Functional Analysis, Approximation and Computation 8 (1) (2016), 21–37

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/faac

Composition Operators on Poisson Weighted Sequence Spaces

Dilip Kumar^a, Harish Chandra^b

^aDepartment of Mathematics, Banaras Hindu University, Varanasi-221005, India ^bDepartment of Mathematics, Banaras Hindu University, Varanasi-221005, India

Abstract. The aim of this paper is to foster interaction between operator theory and probability. In this paper, we introduce Poisson weighted sequence space $l^p(\lambda)$ { $\lambda > 0, 1 \le p \le \infty$ } and observe that it is a Banach space. Also find a necessary and sufficient condition for composition transformation C_{ϕ} to be bounded. Then we pass to characterize null space and range space of composition operators. We establish a necessary and a sufficient condition for range space of C_{ϕ} to be closed. Further, we determine condition under which composition operator is injective or surjective. Finally, we report an explicit expression for the adjoint operator C_{ϕ}^* of composition operators on Hilbert space $l^2(\lambda)$ and study the above mentioned properties for C_{ϕ}^* on $l^2(\lambda)$.

1. Introduction

The notion of Composition operators appeared implicitly in the work of Hardy and Littlewood [6] in 1925. A systematic study of this class of operators began by Ryff [8] and Nordgren [4]. The term Composition Operators was coined by Nordgren [4] in his paper entitled 'Composition Operators'. Ever since, this class of operators have enjoyed constant attention. An excellent overview of them is given in [7], [11].

Definition 1.1. Let X be a non-empty set and V(X) be a linear space of complex valued functions on X under pointwise addition and scalar multiplication. If ϕ is a selfmap on X into itself such that composition fo ϕ belongs to V(X) for each $f \in V(X)$, then ϕ induces a linear transformation on V(X) into itself given by $C_{\phi}f = fo\phi$. The transformation C_{ϕ} is known as composition transformation. When V(X) is a Banach space and C_{ϕ} is a bounded linear operator on V(X), then C_{ϕ} is called composition operator.

²⁰¹⁰ Mathematics Subject Classification. Primary 47B37; Secondary 47A05, 47B33

Keywords. Sequence space; Weighted sequence space; Composition operator; Adjoint of composition operator; Bounded below operator; Poisson distribution; Closed range.

Received: 17 May 2015; Accepted: 17 August 2015

Communicated by Ivana Djolović

Email addresses: dilipmathsbhu@gmail.com (Dilip Kumar), harishc@bhu.ac.in (Harish Chandra)

1.1. Notation and Terminology

In this paper, \mathbb{N}_0 and \mathbb{C} denote the set of all non-negative integers and the set of all complex numbers respectively. Further $\chi_n : \mathbb{N}_0 \to \mathbb{N}_0$ is defined as

$$\chi_n(m) = \begin{cases} 1, & \text{if } m = n \\ 0, & otherwise. \end{cases}$$

Also, whenever *p* occurs alone we assume that $1 \le p < \infty$; and whenever *p* and *q* occur together, we assume that both are greater than 1 and that $\frac{1}{p} + \frac{1}{q} = 1$.

1.2. Poisson distribution

Poisson distribution is named after French Mathematician Simon-Denis Poisson, who introduced it in 1837. For the details of Poisson distribution we refer to [1].

Definition 1.2. Poisson distributation with parameter $\lambda > 0$ is defined as $w(n) = e^{-\lambda} \frac{\lambda^n}{n!}$, where $n \in \mathbb{N}_0$.

Definition 1.3. For $\lambda > 0$ we define Poisson weighted sequence space as

$$l^{p}(\lambda) = \{ f : \mathbb{N}_{0} \to \mathbb{C} | \sum_{n \in \mathbb{N}_{0}} \frac{e^{-\lambda} \lambda^{n}}{n!} | f(n) |^{p} < \infty \}$$

and

$$l^{\infty}(\lambda) = \{f: \mathbb{N}_0 \to \mathbb{C} | \sup_{n \in \mathbb{N}_0} \frac{e^{-\lambda} \lambda^n}{n!} |f(n)| < \infty \}.$$

2. Main Results

The following proposition shows that $l^p(\lambda)$ is a normed linear space for $\lambda > 0$.

Proposition 2.1. $l^p(\lambda) = \{f : \mathbb{N}_0 \to \mathbb{C} | \sum_{n \in \in \mathbb{N}_0} \frac{e^{-\lambda}\lambda^n}{n!} |f(n)|^p < \infty \}$ is normed linear space with norm

$$||f||_p = \Big(\sum_{n \in \mathbb{N}_0} \frac{e^{-\lambda} \lambda^n}{n!} |f(n)|^p\Big)^{1/p}.$$

Proof. We prove only triangle inequality as verification of other properties is straightforward. For p = 1 the result is immediate. Let $1 and <math>f, g \in l^p(\lambda)$. Consider

$$\begin{split} \sum_{n \in \mathbb{N}_{0}} |f(n) + g(n)|^{p} \frac{e^{-\lambda} \lambda^{n}}{n!} &\leq \sum_{n \in \mathbb{N}_{0}} \frac{e^{-\lambda} \lambda^{n}}{n!} |f(n) + g(n)|^{p-1} (|f(n)| + |g(n)|) \\ &= \sum_{n \in \mathbb{N}_{0}} \left(\frac{e^{-\lambda} \lambda^{n}}{n!}\right)^{\frac{1}{p}} |f(n)| |f(n) + g(n)|^{p-1} \left(\frac{e^{-\lambda} \lambda^{n}}{n!}\right)^{\frac{1}{q}} \\ &+ \sum_{n \in \mathbb{N}_{0}} |g(n)| \left(\frac{e^{-\lambda} \lambda^{n}}{n!}\right)^{\frac{1}{p}} |f(n) + g(n)|^{p-1} \left(\frac{e^{-\lambda} \lambda^{n}}{n!}\right)^{\frac{1}{q}} \\ &\leq \left(\sum_{n \in \mathbb{N}_{0}} \left(\frac{e^{-\lambda} \lambda^{n}}{n!} |f(n)|^{p}\right)^{\frac{1}{p}} \left(\sum_{n \in \mathbb{N}_{0}} |f(n) + g(n)|^{p} \left(\frac{e^{-\lambda} \lambda^{n}}{n!}\right)\right)^{\frac{1}{q}} \\ &+ \left(\sum_{n \in \mathbb{N}_{0}} \left(\frac{e^{-\lambda} \lambda^{n}}{n!} |g(n)|^{p}\right)^{\frac{1}{p}} \left(\sum_{n \in \mathbb{N}_{0}} |f(n) + g(n)|^{p} \left(\frac{e^{-\lambda} \lambda^{n}}{n!}\right)\right)^{\frac{1}{q}}. \end{split}$$

Last inequality is obtained by Holder's inequality. Thus

$$\sum_{n \in \mathbb{N}_0} |f(n) + g(n)|^p \frac{e^{-\lambda} \lambda^n}{n!} \leq ||f||_p (\sum_{n \in \mathbb{N}_0} |f(n) + g(n)|^p (\frac{e^{-\lambda} \lambda^n}{n!}))^{\frac{1}{q}} + ||g||_p (\sum_{n \in \mathbb{N}_0} |f(n) + g(n)|^p (\frac{e^{-\lambda} \lambda^n}{n!}))^{\frac{1}{q}}$$

This implies

$$\left(\sum_{n \in \mathbb{N}_0} |f(n) + g(n)|^p \frac{e^{-\lambda} \lambda^n}{n!}\right)^{1 - \frac{1}{q}} \le ||f||_p + ||g||_p$$

i.e.

$$||f + g||_p \le ||f||_p + ||g||_p.$$

Now we show that $l^p(\lambda)$ is a Banach space for $\lambda > 0$.

Proposition 2.2. $l^p(\lambda)$ is a Banach space with the norm $||f||_p = \left(\sum_{n \in \mathbb{N}_0} \frac{e^{-\lambda_A n}}{n!} |f(n)|^p\right)^{1/p}$.

Proof. Let $\{f_n\}_{n \in \mathbb{N}}$ be a Cauchy sequence in $l^p(\lambda)$. For given $\epsilon > 0$, there exists a positive integer n_0 such that

$$||f_n - f_m||_p < \epsilon \ \forall \ m, n \ge n_0$$

i.e.

$$\left(\sum_{r\in\mathbb{N}_0}\frac{e^{-\lambda}\lambda^r}{r!}|f_n(r)-f_m(r)|^p\right)^{1/p}<\epsilon\;\forall\;m,n\geq n_0.$$

This implies that sequence of scalars $\{f_n(r)\}_{n \in \mathbb{N}}$ is a Cauchy sequence in \mathbb{C} for each $r \in \mathbb{N}_0$. Since \mathbb{C} is complete, sequence $\{f_n(r)\}_{n \in \mathbb{N}}$ is convergent for each $r \in \mathbb{N}_0$. We denote $f(r) = \lim_{n \to \infty} f_n(r)$. Let us take $f = \sum_{r \in \mathbb{N}_0} f(r)\chi_r$ and consider

$$\left(\sum_{r=0}^{k} \frac{e^{-\lambda} \lambda^{r}}{r!} |f(r)|^{p}\right)^{\frac{1}{p}} = \left(\lim_{n \to \infty} \left(\sum_{r=0}^{k} \frac{e^{-\lambda} \lambda^{r}}{r!} |f_{n}(r)|^{p}\right)^{\frac{1}{p}}$$

$$\leq \lim_{n \to \infty} \left(\sum_{r=0}^{k} \frac{e^{-\lambda} \lambda^{r}}{r!} |f_{n}(r) - f_{n_{0}}(r)|^{p}\right)^{\frac{1}{p}} + \left(\sum_{r=0}^{k} \frac{e^{-\lambda} \lambda^{r}}{r!} |f_{n_{0}}(r)|^{p}\right)^{\frac{1}{p}}$$

$$\leq \lim_{n \to \infty} \left(\sum_{r \in \mathbb{N}_{0}} \frac{e^{-\lambda} \lambda^{r}}{r!} |f_{n}(r) - f_{n_{0}}(r)|^{p}\right)^{\frac{1}{p}} + \left(\sum_{r \in \mathbb{N}_{0}} \frac{e^{-\lambda} \lambda^{r}}{r!} |f_{n_{0}}(r)|^{p}\right)^{\frac{1}{p}}$$

$$\leq \epsilon + ||f_{n_{0}}||_{p} \forall k \in \mathbb{N}_{0}.$$

This implies that $f \in l^p(\lambda)$. Now for $m \ge n_0$, again we consider

$$\sum_{r=0}^{k} \frac{e^{-\lambda} \lambda^{r}}{r!} |f_{m}(r) - f(r)|^{p} = \lim_{n \to \infty} \sum_{r=0}^{k} \frac{e^{-\lambda} \lambda^{r}}{r!} |f_{m}(r) - f_{n}(r)|^{p}$$
$$\leq \lim_{n \to \infty} \sum_{r \in \mathbb{N}_{0}} \frac{e^{-\lambda} \lambda^{r}}{r!} |f_{m}(r) - f_{n}(r)|^{p}$$
$$\leq \epsilon^{p} \forall k \in \mathbb{N}_{0}.$$

This implies that f_n converges to f in $l^p(\lambda)$. \Box

Remark 2.3. It can also be easily shown that $l^{\infty}(\lambda)$ is a Banach space under the norm $||f||_{\infty} = \sup_{n \in \mathbb{N}_0} \frac{e^{-\lambda} \lambda^n}{n!} |f(n)|$. We now give a necessary and sufficient condition for C_{ϕ} to be bounded.

Theorem 2.4. C_{ϕ} is bounded on $l^{p}(\lambda)$ if and only if there exists a real number M > 0 such that

$$\sum_{m \in \phi^{-1}(n)} \frac{e^{-\lambda} \lambda^m}{m!} \le M \frac{e^{-\lambda} \lambda^n}{n!} \, \forall \, n \in \mathbb{N}_0.$$

Proof. If C_{ϕ} is bounded, then

$$\sum_{m \in \phi^{-1}(n)} \frac{e^{-\lambda} \lambda^m}{m!} = \left\| C_{\phi}(\chi_n) \right\|_p^p$$
$$\leq \left\| C_{\phi} \right\|_p^p \|\chi_n\|_p^p$$
$$= \left\| C_{\phi} \right\|_p^p \frac{e^{-\lambda} \lambda^n}{n!}.$$

Now put $M = ||C_{\phi}||_{p}^{p}$, then we get desired condition. Conversely, assume there exists M > 0 such that

$$\sum_{m \in \phi^{-1}(n)} \frac{e^{-\lambda} \lambda^m}{m!} \le M \frac{e^{-\lambda} \lambda^n}{n!} \,\,\forall n \in \mathbb{N}_0.$$

Then,

$$\begin{split} \|C_{\phi}(f)\|_{p}^{p} &= \|f \circ \phi\|_{p}^{p} \\ &= \|\sum_{n \in \mathbb{N}_{0}} f(n)\chi_{\phi^{-1}(n)}\|_{p}^{p} \\ &= \sum_{n \in \mathbb{N}_{0}} |f(n)|^{p} (\sum_{m \in \phi^{-1}(n)} \frac{e^{-\lambda}\lambda^{m}}{m!}) \\ &\leq \sum_{n \in \mathbb{N}_{0}} |f(n)|^{p} (M\frac{e^{-\lambda}\lambda^{n}}{n!}) \\ &= M\|f\|_{p}^{p} \end{split}$$

i.e.

$$\|C_{\phi}(f)\|_{p}^{p} \leq M \|f\|_{\lambda}^{p} \ \forall \ f \in l^{p}(\lambda).$$

We now give an example of a selfmap ϕ such that C_{ϕ} is composition operator.

Example 2.5. Define

$$\phi(n) = \begin{cases} n, & \text{if } n \text{ is even} \\ n-1, & \text{if } n \text{ is odd.} \end{cases}$$

Then,

$$\sum_{m \in \phi^{-1}(2n)} \frac{e^{-\lambda} \lambda^m}{m!} = \frac{e^{-\lambda} \lambda^{2n}}{2n!} (1 + \frac{\lambda}{2n+1})$$

Since λ is fixed so, by Archimedian property, there exists a natural number N such that

$$\frac{\lambda}{2n+1} \le 1 \forall \ n \ge N.$$

so

$$\sum_{m \in \phi^{-1}(2n)} \frac{e^{-\lambda} \lambda^m}{m!} = \sum_{m \in \{2n, 2n+1\}} \frac{e^{-\lambda} \lambda^m}{m!}$$
$$= \frac{e^{-\lambda} \lambda^{2n}}{2n!} (1 + \frac{\lambda}{2n+1})$$
$$\leq 2 \frac{e^{-\lambda} \lambda^{2n}}{2n!}.$$

Now we choose $M = max(1 + \lambda, 2)$. Thus

$$\sum_{m \in \phi^{-1}(n)} \frac{e^{-\lambda} \lambda^m}{m!} \le M \frac{e^{-\lambda} \lambda^n}{n!}.$$

Consider

$$\begin{split} \|C_{\phi}(f)\|_{p}^{p} &= \|\sum_{n \in \mathbb{N}_{0}} f(n)\chi_{\phi^{-1}(n)}\|_{p}^{p} \\ &= \sum_{even \ n \in \mathbb{N}_{0}} |f(n)|^{p} (\sum_{m \in \phi^{-1}(n)} \frac{e^{-\lambda}\lambda^{m}}{m!}) \\ &\leq \sum_{even \ n \in \mathbb{N}_{0}} |f(n)|^{p} (M\frac{e^{-\lambda}\lambda^{n}}{n!}) \\ &\leq M \sum_{n \in \mathbb{N}_{0}} |f(n)|^{p} \frac{e^{-\lambda}\lambda^{n}}{n!} \\ &= M \|f\|_{p}^{p}. \end{split}$$

We also give an example of a selfmap ϕ such that C_{ϕ} is a composition operator on $l^{p}(\lambda)$ but C_{ϕ} is not composition operator on l^{p} .

Example 2.6. Define $\phi : \mathbb{N}_0 \to \mathbb{N}_0$ such that

$$\phi(n) = \begin{cases} 0, & \text{if } n \text{ is even} \\ n, & \text{otherwise.} \end{cases}$$

Since cardinality of $\phi^{-1}(0)$ is not finite so C_{ϕ} is not bounded on l^p . However, C_{ϕ} is bounded on $l^p(\lambda)$ as follows. If $n \in \phi(\mathbb{N}_0)$ is odd, then

$$\sum_{m \in \phi^{-1}(n)} \frac{e^{-\lambda} \lambda^m}{m!} = \frac{e^{-\lambda} \lambda^n}{n!}.$$

If $n \in \phi(\mathbb{N}_0)$ is even that is n = 0, then

$$\sum_{m \in \phi^{-1}(0)} \frac{e^{-\lambda} \lambda^m}{m!} \le 1.$$

Thus for $M = max(1, e^{\lambda})$ we have

$$\sum_{m \in \phi^{-1}(n)} \frac{e^{-\lambda} \lambda^m}{m!} \le M \frac{e^{-\lambda} \lambda^n}{n!} \ \forall \ n \in \mathbb{N}_0.$$

3. Null and range spaces of C_{ϕ}

In this section we determine the null space and range space of C_{ϕ} . We further determine the conditions on ϕ under which C_{ϕ} is injective and surjective. Sequence space version of following results can be found in [9].

Proposition 3.1. Let C_{ϕ} be a composition operator on l_{λ}^{p} induced by a selfmap ϕ on \mathbb{N}_{0} . Then null space $N(C_{\phi})$ of C_{ϕ} is given by

$$N(C_{\phi}) = \{ f \in l^p(\lambda) : f | \phi(\mathbb{N}_0) = 0 \}$$

Proof.

$$f \in N(C_{\phi}) \iff C_{\phi}(f) = 0$$
$$\iff f \circ \phi = 0$$
$$\iff f |\phi(\mathbb{N}_{0}) = 0$$

Next, we find the range space of a composition operator.

Theorem 3.2. Let C_{ϕ} be a composition operator on $l^{p}(\lambda)$ induced by a selfmap ϕ on \mathbb{N}_{0} . Then range space $R(C_{\phi})$ of C_{ϕ} is given by

$$R(C_{\phi}) = \{ f \in l^{p}(\lambda) : \sum_{\substack{m \in \phi(\mathbb{N}_{0})\\n \in \phi^{-1}(m)}} f(n)\chi_{m} \in l^{p}(\lambda) \text{ and } f|\phi^{-1}(m) \text{ is constant } \forall m \in \phi(\mathbb{N}_{0}) \}.$$

Proof. Let $f \in R(C_{\phi})$. There exists $g \in l^{p}(\lambda)$ such that $C_{\phi}(g) = f$. This implies $f|\phi^{-1}(m)$ is constant $\forall m \in \phi(\mathbb{N}_{0})$. Now we show that $\sum_{m \in \phi(\mathbb{N}_{0})} f(n)\chi_{m} \in l^{p}(\lambda)$.

$$i \in \phi^{-1}(m)$$

Consider

$$\begin{aligned} \|\sum_{\substack{m \in \phi(\mathbb{N}_0)\\n \in \phi^{-1}(m)}} f(n)\chi_m\|_p^p &= \sum_{\substack{m \in \phi(\mathbb{N}_0)\\n \in \phi^{-1}(m)}} \frac{e^{-\lambda}\lambda^m}{m!} |f(n)|^p \\ &= \sum_{\substack{m \in \phi(\mathbb{N}_0)\\m!}} \frac{e^{-\lambda}\lambda^m}{m!} |g(m)|^p \\ &\leq \|g\|_p^p. \end{aligned}$$

Since $g \in l^p(\lambda)$ so $\sum_{\substack{m \in \phi(\mathbb{N}_0)\\n \in \phi^{-1}(m)}} f(n)\chi_m \in l^p(\lambda)$. Hence,

$$R(C_{\phi}) \subseteq \{ f \in l^{p}(\lambda) : \sum_{\substack{m \in \phi(\mathbb{N}_{0}) \\ n \in \phi^{-1}(m)}} f(n)\chi_{m} \in l^{p}(\lambda), \ f|\phi^{-1}(m) \ is \ constant \ \forall m \in \phi(\mathbb{N}_{0}) \}.$$

Conversely, let $f \in l^p(\lambda)$ such that $f | \phi^{-1}(m)$ be constant $\forall m \in \phi(\mathbb{N}_0)$ and $\sum_{\substack{m \in \phi(\mathbb{N}_0) \\ n \in \phi^{-1}(m)}} f(n)\chi_m \in l^p(\lambda)$.

Now define

$$g(m) = \begin{cases} f(n), & \text{if } n \in \phi^{-1}(m) \\ 0, & \text{otherwise }. \end{cases}$$

Clearly, for $n \in \mathbb{N}_0$

$$C_{\phi}(g)(n) = (g \circ \phi)(n)$$
$$= g(\phi(n)))$$
$$= f(n).$$

This implies that $C_{\phi}(g) = f$. We claim that $g \in l^{p}(\lambda)$. Clearly,

$$\begin{split} \|g\|_{p}^{p} &= \sum_{m \in \mathbb{N}_{0}} \frac{e^{-\lambda} \lambda^{m}}{m!} |g(m)|^{p} \\ &= \sum_{m \in \phi(\mathbb{N}_{0})} \frac{e^{-\lambda} \lambda^{m}}{m!} |g(m)|^{p} \\ &= \sum_{\substack{m \in \phi(\mathbb{N}_{0})\\n \in \phi^{-1}(m)}} \frac{e^{-\lambda} \lambda^{m}}{m!} |f(n)|^{p} \\ &= \|\sum_{\substack{m \in \phi(\mathbb{N}_{0})\\n \in \phi^{-1}(m)}} f(n) \chi_{m}\|_{p}^{p} < \infty. \end{split}$$

Thus $g \in l^p(\lambda)$. Hence $f \in R(C_{\phi})$

In [5], Cima, Thomson, and Wogen gave a necessary and sufficient condition for a composition operator on Hardy space $H^2(D)$ to have a closed range. In [10], Zorboska characterized the composition operators with closed range on H^2 . In [3], Cao and Sun gave a necessary and sufficient condition for C_{ϕ} on Hardy space $H^2(B_n)$ to have a closed range. Recently, Guangfu et al [2] determine a necessary condition for C_{ϕ} to have a closed range on a Banach space of analytic functions which includes the Bloch space. We give a sufficient and a necessary condition for C_{ϕ} to have a closed range on $l^p(\lambda)$.

Remark 3.3. It is known that range space of a composition operator C_{ϕ} on l^p is closed [9]. However it is interesting to note that range space of a composition operator C_{ϕ} on $l^p(\lambda)$ need not be closed in general. Consider the following example.

Let

$$\phi(n) = \begin{cases} 0, & \text{if } n = 0, 1\\ n - 1, & \text{otherwise} \end{cases}$$

$$f(n) = \begin{cases} \left(\frac{(\phi(n)-1)!}{\lambda^{\phi(n)}}\right)^{\frac{1}{p}}, & \text{if } \phi(n) \ge 1\\ 0, & \text{otherwise} \end{cases}$$

and

$$f_k(n) = \begin{cases} \left(\frac{(\phi(n)-1)!}{\lambda^{\phi(n)}}\right)^{\frac{1}{p}}, & \text{if } 1 \le \phi(n) \le k\\ 0, & \text{otherwise.} \end{cases}$$

Then it is easy to see that $f \in l^p(\lambda)$, $f \notin R(C_{\phi})$ but sequence $\{f_k\}_{k \in \mathbb{N}}$ is in $R(C_{\phi})$ and converges to f in $l^p(\lambda)$. Hence, range space is not closed for the above choice of ϕ .

A sufficient condition for range space of a composition operator C_{ϕ} on $l^{p}(\lambda)$ to be closed.

Theorem 3.4. If $\phi(n) \ge n$ for all but finitely many $n \in \mathbb{N}_0$, then $R(C_{\phi})$ is closed.

Proof. Let $f \in \overline{R(C_{\phi})}$. There exists a sequence $\{f_n\}_{n \in \mathbb{N}_0} \in R(C_{\phi})$ such that $||f_n - f||_p \to 0$ as $n \to \infty$. Since $\{f_n\}_{n \in \mathbb{N}_0}$ is Cauchy, so for given $\epsilon > 0$ there exists a positive integer n_0 such that

$$||f_n - f_r||_p < \epsilon \quad \forall n, r \ge n_0.$$

Since f_n is constant on $\phi^{-1}(m)$ so is f. Now it remains to show

$$\sum_{\substack{m \in \phi(\mathbb{N}_0)\\n \in \phi^{-1}(m)}} f(n) \chi_m \in l^p(\lambda)$$

First notice that we can choose $m_0 \in \phi(\mathbb{N}_0)$ such that

$$\frac{\lambda}{m_0} < 1 \Rightarrow \frac{\lambda^m}{m!} \le \frac{\lambda^n}{n!} \quad \forall m \ge n \ge m_0.$$

Now consider

$$\begin{split} \|\sum_{\substack{m \in \phi(\mathbb{N}_{0}) \\ n \in \phi^{-1}(m)}} f(n)\chi_{m}\|_{p}^{p} &= \sum_{\substack{m \in \phi(\mathbb{N}_{0}) \\ n \in \phi^{-1}(m)}} \frac{e^{-\lambda}\lambda^{m}}{m!} |f(n)|^{p} + \sum_{\substack{m \in \phi(\mathbb{N}_{0}) \\ n \in \phi^{-1}(m), m < n}} \frac{e^{-\lambda}\lambda^{m}}{m!} |f(n)|^{p} + \sum_{\substack{m \in \phi(\mathbb{N}_{0}) \\ n \in \phi^{-1}(m), m \geq n}} \frac{e^{-\lambda}\lambda^{m}}{m!} |f(n)|^{p} + \sum_{\substack{m \in \phi(\mathbb{N}_{0}), m \geq n \\ n \in \phi^{-1}(m), m \geq n}} \frac{e^{-\lambda}\lambda^{m}}{m!} |f(n)|^{p} + \sum_{\substack{m \in \phi(\mathbb{N}_{0}), m \geq m \\ n \in \phi^{-1}(m), m \geq n}} \frac{e^{-\lambda}\lambda^{m}}{m!} |f(n)|^{p} + \sum_{\substack{m \in \phi(\mathbb{N}_{0}), m \geq m \\ n \in \phi^{-1}(m), m \geq n}} \frac{e^{-\lambda}\lambda^{m}}{m!} |f(n)|^{p} + \sum_{\substack{m \in \phi(\mathbb{N}_{0}), m \geq m \\ n \in \phi^{-1}(m), m \geq n}} \frac{e^{-\lambda}\lambda^{m}}{m!} |f(n)|^{p} + \sum_{\substack{m \in \phi(\mathbb{N}_{0}), m \geq m \\ n \in \phi^{-1}(m), m \geq n = m_{0}}} \frac{e^{-\lambda}\lambda^{m}}{m!} |f(n)|^{p} + \sum_{\substack{m \in \phi(\mathbb{N}_{0}), m \geq m \\ n \in \phi^{-1}(m), m \geq n = m_{0}}} \frac{e^{-\lambda}\lambda^{m}}{m!} |f(n)|^{p} + \sum_{\substack{m \in \phi(\mathbb{N}_{0}), m \geq m \\ n \in \phi^{-1}(m), m \geq n = m_{0}}} \frac{e^{-\lambda}\lambda^{m}}{m!} |f(n)|^{p} + \sum_{\substack{m \in \phi(\mathbb{N}_{0}), m \geq m \\ n \in \phi^{-1}(m), m \geq n = m_{0}}}} \frac{e^{-\lambda}\lambda^{m}}{m!} |f(n)|^{p} + \sum_{\substack{m \in \phi(\mathbb{N}_{0}), m \geq m_{0}}} \frac{e^{-\lambda}\lambda^{m}}{m!} |f(n)|^{p} + \sum_{\substack{m \in \phi(\mathbb{N}_{0}), m \geq m_{0}}} \frac{e^{-\lambda}\lambda^{m}}{m!} |f(n)|^{p} + \sum_{\substack{m \in \phi(\mathbb{N}_{0}), m \geq m_{0}}} \frac{e^{-\lambda}\lambda^{m}}{m!} |f(n)|^{p} + \sum_{\substack{m \in \phi(\mathbb{N}_{0}), m \geq m_{0}}} \frac{e^{-\lambda}\lambda^{m}}{m!} |f(n)|^{p} + \sum_{\substack{m \in \phi(\mathbb{N}_{0}), m \geq m_{0}}} \frac{e^{-\lambda}\lambda^{m}}{m!} |f(n)|^{p} + \sum_{\substack{m \in \phi(\mathbb{N}_{0}), m \geq m_{0}}} \frac{e^{-\lambda}\lambda^{m}}{m!} |f(n)|^{p} + \sum_{\substack{m \in \phi(\mathbb{N}_{0}), m \geq m_{0}}} \frac{e^{-\lambda}\lambda^{m}}{m!} |f(n)|^{p} + \sum_{\substack{m \in \phi(\mathbb{N}_{0}), m \geq m_{0}}} \frac{e^{-\lambda}\lambda^{m}}{m!} |f(n)|^{p} + \sum_{\substack{m \in \phi(\mathbb{N}_{0}), m \geq m_{0}}} \frac{e^{-\lambda}\lambda^{m}}{m!} |f(n)|^{p} + \sum_{\substack{m \in \phi(\mathbb{N}_{0}), m \geq m_{0}}} \frac{e^{-\lambda}\lambda^{m}}}{m!} |f(n)|^{p} + \sum_{\substack{m \in \phi(\mathbb{N}_{0}), m \geq m_{0}}} \frac{e^{-\lambda}\lambda^{m}}}{m!} |f(n)|^{p} + \sum_{\substack{m \in \phi(\mathbb{N}_{0}), m \geq m_{0}}} \frac{e^{-\lambda}\lambda^{m}}}{m!} |f(n)|^{p} + \sum_{\substack{m \in \phi(\mathbb{N}_{0}), m \geq m_{0}}} \frac{e^{-\lambda}\lambda^{m}}}{m!} |f(n)|^{p} + \sum_{\substack{m \in \phi(\mathbb{N}_{0}), m \geq m_{0}}} \frac{e^{-\lambda}\lambda^{m}}}{m!} |f(n)|^{p} + \sum_{\substack{m \in \phi(\mathbb{N}_{0}), m \geq m_{0}}} \frac{e^{-\lambda}\lambda^{m}}}{m!} |f(n)|^{p} + \sum_{\substack{m \in \phi(\mathbb{N}_{0}), m \geq m_{0}}} \frac{e^{-\lambda}\lambda^$$

In the above expression first sum is finite since $\phi(n) < n$ for only finitely many $n \in \mathbb{N}_0$. Second sum is finite since there are only finitely many m's such that $m < m_0$. Third sum is finite since there are only finitely n's such that $n < m_0$. Third sum is finite since there are only finitely n's such that $n < m_0$. Third sum is finite since $f \in l^p(\lambda)$. Thus $f \in R(C_{\phi})$ and hence range space is closed. \Box

Remark 3.5. It is interesting to note that example 2.6 also shows that condition taken in theorem 3.4 is not necessary. Clearly for infinitely many even $n \in \mathbb{N}_0$ we have $\phi(n) < n$. Also, range space of composition operator C_{ϕ} is $R(C_{\phi}) = \{f \in l^p(\lambda) : f|_{\phi^{-1}(m)} = \text{constant } \forall m \in \phi(\mathbb{N}_0)\}$. Now it is easy to verify that $R(C_{\phi})$ is closed.

Following corollary is an immediate consequence of theorem 3.4.

Corollary 3.6. Let C_{ϕ} be a composition operator on $l^{p}(\lambda)$ induced by an injective selfmap ϕ on \mathbf{N}_{0} . If $\phi(n) \geq n$ for all but finitely many $n \in \mathbb{N}_0$, then C_{ϕ} is surjective.

We now give necessary condition for range space of a composition operator C_{ϕ} on $l^{p}(\lambda)$ to be closed.

 $\sum_{\substack{m < n \ n \in \phi^{-1}(m) \ m \in \phi(\mathbb{N}_0)}} \frac{1}{m}$ is convergent. **Theorem 3.7.** *If range* $R(C_{\phi})$ *is closed, then series*

Proof. We proceed by contraposition. Assume there exists a sequence $\{m_k\}_{k \in \mathbb{N}} \subseteq \phi(\mathbb{N}_0)$ with $\phi(n_k) < n_k$ for $n_k \in \phi^{-1}(m_k)$ such that $\sum_{k \ge 1} \frac{1}{\phi(n_k)}$ diverges. Define $f : \mathbb{N}_0 \to \mathbb{C}$ such that

$$f(n) = \begin{cases} \left(\frac{(\phi(n_k)-1)!}{\lambda^{\phi(n_k)}}\right)^{\frac{1}{p}}, & \text{if } n = n_k \ 1 \le \phi(n_k) \\ 0, & otherwise. \end{cases}$$

First we verify that $f \in l^p(\lambda)$. Infact

$$\begin{split} \|f\|_{p}^{p} &= \sum_{n \in \mathbb{N}_{0}} |f(n)|^{p} \frac{e^{-\lambda} \lambda^{n}}{n!} \\ &= \sum_{k \geq 1} |f(n_{k})|^{p} \frac{e^{-\lambda} \lambda^{n_{k}}}{n_{k}!} \\ &= \sum_{k \geq 1} \frac{(\phi(n_{k}) - 1)!}{\lambda^{\phi(n_{k})}} \frac{e^{-\lambda} \lambda^{n_{k}}}{n_{k}!} \end{split}$$
(1)

We choose an $n_0 \in \mathbb{N}_0$ such that $\frac{\lambda}{n_0} < 1$. Therefore

$$\frac{\lambda^m}{m!} \le \frac{\lambda^n}{n!} \quad \forall m \ge n \ge n_0.$$

We split the sum (1) as follows

$$= \sum_{1 \le k < n_0} \frac{(\phi(n_k) - 1)!}{\lambda^{\phi(n_k)}} \frac{e^{-\lambda} \lambda^{n_k}}{n_k!} + \sum_{n_0 \le k} \frac{(\phi(n_k) - 1)!}{\lambda^{\phi(n_k)}} \frac{e^{-\lambda} \lambda^{n_k}}{n_k!}.$$

Since $\phi(n_k) \le n_k - 1$ for all $k \ge 1$, we have

$$\leq \sum_{1 \leq k < n_0} \frac{(\phi(n_k) - 1)!}{\lambda^{\phi(n_k)}} \frac{e^{-\lambda} \lambda^{n_k}}{n_k!} + \sum_{n_0 \leq k} \frac{(\phi(n_k) - 1)!}{\lambda^{\phi(n_k)}} \frac{\lambda}{n_k} \frac{e^{-\lambda} \lambda^{\phi(n_k)}}{(\phi(n_k))!}$$
$$= \sum_{1 \leq k < n_0} \frac{(\phi(n_k) - 1)!}{\lambda^{\phi(n_k)}} \frac{e^{-\lambda} \lambda^{n_k}}{n_k!} + \lambda e^{-\lambda} \sum_{k \geq 1} \frac{1}{n_k \phi(n_k)} < \infty.$$

Now claim that $f \notin R(C_{\phi})$.

$$\begin{split} \|\sum_{\substack{m \in \phi(\mathbb{N}_0)\\n \in \phi^{-1}(m)}} f(n)\chi_m\|_p^p &= \sum_{\substack{m \in \phi(\mathbb{N}_0)\\n \in \phi^{-1}(m)}} |f(n)|^p \frac{e^{-\lambda}\lambda^{\phi(n_k)}}{m!} \\ &\geq \sum_{k \ge 1} |f(n_k)|^p \frac{e^{-\lambda}\lambda^{\phi(n_k)}}{\phi(n_k)!} \\ &= \sum_{k \ge 1} \frac{(\phi(n_k) - 1)!}{\lambda^{\phi(n_k)}} \frac{e^{-\lambda}\lambda^{\phi(n_k)}}{\phi(n_k)!} \\ &= \sum_{k \ge 1} \frac{e^{-\lambda}}{\phi(n_k)}. \end{split}$$

The above series diverges by assumption. Now define a sequence $f_r : \mathbb{N}_0 \to \mathbb{C}$ such that

$$f_r(n) = \begin{cases} \left(\frac{(\phi(n_k)-1)!}{\lambda^{\phi(n_k)}}\right)^{\frac{1}{p}}, & \text{if } n = n_k \ 1 \le \phi(n_k) \le \phi(n_r) \\ 0, & otherwise. \end{cases}$$

It is easy to see that $f_r \in R(C_{\phi})$. Also sequence $\{f_r\}_{r \in \mathbb{N}}$ converges to f since

$$\begin{split} \|f_r - f\|_p &= \Big(\sum_{n \in \mathbb{N}_0} \frac{e^{-\lambda} \lambda^n}{n!} |f_r(n) - f(n)|^p \Big)^{\frac{1}{p}} \\ &= \Big(\sum_{k \ge r+1} \frac{e^{-\lambda} \lambda^{n_k}}{n_k!} |f(n_k)|^p \Big)^{\frac{1}{p}} \to 0 \text{ as } r \to \infty. \end{split}$$

Therefore, $f \in \overline{R(C_{\phi})}$ but $f \notin R(C_{\phi})$. Hence, range space is not closed. \Box

Remark 3.8. Following example shows that condition taken in theorem 3.7 is not sufficient. Define $\phi : \mathbb{N}_0 \to \mathbb{N}_0$ such that

$$\phi(n) = \begin{cases} 1, & \text{if } 0 \le n \le 2^2 \\ 2^2, & \text{if } 2^2 < n \le 3^2 \\ 3^2, & \text{if } 3^2 < n \le 4^2 \\ \dots \\ k^2, & \text{if } k^2 < n \le (k+1)^2 \\ \dots, & \dots \end{cases}$$

Define $f : \mathbb{N}_0 \to \mathbb{C}$ such that

$$f(n) = \left(\frac{1}{m\sum\limits_{i\in\phi^{-1}(m)}\frac{e^{-\lambda}\lambda^n}{n!}}\right)^{\frac{1}{p}} \quad if for \ some \ m \in \phi(\mathbb{N}_0), \ n \in \phi^{-1}(m).$$

To check $f \in l^p(\lambda)$, consider

$$\begin{split} \||f\|_{p}^{p} &= \sum_{n \in \mathbb{N}_{0}} |f(n)|^{p} \frac{e^{-\lambda} \lambda^{n}}{n!} \\ &= \sum_{m \in \phi(\mathbb{N}_{0})} \Big(\sum_{n \in \phi^{-1}(m)} |f(n)|^{p} \frac{e^{-\lambda} \lambda^{n}}{n!} \Big) \\ &= \sum_{m \in \phi(\mathbb{N}_{0})} \frac{1}{m \sum_{n \in \phi^{-1}(m)} \frac{e^{-\lambda} \lambda^{n}}{n!}} \Big(\sum_{n \in \phi^{-1}(m)} \frac{e^{-\lambda} \lambda^{n}}{n!} \Big) \\ &= \sum_{m \in \phi(\mathbb{N}_{0})} \frac{1}{m} < \infty. \end{split}$$

Now we define sequence $f_k : \mathbb{N}_0 \to \mathbb{C}$ *such that*

$$f_k(n) = \begin{cases} f(n), & \text{if } n \le k^2 \\ 0, & \text{otherwise} \end{cases}$$

Then it is easy to see that $f_k \in R(C_{\phi})$ and sequence $\{f_k\}_{k \in \mathbb{N}}$ converges to f in $l^p(\lambda)$. Finally we show that $f \notin R(C_{\phi})$. Consider

$$\begin{aligned} \left\| \sum_{\substack{m \in \phi(\mathbb{N}_0)\\n \in \phi^{-1}(m)}} f(n)\chi_m \right\|_p^p &= \sum_{\substack{m \in \phi(\mathbb{N}_0)\\n \in \phi^{-1}(m)}} |f(n)|^p \frac{e^{-\lambda}\lambda^m}{m!} \\ &= \sum_{\substack{m \in \phi(\mathbb{N}_0)}} \frac{1}{m \sum_{\substack{n \in \phi^{-1}(m)\\n \in \phi^{-1}(m)}} \frac{e^{-\lambda}\lambda^m}{n!}} \frac{e^{-\lambda}\lambda^m}{m!} \\ &= \sum_{\substack{m \in \phi(\mathbb{N}_0)}} \frac{1}{m \sum_{\substack{n \in \phi^{-1}(m)\\n \in \phi^{-1}(m)}} \frac{\lambda^m}{n!}} \frac{1}{m!} \end{aligned}$$
(2)

We choose $k_0^2 \in \phi(\mathbb{N}_0)$ such that $\frac{\lambda}{n} < 1 \ \forall n \ge k_0$. Now for $k^2 \ge k_0^2$ consider

$$\frac{1}{k^{2} \sum_{n \in \phi^{-1}(k^{2})} \frac{\lambda^{n}}{n!}} \frac{\lambda^{k^{2}}}{k^{2}!} = \frac{1}{k^{2} \left(\frac{\lambda^{k^{2}+1}}{k^{2}+1!} + \frac{\lambda^{k^{2}+2}}{k^{2}+2!} + \dots + \frac{\lambda^{(k+1)^{2}}}{(k+1)^{2}!}\right)} \frac{\lambda^{k^{2}}}{k^{2}!}$$

$$\geq \frac{1}{k^{2} \left(\frac{\lambda^{k^{2}+1}}{k^{2}+1!} + \frac{\lambda^{k^{2}+1}}{k^{2}+1!} + \dots (k+2)times\right)} \frac{\lambda^{k^{2}}}{k^{2}!}$$

$$= \frac{1}{k^{2} \frac{\lambda^{k^{2}+1}}{k^{2}+1!}(k+2)} \frac{\lambda^{k^{2}}}{k^{2}!}$$

$$= \frac{k^{2}+1}{\lambda k^{2}(k+2)} > \frac{1}{\lambda(k+2)}.$$
(3)

Now by (3) and (2)

$$\sum_{m \in \phi(\mathbb{N}_0)} \frac{1}{m \sum_{n \in \phi^{-1}(m)} \frac{\lambda^n}{n!}} \frac{\lambda^m}{m!} = \sum_{k=1}^{k_0} \frac{1}{k^2 \sum_{n \in \phi^{-1}(k^2)} \frac{\lambda^n}{n!}} \frac{\lambda^{k^2}}{k^{2!}} + \sum_{k=k_0+1}^{\infty} \frac{1}{k^2 \sum_{n \in \phi^{-1}(k^2)} \frac{\lambda^n}{n!}} \frac{\lambda^{k^2}}{k^{2!}} \\ > \sum_{k=1}^{k_0} \frac{1}{k^2 \sum_{n \in \phi^{-1}(k^2)} \frac{\lambda^n}{n!}} \frac{\lambda^{k^2}}{k^{2!}} + \sum_{k=k_0+1}^{\infty} \frac{1}{\lambda(k+2)} \\ = \infty.$$

It follows that $f \notin R(C_{\phi})$. Hence, range is not closed for this choice of ϕ .

Following corollary is a natural consequence of theorem 3.7.

Corollary 3.9. Let C_{ϕ} be a composition operator on $l^{p}(\lambda)$ induced by an injective selfmap ϕ on \mathbf{N}_{0} . If C_{ϕ} is surjective, then series $\sum_{\substack{m \leq n \ n \in \phi^{-1}(m) \ m \in \phi(\mathbb{N}_0)}} \frac{1}{m}$ is convergent.

Now we characterize injectivity of C_{ϕ} in terms of selfmap which induces composition operator.

Proposition 3.10. Let C_{ϕ} be a composition operator on $l^{p}(\lambda)$ induced by an selfmap ϕ on \mathbf{N}_{0} . Then, C_{ϕ} is injective if and only if ϕ is surjective.

Proof. Suppose ϕ is surjective. Let $C_{\phi}(g) = C_{\phi}(g)$ for some $f, g \in l^{p}(\lambda)$. This implies

$$f(\phi(n)) = g(\phi(n)) \text{ for each } n \in \mathbb{N}_0$$

$$\Rightarrow f = g \because \phi \text{ is surjective}$$

$$\Rightarrow C_{\phi} \text{ is one - one.}$$

Conversely, suppose that C_{ϕ} is injective. It follows that for each $n \in \mathbb{N}_0$

$$C_{\phi}(\chi_n) \neq 0 \Longrightarrow \chi_{\phi^{-1}(n)} \neq 0.$$

Hence, $\phi^{-1}(n)$ is non empty for each $n \in \mathbb{N}_0$. Thus ϕ is surjective. \Box

4. Null and range spaces of C^*_{ϕ}

In this section we determine explicit expression for the adjoint C_{ϕ}^* of composition operator C_{ϕ} on Hilbert space $l^2(\lambda)$ with inner product

$$\langle f, g \rangle = \sum_{n \in \mathbb{N}_0} f(n) \overline{g(n)} \frac{e^{-\lambda} \lambda^n}{n!} \quad \forall f, g \in l^2(\lambda)$$

We determine the null space and range space of C^*_{ϕ} on $l^2(\lambda)$ and prove that range space of composition operator C^*_{ϕ} is closed. We further determine the conditions on ϕ under which C_{ϕ} is injective and surjective.

Proposition 4.1. Let C_{ϕ} be a composition operator on $l^{2}(\lambda)$. If $f = \sum_{n \in \mathbb{N}_{0}} f(n)\chi_{n} \in l^{2}(\lambda)$, then $C_{\phi}^{*}(f) = \sum_{n \in \mathbb{N}_{0}} f(n)\xi_{n}.\chi_{\phi(n)}$, where . denotes point-wise operation and $\xi_{n}(m) = \frac{\lambda^{n}}{n!} \frac{m!}{\lambda^{m}} \forall m \in \mathbb{N}_{0}$.

Proof. By definition of adjoint of an operator, we have

$$\langle f, C^*_{\phi}(g) \rangle = \langle C_{\phi}(f), g \rangle \ \forall \ f, g \in l^2(\lambda).$$

In particular, we have

$$\begin{split} \langle \chi_m, C^*_{\phi}(\chi_n) \rangle &= \langle C_{\phi}(\chi_m), \chi_n \rangle \; \forall \; m, n \in \mathbb{N}_0 \\ \Longrightarrow \; \frac{e^{-\lambda} \lambda^m}{m!} \overline{C^*_{\phi}(\chi_n)(m)} &= \frac{e^{-\lambda} \lambda^n}{n!} C_{\phi}(\chi_m)(n) \; \forall \; m, n \in \mathbb{N}_0 \\ \Longrightarrow \; \frac{\lambda^m}{m!} \overline{C^*_{\phi}(\chi_n)(m)} &= \frac{\lambda^n}{n!} C_{\phi}(\chi_m)(n) \; \forall \; m, n \in \mathbb{N}_0 \\ \Longrightarrow \; C^*_{\phi}(\chi_n)(m) &= \frac{\lambda^n}{n!} \frac{m!}{\lambda^m} \chi_{\phi(n)}(m) \; \forall \; m, n \in \mathbb{N}_0 \\ \Longrightarrow \; C^*_{\phi}(\chi_n) &= \xi_n \cdot \chi_{\phi(n)} \; \forall \; n \in \mathbb{N}_0. \end{split}$$

Now we determine null space of the adjoint C^*_{ϕ} .

Theorem 4.2. Let C_{ϕ} be a composition operator on $l^2(\lambda)$, then the null space $N(C_{\phi}^*)$ of C_{ϕ}^* is given by

$$N(C_{\phi}^{*}) = \{ f \in l^{2}(\lambda) : \sum_{n \in \phi^{-1}(m)} f(n) \frac{\lambda^{n}}{n!} = 0, \ m \in \phi(\mathbb{N}_{0}) \}.$$

Proof. We have

$$C_{\phi}^{*}(f) = \sum_{n \in \mathbb{N}_{0}} f(n)\xi_{m}\chi_{\phi(n)}$$

$$= \sum_{n \in \mathbb{N}_{0}} f(n)\frac{\lambda^{n}}{n!}\frac{\phi(n)!}{\lambda^{\phi(n)}}\chi_{\phi(n)}$$

$$= \sum_{m \in \phi(\mathbb{N}_{0})} \Big(\sum_{n \in \phi^{-1}(m)} f(n)\frac{\lambda^{n}}{n!}\Big)\frac{m!}{\lambda^{m}}\chi_{m}.$$
 (4)

Now if $f \in N(C^*_{\phi})$, then $C^*_{\phi}(f) = 0$. Therefore by (4) we get

$$\sum_{n\in\phi^{-1}(m)}f(n)\frac{\lambda^n}{n!}=0 \ for \ m\in\phi(\mathbb{N}_0).$$

Conversely, if $f \in l^2(\lambda)$ be such that $\sum_{n \in \phi^{-1}(m)} f(n) \frac{\lambda^n}{n!} = 0$. Then it is easy to see that $f \in N(C^*_{\phi})$. \Box

The following result determines range space of C_{ϕ}^* under some restricted condition. Recall that an operator is said to be bounded below if there exists M > 0 such that $||C_{\phi}f|| \ge M||f||$ for every $f \in l^2(\lambda)$.

Theorem 4.3. Let C_{ϕ} be a bounded below composition operator on $l^2(\lambda)$. Then the range space $R(C_{\phi}^*)$ of C_{ϕ}^* is given by $R(C_{\phi}^*) = \{f \in l^2(\lambda) : f | \mathbb{N}_0 \setminus \phi(\mathbb{N}_0) = 0\}.$

Proof. Suppose $f \in R(C^*_{\phi})$. Then there is a function $g \in l^2(\lambda)$ such that $C^*_{\phi}(g) = f$. Let $g = \sum_{n \in \mathbb{N}_0} g(n)\chi_n$. Then

$$C^*_\phi(g) = \sum_{n \in \mathbb{N}_0} g(n) \xi_n. \chi_{\phi(n)}.$$

Hence for each $m \in \mathbb{N}_0 \setminus \phi(\mathbb{N}_0)$ $f(m) = C^*_{\phi}(g)(m) = 0$. Conversely, assume that $f \in l^2(\lambda)$ and f(m) = 0 for each $m \in \mathbb{N}_0 \setminus \phi(\mathbb{N}_0)$. Let $\alpha_n = \sum_{r \in \phi^{-1}(n)} \xi_r(n)$. Now define

$$g = \sum_{m \in \mathbb{N}_0, \phi(m)=n} \frac{f(n)}{\alpha_n} \chi_m.$$

We claim that $g \in l^2(\lambda)$ and $C^*_{\phi}(g) = f$. Since C_{ϕ} is bounded below it follows

$$\sum_{r\in\phi^{-1}(n)}\frac{\lambda^r}{r!}=\|C_{\phi}(\chi_n)\|\geq M\|\chi_n\|=\frac{\lambda^n}{n!}.$$

Consider

$$\begin{split} ||g||_{2}^{2} &= \sum_{m \in \mathbb{N}_{0}, \phi(m)=n} \frac{|f(n)|^{2}}{\alpha_{n}^{2}} \frac{e^{-\lambda} \lambda^{m}}{m!} \\ &= \sum_{n \in \phi(\mathbb{N}_{0})} \frac{|f(n)|^{2}}{\alpha_{n}^{2}} \Big(\sum_{m \in \phi^{-1}(n)} \frac{e^{-\lambda} \lambda^{m}}{m!} \Big) \\ &= \sum_{n \in \phi(\mathbb{N}_{0})} \frac{|f(n)|^{2}}{\alpha_{n}^{2}} \Big(\sum_{m \in \phi^{-1}(n)} \frac{e^{-\lambda} \lambda^{m}}{m!} \Big) \\ &= \sum_{n \in \phi(\mathbb{N}_{0})} |f(n)|^{2} \frac{\lambda^{n}}{n!} \frac{\frac{\lambda^{n}}{n!}}{\Big(\sum_{r \in \phi^{-1}(n)} \frac{\lambda^{r}}{r!}\Big)^{2}} \Big(\sum_{m \in \phi^{-1}(n)} \frac{e^{-\lambda} \lambda^{m}}{m!} \Big) \\ &= \sum_{n \in \phi(\mathbb{N}_{0})} |f(n)|^{2} \frac{\lambda^{n}}{n!} \frac{\frac{e^{-\lambda} \lambda^{n}}{\sum_{r \in \phi^{-1}(n)} \frac{\lambda^{r}}{r!}} \\ &\leq M \sum_{n \in \phi(\mathbb{N}_{0})} |f(n)|^{2} \frac{e^{-\lambda} \lambda^{n}}{n!} \\ &\leq \infty. \end{split}$$

Hence, $g \in l^2(\lambda)$. Now consider

$$C_{\phi}^{*}(g) = \sum_{m \in \mathbb{N}_{0}, \phi(m)=n} \frac{f(n)}{\alpha_{n}} \xi_{m} \cdot \chi_{\phi(m)}$$
$$= \sum_{n \in \phi(\mathbb{N}_{0})} \left(\sum_{m \in \phi^{-1}(n)} \frac{f(n)}{\alpha_{n}} \xi_{m} \cdot \chi_{\phi(m)} \right)$$
$$= \sum_{n \in \phi(\mathbb{N}_{0})} f(n) \left(\frac{\sum_{m \in \phi^{-1}(n)} \xi_{m}(n)}{\alpha_{n}} \right) \chi_{n}$$
$$= \sum_{n \in \phi(\mathbb{N}_{0})} f(n) \chi_{n}$$
$$= f.$$

Corollary 4.4. Let C_{ϕ} be a bounded below composition operator on $l^2(\lambda)$. Then $R(C_{\phi}^*)$ is a closed subspace of $l^2(\lambda)$. *Proof.* Let $f \in \overline{R(C_{\phi}^*)}$. There exists a sequence $\{f_m\}_{m \in \mathbb{N}} \in R(C_{\phi}^*)$ such that $\|f_m - f\|_2 \to 0$ as $m \to \infty$. Since

 $f_m|\mathbb{N}_0 \setminus \phi(\mathbb{N}_0) = 0 \ \forall m \in \mathbb{N}.$

Hence, $f|\mathbb{N}_0 \setminus \phi(\mathbb{N}_0) = 0.$

We now determine the conditions on selfmap ϕ under which ${\it C}^*_\phi$ is injective.

Proposition 4.5. The adjoint C^*_{ϕ} of a composition operator C_{ϕ} is injective if and only if ϕ is injective.

Proof. Suppose C^*_{ϕ} is injective. We show that ϕ is injective. Let $\phi(m) = \phi(n)$ for some $m, n \in \mathbb{N}_0$.

$$\begin{split} \phi(m) &= \phi(n) \Rightarrow \xi_{\phi(m)} \chi_{\phi(m)} = \xi_{\phi(n)} \chi_{\phi(n)} \\ &\Rightarrow C^*_{\phi}(\chi_m) = C^*_{\phi}(\chi_n) \\ &\Rightarrow \chi_m = \chi_n \quad (\because \ C^*_{\phi} \text{ is injective}) \\ &\Rightarrow m = n \\ &\Rightarrow \phi \text{ is injective.} \end{split}$$

Conversely, assume that ϕ is injective. We show that C^*_{ϕ} is injective. For some $f, g \in l^2(\lambda)$ suppose

$$\begin{aligned} C^*_{\phi}(f) &= C^*_{\phi}(g) \Rightarrow \sum_{n \in \mathbb{N}_0} f(n)\xi_n\chi_{\phi(n)} = \sum_{n \in \mathbb{N}_0} g(n)\xi_n\chi_{\phi(n)} \\ &\Rightarrow f(n)\xi_n(\phi(n)) = g(n)\xi_n(\phi(n)) \quad \forall \ n \in \mathbb{N}_0 \\ &\Rightarrow f(n) = g(n) \quad \forall \ n \in \mathbb{N}_0 \\ &\Rightarrow f^*_{\phi} \ is \ injective. \end{aligned}$$

We now find sufficient condition for C^*_ϕ to be surjective.

Theorem 4.6. Let $\phi : \mathbf{N}_0 \to \mathbf{N}_0$ be surjective. Then, C^*_{ϕ} is surjective if $\phi(n) \ge n$ for all but finitely many $n \in \mathbb{N}_0$. *Proof.* Let $f \in l^2(\lambda)$. Define $g : \mathbb{N}_0 \to \mathbb{N}_0$ such that $g(n) = f(\phi(n))\xi_{\phi(n)}(n) \forall n \in \mathbb{N}_0$. Clearly, we have

$$C^*_{\phi}(g) = \sum_{n \in \mathbb{N}_0} g(n)\xi_n(\phi(n))\chi_{\phi(n)}$$

= $\sum_{n \in \mathbb{N}_0} f(\phi(n))\chi_{\phi(n)}$
= $\sum_{m \in \phi(\mathbb{N}_0)} f(m)\chi_m$
= $\sum_{m \in \mathbb{N}_0} f(m)\chi_m, \because \phi \text{ is surjective}$
= $f.$

We now claim $g \in l^2(\lambda)$. Consider

$$\begin{split} ||g||_2^2 &= \sum_{m \in \mathbb{N}_0} |g(n)|^2 \frac{e^{-\lambda} \lambda^n}{n!} \\ &= \sum_{m \in \mathbb{N}_0} |f(\phi(n))|^2 \xi_{\phi(n)}(n)^2 \frac{e^{-\lambda} \lambda^n}{n!} \\ &= \sum_{n \in \mathbb{N}_0} |f(\phi(n))|^2 \frac{e^{-\lambda} \lambda^{\phi(n)}}{\phi(n)!} \frac{\lambda^{\phi(n)}}{\phi(n)!} \frac{n!}{\lambda^n}. \end{split}$$

We choose an $n_0 \in \mathbb{N}_0$ such that $\frac{\lambda}{n_0} < 1$. Therefore

$$\frac{\lambda^m}{m!} \le \frac{\lambda^n}{n!} \quad \forall m \ge n \ge n_0.$$

(5)

So we split the sum (5) as follows

$$\leq \sum_{0 \leq n < n_0} |f(\phi(n))|^2 \frac{e^{-\lambda} \lambda^{\phi(n)}}{\phi(n)!} \frac{\lambda^{\phi(n)}}{\phi(n)!} \frac{n!}{\lambda^n} + \sum_{n \geq n_0} |f(\phi(n))|^2 \frac{e^{-\lambda} \lambda^{\phi(n)}}{\phi(n)!} \\ \leq \sum_{0 \leq n < n_0} |f(\phi(n))|^2 \frac{e^{-\lambda} \lambda^{\phi(n)}}{\phi(n)!} \frac{\lambda^{\phi(n)}}{\phi(n)!} \frac{n!}{\lambda^n} + ||f||^2 < \infty.$$

Hence, proved that C^*_{ϕ} is surjective. \Box

We give a necessary condition for surjectivity of C_{ϕ}^* .

Theorem 4.7. Let $\phi : \mathbf{N}_0 \to \mathbf{N}_0$ be surjective. Then, C^*_{ϕ} is surjective only if series $\sum_{\substack{m \leq n \\ n \in \phi^{-1}(m) \\ m \in \phi(\mathbb{N}_0)}} \frac{1}{m}$ is convergent.

Proof. On the contrary assume there exists a sequence $\{n_k\}_{k \in \mathbb{N}} \subseteq \mathbb{N}_0$ such that $\phi(n_k) < n_k \ \forall k \ge 1$. Define $f : \mathbb{N}_0 \to \mathbb{C}$ such that

$$f(n) = \begin{cases} \left(\frac{(n-2)!}{\lambda^{n-1}}\right)^{\frac{1}{2}}, & \text{if } n \ge 2\\ 0, & otherwise \end{cases}$$

It is easy to check that $f \in l^2(\lambda)$. Since ϕ is surjective so we have $f = \sum_{n \in \mathbb{N}_0} f(\phi(n))\chi_{\phi(n)}$. Now for every g which satisfy $C^*_{\phi}(g) = f$. We have

$$\sum_{n\in\mathbb{N}_0}g(n)\xi_n(\phi(n))\chi_{\phi(n)}=\sum_{n\in\mathbb{N}_0}f(\phi(n))\chi_{\phi(n)}.$$

This implies $g(n)\xi_n(\phi(n)) = f(\phi(n))\xi_n(\phi(n)) \ \forall n \in \mathbb{N}_0$. It can be written as $g(n) = f(\phi(n))\xi_{\phi(n)}(n) \ \forall n \in \mathbb{N}_0$ since $\xi_m(n)\xi_n(m) = 1 \forall m, n \in \mathbb{N}_0$. Now we claim that $g \notin l^2(\lambda)$. Consider

$$\begin{split} ||g||_{2}^{2} &= \sum_{n \in \phi(\mathbb{N}_{0})} |g(n)|^{2} \frac{e^{-\lambda} \lambda^{n}}{n!} \\ &= \sum_{n \in \mathbb{N}_{0}} |f(\phi(n)) \xi_{\phi(n)}(n)|^{2} \frac{e^{-\lambda} \lambda^{\phi(n)}}{n!} \frac{n}{n!} \\ &= \sum_{\phi(n) \geq n} |f(\phi(n))|^{2} \frac{e^{-\lambda} \lambda^{\phi(n)}}{\phi(n)!} \frac{n}{\lambda} + \sum_{\phi(n) < n} |f(\phi(n))|^{2} \frac{e^{-\lambda} \lambda^{\phi(n)}}{\phi(n)!} \frac{n}{\lambda} \\ &\geq \sum_{k \geq 1} |f(\phi(n_{k}))|^{2} \frac{e^{-\lambda} \lambda^{\phi(n_{k})}}{\phi(n_{k})!} \frac{n_{k}}{\lambda} \\ &= \sum_{k \geq 1} \frac{(\phi(n) - 2)!}{\lambda^{\phi(n_{k}) - 1}} \frac{e^{-\lambda} \lambda^{\phi(n_{k})}}{\phi(n_{k})!} \frac{n_{k}}{\lambda} \\ &= \sum_{k \geq 1} \frac{n_{k} e^{-\lambda}}{\phi(n_{k})(\phi(n_{k}) - 1)} \\ &\geq \sum_{k \geq 1} \frac{e^{-\lambda}}{\phi(n_{k})} = \infty. \end{split}$$

This implies that C^*_ϕ is not surjective. \Box

References

- [1] A. Bobrowski, Functional Analysis for Probability and Stochastic Processes, Cambridge University Press, Cambridge, 2005.
- [2] C. Guangfu, N. Elias, P. Ghatage, Y. Dahai, Composition operators on a Banach space of analytic functions, Acta Mathematica Sinica 14 (1998) 201-208.
- [3] C. Guangfu, S. Shunhua, Toeplitz and composition operators on $H^2(B_n)$, Science in China 40 (1997) 578-584.
- [4] E. A. Nordgren, Composition operators, Canad. J. Math. 20 (1968) 442-449.
 [5] J. A. Cima, J. Thomson, W. Wogen, On some properties of composition operators, Indiana University J. Math. 24 (1974) 215-220.
- [6] J. E. Littlewood, On inequalities in the theory of functions, Proc. London Math. Soc. 23 (1925) 481-519.
- [7] J. H. Shapiro, Composition operators and classical function theory, Springer-Verlag, New York, 1993.
 [8] J. V. Ryff, Subordinate H^p- functions, Duke J. Math. 33 (1966) 347-354.
- [9] L. Singh, Study of Composition Operators on l², Thesis, Banaras Hindu University, 1987.
- [10] N. Zorboska, Composition operators with closed range, J. Trans Amer Math Soc 344 (1994) 791-801.
- [11] R. K. Singh, J. S. Manhas, Composition Operators on Function Spaces, North-Holland, New York, 1993.