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Abstract. The aim of this paper is to foster interaction between operator theory and probability. In this
paper, we introduce Poisson weighted sequence space lp(λ) {λ > 0, 1 ≤ p ≤ ∞} and observe that it is a
Banach space. Also find a necessary and sufficient condition for composition transformation Cϕ to be
bounded. Then we pass to characterize null space and range space of composition operators. We establish
a necessary and a sufficient condition for range space of Cϕ to be closed. Further, we determine condition
under which composition operator is injective or surjective. Finally, we report an explicit expression for
the adjoint operator C∗ϕ of composition operators on Hilbert space l2(λ) and study the above mentioned
properties for C∗ϕ on l2(λ).

1. Introduction

The notion of Composition operators appeared implicitly in the work of Hardy and Littlewood [6]
in 1925. A systematic study of this class of operators began by Ryff [8] and Nordgren [4]. The term
Composition Operators was coined by Nordgren [4] in his paper entitled ‘Composition Operators’. Ever
since, this class of operators have enjoyed constant attention. An excellent overview of them is given in [7],
[11].

Definition 1.1. Let X be a non-empty set and V(X) be a linear space of complex valued functions on X under
pointwise addition and scalar multiplication. If ϕ is a selfmap on X into itself such that composition f oϕ belongs
to V(X) for each f ∈ V(X), then ϕ induces a linear transformation on V(X) into itself given by Cϕ f = f oϕ. The
transformation Cϕ is known as composition transformation. When V(X) is a Banach space and Cϕ is a bounded linear
operator on V(X), then Cϕ is called composition operator.
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1.1. Notation and Terminology
In this paper, N0 and C denote the set of all non-negative integers and the set of all complex numbers

respectively. Further χn :N0 →N0 is defined as

χn(m) =

1, if m = n
0, otherwise.

Also, whenever p occurs alone we assume that 1 ≤ p < ∞; and whenever p and q occur together, we assume
that both are greater than 1 and that 1

p +
1
q = 1.

1.2. Poisson distribution
Poisson distribution is named after French Mathematician Simon-Denis Poisson, who introduced it in

1837. For the details of Poisson distribution we refer to [1].

Definition 1.2. Poisson distributation with parameter λ > 0 is defined as w(n) = e−λ λ
n

n! , where n ∈N0.

Definition 1.3. For λ > 0 we define Poisson weighted sequence space as

lp(λ) = { f :N0 → C|
∑

n∈N0

e−λλn

n!
| f (n)|p < ∞}

and

l∞(λ) = { f :N0 → C| sup
n∈N0

e−λλn

n!
| f (n)| < ∞}.

2. Main Results

The following proposition shows that lp(λ) is a normed linear space for λ > 0.

Proposition 2.1. lp(λ) = { f :N0 → C|
∑

n∈∈N0

e−λλn

n! | f (n)|p < ∞} is normed linear space with norm

|| f ||p =
( ∑

n∈∈N0

e−λλn

n!
| f (n)|p

)1/p
.

Proof. We prove only triangle inequality as verification of other properties is straightforward. For p = 1 the
result is immediate. Let 1 < p < ∞ and f , 1 ∈ lp(λ). Consider∑

n∈N0

| f (n) + 1(n)|p e−λλn

n!
≤

∑
n∈N0

e−λλn

n!
| f (n) + 1(n)|p−1(| f (n)| + |1(n)|)

=
∑

n∈N0

(
e−λλn

n!
)

1
p | f (n)|| f (n) + 1(n)|p−1(

e−λλn

n!
)

1
q

+
∑

n∈N0

|1(n)|( e−λλn

n!
)

1
p | f (n) + 1(n)|p−1(

e−λλn

n!
)

1
q

≤ (
∑

n∈N0

(
e−λλn

n!
| f (n)|p)

1
p (

∑
n∈N0

| f (n) + 1(n)|p(
e−λλn

n!
))

1
q

+ (
∑

n∈N0

(
e−λλn

n!
|1(n)|p)

1
p (

∑
n∈N0

| f (n) + 1(n)|p(
e−λλn

n!
))

1
q .
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Last inequality is obtained by Holder’s inequality. Thus∑
n∈N0

| f (n) + 1(n)|p e−λλn

n!
≤ || f ||p(

∑
n∈N0

| f (n) + 1(n)|p( e−λλn

n! ))
1
q + ||1||p(

∑
n∈N0

| f (n) + 1(n)|p( e−λλn

n! ))
1
q .

This implies

(
∑

n∈N0

| f (n) + 1(n)|p e−λλn

n!
)1− 1

q ≤ || f ||p + ||1||p

i.e.

|| f + 1||p ≤|| f ||p + ||1||p.

Now we show that lp(λ) is a Banach space for λ > 0.

Proposition 2.2. lp(λ) is a Banach space with the norm || f ||p =
( ∑

n∈N0

e−λλn

n! | f (n)|p
)1/p
.

Proof. Let { fn}n∈N be a Cauchy sequence in lp(λ). For given ϵ > 0, there exists a positive integer n0 such that

|| fn − fm||p < ϵ ∀ m,n ≥ n0

i.e. ( ∑
r∈N0

e−λλr

r!
| fn(r) − fm(r)|p

)1/p
< ϵ ∀ m,n ≥ n0.

This implies that sequence of scalars { fn(r)}n∈N is a Cauchy sequence in C for each r ∈ N0. Since C is
complete, sequence { fn(r)}n∈N is convergent for each r ∈ N0. We denote f (r) = lim

n→∞
fn(r). Let us take

f =
∑

r∈N0
f (r)χr and consider

( k∑
r=0

e−λλr

r!
| f (r)|p

) 1
p
=

(
lim
n→∞

( k∑
r=0

e−λλr

r!
| fn(r)|p

) 1
p

≤ lim
n→∞

( k∑
r=0

e−λλr

r!
| fn(r) − fn0 (r)|p

) 1
p
+

( k∑
r=0

e−λλr

r!
| fn0 (r)|p

) 1
p

≤ lim
n→∞

( ∑
r∈N0

e−λλr

r!
| fn(r) − fn0 (r)|p

) 1
p
+

( ∑
r∈N0

e−λλr

r!
| fn0 (r)|p

) 1
p

≤ ϵ + || fn0 ||p ∀ k ∈N0.

This implies that f ∈ lp(λ). Now for m ≥ n0, again we consider

k∑
r=0

e−λλr

r!
| fm(r) − f (r)|p = lim

n→∞

k∑
r=0

e−λλr

r!
| fm(r) − fn(r)|p

≤ lim
n→∞

∑
r∈N0

e−λλr

r!
| fm(r) − fn(r)|p

≤ ϵp ∀ k ∈N0.

This implies that fn converges to f in lp(λ).
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Remark 2.3. It can also be easily shown that l∞(λ) is a Banach space under the norm || f ||∞ = sup
n∈N0

e−λλn

n! | f (n)|.

We now give a necessary and sufficient condition for Cϕ to be bounded.

Theorem 2.4. Cϕ is bounded on lp(λ) if and only if there exists a real number M > 0 such that∑
m∈ϕ−1(n)

e−λλm

m!
≤M

e−λλn

n!
∀ n ∈N0.

Proof. If Cϕ is bounded, then∑
m∈ϕ−1(n)

e−λλm

m!
= ||Cϕ(χn)||pp

≤ ||Cϕ||pp||χn||pp

= ||Cϕ||pp
e−λλn

n!
.

Now put M = ||Cϕ||pp, then we get desired condition. Conversely, assume there exists M > 0 such that∑
m∈ϕ−1(n)

e−λλm

m!
≤M

e−λλn

n!
∀n ∈N0.

Then,

||Cϕ( f )||pp = || f ◦ ϕ||
p
p

= ||
∑

n∈N0

f (n)χϕ−1(n)||pp

=
∑

n∈N0

| f (n)|p(
∑

m∈ϕ−1(n)

e−λλm

m!
)

≤
∑

n∈N0

| f (n)|p(M
e−λλn

n!
)

=M|| f ||pp
i.e.

||Cϕ( f )||pp ≤M|| f ||pλ ∀ f ∈ lp(λ).

We now give an example of a selfmap ϕ such that Cϕ is composition operator.

Example 2.5. Define

ϕ(n) =

n, if n is even
n − 1, if n is odd.

Then,∑
m∈ϕ−1(2n)

e−λλm

m!
=

e−λλ2n

2n!
(1 +

λ
2n + 1

)
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Since λ is fixed so, by Archimedian property, there exists a natural number N such that

λ
2n + 1

≤ 1∀ n ≥ N.

so ∑
m∈ϕ−1(2n)

e−λλm

m!
=

∑
m∈{2n,2n+1}

e−λλm

m!

=
e−λλ2n

2n!
(1 +

λ
2n + 1

)

≤ 2
e−λλ2n

2n!
.

Now we choose M = max(1 + λ, 2). Thus∑
m∈ϕ−1(n)

e−λλm

m!
≤M

e−λλn

n!
.

Consider

||Cϕ( f )||pp = ||
∑

n∈N0

f (n)χϕ−1(n)||pp

=
∑

even n∈N0

| f (n)|p(
∑

m∈ϕ−1(n)

e−λλm

m!
)

≤
∑

even n∈N0

| f (n)|p(M
e−λλn

n!
)

≤M
∑

n∈N0

| f (n)|p e−λλn

n!

=M|| f ||pp.
We also give an example of a selfmap ϕ such that Cϕ is a composition operator on lp(λ) but Cϕ is not
composition operator on lp.

Example 2.6. Define ϕ :N0 →N0 such that

ϕ(n) =

0, if n is even
n, otherwise.

Since cardinality of ϕ−1(0) is not finite so Cϕ is not bounded on lp. However, Cϕ is bounded on lp(λ) as follows.
If n ∈ ϕ(N0) is odd, then∑

m∈ϕ−1(n)

e−λλm

m!
=

e−λλn

n!
.

If n ∈ ϕ(N0) is even that is n = 0, then∑
m∈ϕ−1(0)

e−λλm

m!
≤ 1.

Thus for M = max(1, eλ) we have∑
m∈ϕ−1(n)

e−λλm

m!
≤M

e−λλn

n!
∀ n ∈N0.
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3. Null and range spaces of Cϕ

In this section we determine the null space and range space of Cϕ. We further determine the conditions
on ϕ under which Cϕ is injective and surjective. Sequence space version of following results can be found
in [9].

Proposition 3.1. Let Cϕ be a composition operator on lpλ induced by a selfmap ϕ onN0. Then null space N(Cϕ) of
Cϕ is given by

N(Cϕ) = { f ∈ lp(λ) : f |ϕ(N0) = 0}.

Proof.

f ∈ N(Cϕ) ⇐⇒ Cϕ( f ) = 0
⇐⇒ f ◦ ϕ = 0
⇐⇒ f |ϕ(N0) = 0

Next, we find the range space of a composition operator.

Theorem 3.2. Let Cϕ be a composition operator on lp(λ) induced by a selfmap ϕ onN0. Then range space R(Cϕ) of
Cϕ is given by

R(Cϕ) = { f ∈ lp(λ) :
∑

m∈ϕ(N0)
n∈ϕ−1(m)

f (n)χm ∈ lp(λ) and f |ϕ−1(m) is constant ∀m ∈ ϕ(N0)}.

Proof. Let f ∈ R(Cϕ). There exists 1 ∈ lp(λ) such that Cϕ(1) = f . This implies f |ϕ−1(m) is constant ∀m ∈ ϕ(N0).
Now we show that

∑
m∈ϕ(N0)
n∈ϕ−1(m)

f (n)χm ∈ lp(λ).

Consider

||
∑

m∈ϕ(N0)
n∈ϕ−1(m)

f (n)χm||pp =
∑

m∈ϕ(N0)
n∈ϕ−1(m)

e−λλm

m!
| f (n)|p

=
∑

m∈ϕ(N0)

e−λλm

m!
|1(m)|p

≤ ||1||pp.

Since 1 ∈ lp(λ) so
∑

m∈ϕ(N0)
n∈ϕ−1(m)

f (n)χm ∈ lp(λ). Hence,

R(Cϕ) ⊆ { f ∈ lp(λ) :
∑

m∈ϕ(N0)
n∈ϕ−1(m)

f (n)χm ∈ lp(λ), f |ϕ−1(m) is constant ∀m ∈ ϕ(N0)}.

Conversely, let f ∈ lp(λ) such that f |ϕ−1(m) be constant ∀m ∈ ϕ(N0) and
∑

m∈ϕ(N0)
n∈ϕ−1(m)

f (n)χm ∈ lp(λ) .

Now define

1(m) =

 f (n), if n ∈ ϕ−1(m)
0, otherwise .
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Clearly, for n ∈N0

Cϕ(1)(n) = (1 ◦ ϕ)(n)
= 1(ϕ(n)))
= f (n).

This implies that Cϕ(1) = f .We claim that 1 ∈ lp(λ). Clearly,

||1||pp =
∑

m∈N0

e−λλm

m!
|1(m)|p

=
∑

m∈ϕ(N0)

e−λλm

m!
|1(m)|p

=
∑

m∈ϕ(N0)
n∈ϕ−1(m)

e−λλm

m!
| f (n)|p

= ||
∑

m∈ϕ(N0)
n∈ϕ−1(m)

f (n)χm||pp < ∞.

Thus 1 ∈ lp(λ). Hence f ∈ R(Cϕ)

In [5], Cima, Thomson, and Wogen gave a necessary and sufficient condition for a composition operator on
Hardy space H2(D) to have a closed range. In [10], Zorboska characterized the composition operators with
closed range on H2. In [3], Cao and Sun gave a necessary and sufficient condition for Cϕ on Hardy space
H2(Bn) to have a closed range. Recently, Guangfu et al [2] determine a necessary condition for Cϕ to have a
closed range on a Banach space of analytic functions which includes the Bloch space. We give a sufficient
and a necessary condition for Cϕ to have a closed range on lp(λ).

Remark 3.3. It is known that range space of a composition operator Cϕ on lp is closed [9]. However it is interesting
to note that range space of a composition operator Cϕ on lp(λ) need not be closed in general. Consider the following
example.
Let

ϕ(n) =

0, if n = 0, 1
n − 1, otherwise ,

f (n) =


( (ϕ(n)−1)!
λϕ(n)

) 1
p
, if ϕ(n) ≥ 1

0, otherwise

and

fk(n) =


( (ϕ(n)−1)!
λϕ(n)

) 1
p
, if 1 ≤ ϕ(n) ≤ k

0, otherwise.

Then it is easy to see that f ∈ lp(λ), f < R(Cϕ) but sequence { fk}k∈N is in R(Cϕ) and converges to f in lp(λ). Hence,
range space is not closed for the above choice of ϕ.

A sufficient condition for range space of a composition operator Cϕ on lp(λ) to be closed.



Dilip Kumar, Harish Chandra / FAAC 8 (1) (2016), 21–37 28

Theorem 3.4. If ϕ(n) ≥ n for all but finitely many n ∈N0, then R(Cϕ) is closed.

Proof. Let f ∈ R(Cϕ). There exists a sequence { fn}n∈N0 ∈ R(Cϕ) such that || fn − f ||p → 0 as n → ∞. Since
{ fn}n∈N0 is Cauchy, so for given ϵ > 0 there exists a positive integer n0 such that

|| fn − fr||p < ϵ ∀n, r ≥ n0.

Since fn is constant on ϕ−1(m) so is f . Now it remains to show∑
m∈ϕ(N0)
n∈ϕ−1(m)

f (n)χm ∈ lp(λ).

First notice that we can choose m0 ∈ ϕ(N0) such that

λ
m0
< 1⇒ λ

m

m!
≤ λ

n

n!
∀m ≥ n ≥ m0.

Now consider

||
∑

m∈ϕ(N0)
n∈ϕ−1(m)

f (n)χm||pp =
∑

m∈ϕ(N0)
n∈ϕ−1(m)

e−λλm

m!
| f (n)|p

=
∑

m∈ϕ(N0)
n∈ϕ−1(m),m<n

e−λλm

m!
| f (n)|p +

∑
m∈ϕ(N0)

n∈ϕ−1(m),m≥n

e−λλm

m!
| f (n)|p

=
∑

m∈ϕ(N0)
n∈ϕ−1(m),m<n

e−λλm

m!
| f (n)|p +

∑
m∈ϕ(N0),m<m0

n∈ϕ−1(m),m≥n

e−λλm

m!
| f (n)|p +

∑
m∈ϕ(N0),m≥m0

n∈ϕ−1(m),m≥n

e−λλm

m!
| f (n)|p

=
∑

m∈ϕ(N0)
n∈ϕ−1(m),m<n

e−λλm

m!
| f (n)|p +

∑
m∈ϕ(N0),m<m0

n∈ϕ−1(m),m≥n

e−λλm

m!
| f (n)|p +

∑
m∈ϕ(N0),m≥m0

n∈ϕ−1(m),m≥m0>n

e−λλm

m!
| f (n)|p

+
∑

m∈ϕ(N0),m≥m0

n∈ϕ−1(m),m≥n≥m0

e−λλm

m!
| f (n)|p

≤
∑

m∈ϕ(N0)
n∈ϕ−1(m),m<n

e−λλm

m!
| f (n)|p +

∑
m∈ϕ(N0),m<m0

n∈ϕ−1(m),m≥n

e−λλm

m!
| f (n)|p +

∑
m∈ϕ(N0),m≥m0

n∈ϕ−1(m),m≥m0>n

e−λλm

m!
| f (n)|p

+
∑

m∈ϕ(N0),m≥m0

n∈ϕ−1(m),m≥n≥m0

e−λλn

n!
| f (n)|p.

In the above expression first sum is finite since ϕ(n) < n for only finitely many n ∈N0. Second sum is finite
since there are only finitely many m′s such that m < m0. Third sum is finite since there are only finitely n′s
such that n < m0. Fourth sum is finite since f ∈ lp(λ). Thus f ∈ R(Cϕ) and hence range space is closed.

Remark 3.5. It is interesting to note that example 2.6 also shows that condition taken in theorem 3.4 is not necessary.
Clearly for infinitely many even n ∈ N0 we have ϕ(n) < n. Also, range space of composition operator Cϕ is
R(Cϕ) = { f ∈ lp(λ) : f |ϕ−1(m) = constant ∀ m ∈ ϕ(N0)}. Now it is easy to verify that R(Cϕ) is closed.

Following corollary is an immediate consequence of theorem 3.4.
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Corollary 3.6. Let Cϕ be a composition operator on lp(λ) induced by an injective selfmap ϕ on N0. If ϕ(n) ≥ n for
all but finitely many n ∈N0, then Cϕ is surjective.

We now give necessary condition for range space of a composition operator Cϕ on lp(λ) to be closed.

Theorem 3.7. If range R(Cϕ)is closed, then series
∑

m<n
n∈ϕ−1(m)
m∈ϕ(N0)

1
m is convergent.

Proof. We proceed by contraposition. Assume there exists a sequence {mk}k∈N ⊆ ϕ(N0) with ϕ(nk) < nk for
nk ∈ ϕ−1(mk) such that

∑
k≥1

1
ϕ(nk) diverges. Define f :N0 → C such that

f (n) =


( (ϕ(nk)−1)!
λϕ(nk )

) 1
p
, if n = nk 1 ≤ ϕ(nk)

0, otherwise.

First we verify that f ∈ lp(λ). Infact

|| f ||pp =
∑

n∈N0

| f (n)|p e−λλn

n!

=
∑
k≥1

| f (nk)|p e−λλnk

nk!

=
∑
k≥1

(ϕ(nk) − 1)!
λϕ(nk)

e−λλnk

nk!
(1)

We choose an n0 ∈N0 such that λn0
< 1. Therefore

λm

m!
≤ λ

n

n!
∀m ≥ n ≥ n0.

We split the sum (1) as follows

=
∑

1≤k<n0

(ϕ(nk) − 1)!
λϕ(nk)

e−λλnk

nk!
+

∑
n0≤k

(ϕ(nk) − 1)!
λϕ(nk)

e−λλnk

nk!
.

Since ϕ(nk) ≤ nk − 1 for all k ≥ 1, we have

≤
∑

1≤k<n0

(ϕ(nk) − 1)!
λϕ(nk)

e−λλnk

nk!
+

∑
n0≤k

(ϕ(nk) − 1)!
λϕ(nk)

λ
nk

e−λλϕ(nk)

(ϕ(nk))!

=
∑

1≤k<n0

(ϕ(nk) − 1)!
λϕ(nk)

e−λλnk

nk!
+ λe−λ

∑
k≥1

1
nkϕ(nk)

< ∞.

Now claim that f < R(Cϕ).

||
∑

m∈ϕ(N0)
n∈ϕ−1(m)

f (n)χm||pp =
∑

m∈ϕ(N0)
n∈ϕ−1(m)

| f (n)|p e−λλm

m!

≥
∑
k≥1

| f (nk)|p e−λλϕ(nk)

ϕ(nk)!

=
∑
k≥1

(ϕ(nk) − 1)!
λϕ(nk)

e−λλϕ(nk)

ϕ(nk)!

=
∑
k≥1

e−λ

ϕ(nk)
.
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The above series diverges by assumption. Now define a sequence fr :N0 → C such that

fr(n) =


( (ϕ(nk)−1)!
λϕ(nk )

) 1
p
, if n = nk 1 ≤ ϕ(nk) ≤ ϕ(nr)

0, otherwise.

It is easy to see that fr ∈ R(Cϕ). Also sequence { fr}r∈N converges to f since

|| fr − f ||p =
( ∑

n∈N0

e−λλn

n!
| fr(n) − f (n)|p

) 1
p

=
( ∑

k≥r+1

e−λλnk

nk!
| f (nk)|p

) 1
p → 0 as r→∞.

Therefore, f ∈ R(Cϕ) but f < R(Cϕ). Hence, range space is not closed.

Remark 3.8. Following example shows that condition taken in theorem 3.7 is not sufficient. Define ϕ : N0 → N0
such that

ϕ(n) =



1, if 0 ≤ n ≤ 22

22, if 22 < n ≤ 32

32, if 32 < n ≤ 42

...

k2, if k2 < n ≤ (k + 1)2

..., ... .

Define f :N0 → C such that

f (n) =
(

1

m
∑

i∈ϕ−1(m)

e−λλn

n!

) 1
p

i f f or some m ∈ ϕ(N0), n ∈ ϕ−1(m).

To check f ∈ lp(λ), consider

|| f ||pp =
∑

n∈N0

| f (n)|p e−λλn

n!

=
∑

m∈ϕ(N0)

( ∑
n∈ϕ−1(m)

| f (n)|p e−λλn

n!

)
=

∑
m∈ϕ(N0)

1

m
∑

n∈ϕ−1(m)

e−λλn

n!

( ∑
n∈ϕ−1(m)

e−λλn

n!

)
=

∑
m∈ϕ(N0)

1
m
< ∞.

Now we define sequence fk :N0 → C such that

fk(n) =

 f (n), if n ≤ k2

0, otherwise
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Then it is easy to see that fk ∈ R(Cϕ) and sequence { fk}k∈N converges to f in lp(λ). Finally we show that f < R(Cϕ).
Consider

||
∑

m∈ϕ(N0)
n∈ϕ−1(m)

f (n)χm||pp =
∑

m∈ϕ(N0)
n∈ϕ−1(m)

| f (n)|p e−λλm

m!

=
∑

m∈ϕ(N0)

1

m
∑

n∈ϕ−1(m)

e−λλn

n!

e−λλm

m!

=
∑

m∈ϕ(N0)

1
m

∑
n∈ϕ−1(m)

λn

n!

λm

m!
(2)

We choose k2
0 ∈ ϕ(N0) such that λn < 1 ∀n ≥ k0. Now for k2 ≥ k2

0 consider

1
k2

∑
n∈ϕ−1(k2)

λn

n!

λk2

k2!
=

1

k2
(
λk2+1

k2+1! +
λk2+2

k2+2! + ... +
λ(k+1)2

(k+1)2!

) λk2

k2!

≥ 1

k2
(
λk2+1

k2+1! +
λk2+1

k2+1! + ...(k + 2)times
) λk2

k2!

=
1

k2 λk2+1

k2+1! (k + 2)

λk2

k2!

=
k2 + 1
λk2(k + 2)

>
1

λ(k + 2)
. (3)

Now by (3) and (2)

∑
m∈ϕ(N0)

1
m

∑
n∈ϕ−1(m)

λn

n!

λm

m!
=

k0∑
k=1

1
k2

∑
n∈ϕ−1(k2)

λn

n!

λk2

k2!
+

∞∑
k=k0+1

1
k2

∑
n∈ϕ−1(k2)

λn

n!

λk2

k2!

>
k0∑

k=1

1
k2

∑
n∈ϕ−1(k2)

λn

n!

λk2

k2!
+

∞∑
k=k0+1

1
λ(k + 2)

= ∞.

It follows that f < R(Cϕ). Hence, range is not closed for this choice of ϕ.

Following corollary is a natural consequence of theorem 3.7.

Corollary 3.9. Let Cϕ be a composition operator on lp(λ) induced by an injective selfmap ϕ on N0. If Cϕ is surjective,
then series

∑
m<n

n∈ϕ−1(m)
m∈ϕ(N0)

1
m is convergent.

Now we characterize injectivity of Cϕ in terms of selfmap which induces composition operator.

Proposition 3.10. Let Cϕ be a composition operator on lp(λ) induced by an selfmap ϕ on N0. Then, Cϕ is injective
if and only if ϕ is surjective.
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Proof. Suppose ϕ is surjective. Let Cϕ( f ) = Cϕ(1) f or some f , 1 ∈ lp(λ). This implies

f (ϕ(n)) = 1(ϕ(n)) f or each n ∈N0

⇒ f = 1 ∵ ϕ is surjective
⇒ Cϕ is one − one.

Conversely, suppose that Cϕ is injective. It follows that for each n ∈N0

Cϕ(χn) , 0⇒ χϕ−1(n) , 0.

Hence, ϕ−1(n) is non empty for each n ∈N0. Thus ϕ is surjective.

4. Null and range spaces of C∗
ϕ

In this section we determine explicit expression for the adjoint C∗ϕ of composition operator Cϕ on Hilbert
space l2(λ) with inner product

⟨
f , 1

⟩
=

∑
n∈N0

f (n)1(n)
e−λλn

n!
∀ f , 1 ∈ l2(λ).

We determine the null space and range space of C∗ϕ on l2(λ) and prove that range space of composition
operator C∗ϕ is closed. We further determine the conditions on ϕ under which Cϕ is injective and surjective.

Proposition 4.1. Let Cϕ be a composition operator on l2(λ). If f =
∑

n∈N0

f (n)χn ∈ l2(λ), then C∗ϕ( f ) =
∑

n∈N0

f (n)ξn.χϕ(n),

where . denotes point-wise operation and ξn(m) = λ
n

n!
m!
λm ∀ m ∈N0.

Proof. By definition of adjoint of an operator, we have

⟨ f ,C∗ϕ(1)⟩ = ⟨Cϕ( f ), 1⟩ ∀ f , 1 ∈ l2(λ).

In particular, we have

⟨χm,C∗ϕ(χn)⟩ = ⟨Cϕ(χm), χn⟩ ∀ m,n ∈N0

=⇒ e−λλm

m!
C∗ϕ(χn)(m) =

e−λλn

n!
Cϕ(χm)(n) ∀ m,n ∈N0

=⇒ λm

m!
C∗ϕ(χn)(m) =

λn

n!
Cϕ(χm)(n) ∀ m,n ∈N0

=⇒ C∗ϕ(χn)(m) =
λn

n!
m!
λmχϕ(n)(m) ∀ m,n ∈N0

=⇒ C∗ϕ(χn) = ξn.χϕ(n) ∀ n ∈N0.

Now we determine null space of the adjoint C∗ϕ.

Theorem 4.2. Let Cϕ be a composition operator on l2(λ), then the null space N(C∗ϕ) of C∗ϕ is given by

N(C∗ϕ) = { f ∈ l2(λ) :
∑

n∈ϕ−1(m)

f (n)
λn

n!
= 0, m ∈ ϕ(N0)}.
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Proof. We have

C∗ϕ( f ) =
∑

n∈N0

f (n)ξm.χϕ(n)

=
∑

n∈N0

f (n)
λn

n!
ϕ(n)!
λϕ(n)

χϕ(n)

=
∑

m∈ϕ(N0)

( ∑
n∈ϕ−1(m)

f (n)
λn

n!

) m!
λmχm. (4)

Now if f ∈ N(C∗ϕ), then C∗ϕ( f ) = 0. Therefore by (4) we get

∑
n∈ϕ−1(m)

f (n)
λn

n!
= 0 f or m ∈ ϕ(N0).

Conversely, if f ∈ l2(λ) be such that
∑

n∈ϕ−1(m)
f (n)λ

n

n! = 0. Then it is easy to see that f ∈ N(C∗ϕ).

The following result determines range space of C∗ϕ under some restricted condition. Recall that an operator
is said to be bounded below if there exists M > 0 such that ||Cϕ f || ≥M|| f || for every f ∈ l2(λ).

Theorem 4.3. Let Cϕ be a bounded below composition operator on l2(λ). Then the range space R(C∗ϕ) of C∗ϕ is given
by R(C∗ϕ) = { f ∈ l2(λ) : f |N0 \ ϕ(N0) = 0}.

Proof. Suppose f ∈ R(C∗ϕ). Then there is a function 1 ∈ l2(λ) such that C∗ϕ(1) = f . Let 1 =
∑

n∈N0
1(n)χn. Then

C∗ϕ(1) =
∑

n∈N0

1(n)ξn.χϕ(n).

Hence for each m ∈ N0 \ ϕ(N0) f (m) = C∗ϕ(1)(m) = 0. Conversely, assume that f ∈ l2(λ) and f (m) = 0 for
each m ∈N0 \ ϕ(N0). Let αn =

∑
r∈ϕ−1(n)

ξr(n). Now define

1 =
∑

m∈N0,ϕ(m)=n

f (n)
αn
χm.

We claim that 1 ∈ l2(λ) and C∗ϕ(1) = f . Since Cϕ is bounded below it follows

∑
r∈ϕ−1(n)

λr

r!
= ||Cϕ(χn)|| ≥M||χn|| =

λn

n!
.
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Consider

||1||22 =
∑

m∈N0,ϕ(m)=n

| f (n)|2
αn

2

e−λλm

m!

=
∑

n∈ϕ(N0)

| f (n)|2
αn

2

( ∑
m∈ϕ−1(n)

e−λλm

m!

)
=

∑
n∈ϕ(N0)

| f (n)|2
αn

2

( ∑
m∈ϕ−1(n)

e−λλm

m!

)
=

∑
n∈ϕ(N0)

| f (n)|2λ
n

n!

λn

n!( ∑
r∈ϕ−1(n)

λr

r! )
)2

( ∑
m∈ϕ−1(n)

e−λλm

m!

)

=
∑

n∈ϕ(N0)

| f (n)|2λ
n

n!

e−λλn

n!∑
r∈ϕ−1(n)

λr

r!

≤M
∑

n∈ϕ(N0)

| f (n)|2 e−λλn

n!

< ∞.

Hence, 1 ∈ l2(λ). Now consider

C∗ϕ(1) =
∑

m∈N0,ϕ(m)=n

f (n)
αn
ξm.χϕ(m)

=
∑

n∈ϕ(N0)

( ∑
m∈ϕ−1(n)

f (n)
αn
ξm.χϕ(m)

)

=
∑

n∈ϕ(N0)

f (n)
( ∑

m∈ϕ−1(n)
ξm(n)

αn

)
χn

=
∑

n∈ϕ(N0)

f (n)χn

= f .

Corollary 4.4. Let Cϕ be a bounded below composition operator on l2(λ). Then R(C∗ϕ) is a closed subspace of l2(λ).

Proof. Let f ∈ R(C∗ϕ). There exists a sequence { fm}m∈N ∈ R(C∗ϕ) such that || fm − f ||2 → 0 as m→∞. Since

fm|N0 \ ϕ(N0) = 0 ∀m ∈N.

Hence, f |N0 \ ϕ(N0) = 0.

We now determine the conditions on selfmap ϕ under which C∗ϕ is injective.

Proposition 4.5. The adjoint C∗ϕ of a composition operator Cϕ is injective if and only if ϕ is injective.
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Proof. Suppose C∗ϕ is injective. We show that ϕ is injective.
Let ϕ(m) = ϕ(n) for some m,n ∈N0.

ϕ(m) = ϕ(n)⇒ ξϕ(m)χϕ(m) = ξϕ(n)χϕ(n)

⇒ C∗ϕ(χm) = C∗ϕ(χn)

⇒ χm = χn (∵ C∗ϕ is injective)

⇒ m = n
⇒ ϕ is injective.

Conversely, assume that ϕ is injective. We show that C∗ϕ is injective. For some f , 1 ∈ l2(λ) suppose

C∗ϕ( f ) = C∗ϕ(1)⇒
∑

n∈N0

f (n)ξnχϕ(n) =
∑

n∈N0

1(n)ξnχϕ(n)

⇒ f (n)ξn(ϕ(n)) = 1(n)ξn(ϕ(n)) ∀ n ∈N0

⇒ f (n) = 1(n) ∀ n ∈N0

⇒ f = 1 ∀ n ∈N0

⇒ C∗ϕ is injective.

We now find sufficient condition for C∗ϕ to be surjective.

Theorem 4.6. Let ϕ : N0 → N0 be surjective. Then, C∗ϕ is surjective if ϕ(n) ≥ n for all but finitely many n ∈N0.

Proof. Let f ∈ l2(λ). Define 1 :N0 →N0 such that 1(n) = f (ϕ(n))ξϕ(n)(n) ∀n ∈N0. Clearly, we have

C∗ϕ(1) =
∑

n∈N0

1(n)ξn(ϕ(n))χϕ(n)

=
∑

n∈N0

f (ϕ(n))χϕ(n)

=
∑

m∈ϕ(N0)

f (m)χm

=
∑

m∈N0

f (m)χm,∵ ϕ is surjective

= f .

We now claim 1 ∈ l2(λ). Consider

||1||22 =
∑

m∈N0

|1(n)|2 e−λλn

n!

=
∑

m∈N0

| f (ϕ(n))|2ξϕ(n)(n)2 e−λλn

n!

=
∑
n∈N0

| f (ϕ(n))|2 e−λλϕ(n)

ϕ(n)!
λϕ(n)

ϕ(n)!
n!
λn . (5)

We choose an n0 ∈N0 such that λn0
< 1. Therefore

λm

m!
≤ λ

n

n!
∀m ≥ n ≥ n0.
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So we split the sum (5) as follows

≤
∑

0≤n<n0

| f (ϕ(n))|2 e−λλϕ(n)

ϕ(n)!
λϕ(n)

ϕ(n)!
n!
λn +

∑
n≥n0

| f (ϕ(n))|2 e−λλϕ(n)

ϕ(n)!

≤
∑

0≤n<n0

| f (ϕ(n))|2 e−λλϕ(n)

ϕ(n)!
λϕ(n)

ϕ(n)!
n!
λn + || f ||

2 < ∞.

Hence, proved that C∗ϕ is surjective.

We give a necessary condition for surjectivity of C∗ϕ.

Theorem 4.7. Let ϕ : N0 → N0 be surjective. Then, C∗ϕ is surjective only if series
∑

m<n
n∈ϕ−1(m)
m∈ϕ(N0)

1
m is convergent.

Proof. On the contrary assume there exists a sequence {nk}k∈N ⊆ N0 such that ϕ(nk) < nk ∀k ≥ 1. Define
f :N0 → C such that

f (n) =


(

(n−2)!
λn−1

) 1
2
, if n ≥ 2

0, otherwise.

It is easy to check that f ∈ l2(λ). Since ϕ is surjective so we have f =
∑

n∈N0

f (ϕ(n))χϕ(n). Now for every 1

which satisfy C∗ϕ(1) = f . We have∑
n∈N0

1(n)ξn(ϕ(n))χϕ(n) =
∑

n∈N0

f (ϕ(n))χϕ(n).

This implies 1(n)ξn(ϕ(n)) = f (ϕ(n))ξn(ϕ(n)) ∀n ∈ N0. It can be written as 1(n) = f (ϕ(n))ξϕ(n)(n) ∀n ∈ N0
since ξm(n)ξn(m) = 1∀m,n ∈N0. Now we claim that 1 < l2(λ). Consider

||1||22 =
∑

n∈ϕ(N0)

|1(n)|2 e−λλn

n!

=
∑

n∈N0

| f (ϕ(n))ξϕ(n)(n)|2 e−λλn

n!

=
∑
ϕ(n)≥n

| f (ϕ(n))|2 e−λλϕ(n)

ϕ(n)!
n
λ
+

∑
ϕ(n)<n

| f (ϕ(n))|2 e−λλϕ(n)

ϕ(n)!
n
λ

≥
∑
k≥1

| f (ϕ(nk))|2 e−λλϕ(nk)

ϕ(nk)!
nk

λ

=
∑
k≥1

(ϕ(n) − 2)!
λϕ(nk)−1

e−λλϕ(nk)

ϕ(nk)!
nk

λ

=
∑
k≥1

nke−λ

ϕ(nk)(ϕ(nk) − 1)

≥
∑
k≥1

e−λ

ϕ(nk) − 1

≥
∑
k≥1

e−λ

ϕ(nk)
= ∞.

This implies that C∗ϕ is not surjective.
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