} = σBW(T) andΠ0(T) = Π0
a(T) = ∅. It

follows that T satisfies properties (Bab) and (Bb). But T + R = 0 does not satisfy neither property (Bab) nor property
(Bb). Indeed, σ(T + R) = {0}, σBW(T + R) = ∅, Π0(T + R) = Π0

a(T + R) = ∅. Note also that Π(T + R) = {0}.

This example shows that the result obtained in Proposition 4.1 cannot be extended to commuting Riesz
operators. Nonetheless, we have the next result.

Theorem 4.3. Let T ∈ L(X) and let R ∈ R(X) which commutes with T.We have:
i) If T satisfies property (Bb), then T + R satisfies property (Bb) if and only if Π(T + R) = Π0(T + R).
ii) If T satisfies property (Bab), then T + R satisfies property (Bab) if and only if Π(T + R) = Π0

a(T + R).
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Proof. i) If T + R satisfies (Bb), then from [15, Theorem 2.4] we have Π0(T + R) = Π(T + R). Conversely,
suppose that Π0(T + R) = Π(T + R). Since T satisfies property (Bb) then it satisfies Browder’s theorem. By
Lemma 3.5, T+R satisfies generalized Browder theorem. Thus σ(T+R)\σBW(T+R) = Π(T+R) = Π0(T+R).
So T + R satisfies property (Bb).

ii) If T+R satisfies property (Bab), thenΠ(T+R) = Π0
a(T+R), see [15, Theorem 3.6]. Conversely, assume

that Π(T + R) = Π0
a(T + R). Since T satisfies property (Bab) then it satisfies property (Bb) and therefore

Browder’s theorem holds for T + R and generalized Browder’s theorem, that is: σ(T + R) \ σBW(T + R) =
Π(T + R). So T + R satisfies property (Bab).

As an application of Theorem 4.3 to the class of quasi-nilpotent operators, we give two corollaries.

Corollary 4.4. Let T ∈ L(X) and let Q ∈ Q(X) such that TQ = QT.
i) If T satisfies property (Bb), then the statements a), b) and c) are equivalent:
a) T +Q satisfies property (Bb);
b) Π(T +Q) = Π0(T);
c) σBW(T +Q) = σBW(T).
ii) If iso σW(T) = ∅ or iso σb(T) = ∅, then T satisfies property (Bb) if and only if T +Q satisfies property (Bb).

Proof. i) a)⇐⇒ b) Since T commutes with Q,we know that σ(T+Q) = σ(T) and σa(T+Q) = σa(T).As it was
already mentioned, we have σb(T +Q) = σb(T). So Π0(T +Q) = σ(T +Q) \ σb(T +Q) = σ(T) \ σb(T) = Π0(T).
Hence the equivalence between statements a) and b) is a consequence of Theorem 4.3.

a)⇐⇒ c) If T+Q satisfies property (Bb) then σBW(T+Q) = σ(T+Q) \Π0(T+Q) = σ(T) \Π0(T) = σBW(T),
since T satisfies property (Bb). Conversely, assume that σBW(T +Q) = σBW(T). Then σ(T +Q) \ σBW(T +Q) =
σ(T) \ σBW(T) = Π0(T) = Π0(T +Q). So T +Q satisfies property (Bb).

ii) Case 1. iso σW(T) = ∅ : assume that T satisfies property (Bb). The condition iso σW(T) = ∅ implies from
[6, Proposition 2.4] that σBW(T+Q) = σBW(T). So from the assertion i), it follows that T+Q satisfies property
(Bb). Conversely, assume that T +Q satisfies property (Bb). Since iso σW(T +Q) = ∅ and T = (T +Q)−Q,we
conclude similarly.

Case 2. iso σb(T) = ∅ : assume that T satisfies property (Bb). The condition iso σb(T) = ∅ implies from [6,
Corollary 2.10] that Π(T + Q) = Π(T), and since T satisfies property (Bb) then Π(T) = Π0(T) as seen in the
proof of Theorem 2.1. So Π(T +Q) = Π0(T) and hence T +Q satisfies property (Bb).We obtain the proof of
the converse analogously, since iso σb(T +Q) = ∅.

In the following corollary, we give conditions ensuring the stability of property (Bab) under commuting
perturbations by quasi-nilpotent operators.

Corollary 4.5. Let T ∈ L(X) and let Q ∈ Q(X) such that TQ = QT.
i) If T satisfies property (Bab), then the statements a), b) and c) are equivalent:
a) T +Q satisfies property (Bab);
b) Π(T +Q) = Π0

a(T);
c) σBW(T +Q) = σBW(T).
ii) If iso σW(T) = ∅ or iso σb(T) = ∅, then T satisfies property (Bab) if and only if T +Q satisfies property (Bab).

Proof. Is similar to the proof of the precedent corollary, since Π0
a(T + Q) = Π0

a(T) and since the equality
Π(T) = Π0

a(T) holds for every operator T satisfying property (Bab).

If we restrict to the class F 0(X),we obtain the following perturbation result concerning property (Bab).

Theorem 4.6. Let S ∈ F 0(X). If T ∈ L(X) satisfies property (Bab) and commutes with S, then the following
statements are equivalent.
i) T + S satisfies property (Bab);
ii) Π(T + S) = Π0

a(T + S);
iii) Π0

a(T + S) ∩ σ(T) ⊂ Π0(T).
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Proof. i)⇐⇒ ii) Since F 0(X) ⊂ R(X), this equivalence is a consequence of Theorem 4.3.
ii)=⇒ iii) Suppose thatΠ(T+S) = Π0

a(T+S) and letλ0 ∈ Π0
a(T+S)∩σ(T) be arbitrary. Thenλ0 ∈ Π0(T+S)∩σ(T)

and so λ0 < σb(T + S) = σb(T). Thus λ0 ∈ Π0(T). This proves that Π0
a(T + S) ∩ σ(T) ⊂ Π0(T).

iii)=⇒ ii) Suppose thatΠ0
a(T+S)∩σ(T) ⊂ Π0(T). Firstly, we show thatΠ0

a(T+S) ⊂ Π(T+S). Let µ0 ∈ Π0
a(T+S)

be arbitrary. We distinguish two cases: the first is µ0 ∈ σ(T). Then µ0 ∈ Π0
a(T + S) ∩ σ(T) ⊂ Π0(T). It follows

that µ0 < σb(T) = σb(T + S) and since µ0 ∈ σ(T + S), then µ0 ∈ Π(T + S). The second case is µ0 < σ(T).
This implies that µ0 < σb(T) = σb(T + S). As µ0 ∈ σ(T + S) then µ0 ∈ Π0(T + S) ⊂ Π(T + S). Therefore
Π0

a(T + S) ⊂ Π(T + S). From Lemma 3.5, we conclude that Π(T + S) = Π0
a(T + S).

Generally, the property (Bab) is not preserved under commuting power finite rank perturbations. For
this, we consider the operators T and F defined in Example 3.9. T satisfies property (Baw) and then property
(Bab). But T + F does not satisfy property (Bab) since σ(T + F) \ σBW(T + F) = ∅ andΠ0

a(T + F) = {1 − ε}.Here
Π0

a(T + F) ∩ σ(T) = {1 − ε} and Π0(T) = ∅.

From Theorem 4.6, we obtain immediately the following corollary:

Corollary 4.7. Let T ∈ L(X) be finitely a-polaroid. If S ∈ F 0(X) commutes with T, then T satisfies property (Bab) if
and only if T + S satisfies property (Bab).
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