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Abstract. Equivalent conditions for the product of range symmetric matrices in an indefinite inner product
space in the setting of an indefinite matrix product to be range symmetric is derived. Characterizations of
range symmetric block matrix in an inner product space are presented. General conditions under which
a range symmetric matrix in an indefinite inner product space can be expressed as a product of range
symmetric matrices under an indefinite matrix multiplication are established.

1. Introduction

An indefinite inner product in Cn is a conjugate symmetric sesquilinear from [x, y] together with
the regularity condition that [x, y] = 0 for all y ∈ Cn only when x = 0. Any indefinite inner product is
associated with a unique invertible complex matrix J (called a weight) such that [x, y] =< x, Jy > where
<,> denotes the Euclidean inner product on Cn.We also make an additional assumption on J, that is, J2 = I,
to present the results with much algebraic ease. However, there are two different values for dot product
of vectors in indefinite inner product spaces. To overcome these difficulties, a new matrix product, called
the indefinite matrix multiplication is introduced and some of its properties are investigated in [7]. A
complex matrix A is said to be EP if and only if the range space of A and that of its conjugate transpose
A∗ are equal. The structure of certain class of EP matrices over the complex field having the same range
space has been studied by Baskett and Katz in [1]. Recently, in [5], we have extended the concept of range
symmetric matrix to indefinite inner product space and presented some interesting characterizations of
range symmetric matrices similar to EP matrices in the setting of an indefinite matrix product. Further, we
have established that a range symmetric matrix coincides with J−EP matrix in an inner product space with
weight J, studied in [2].

In this manuscript, we have discussed the range symmetry of a product of range symmetric matrices
in an indefinite inner product space. General conditions under which a range symmetric matrix can be
expressed as a product of range symmetric matrices are also established, which includes as a special case
the results found in [3&4]. In section 2, we recall the definitions and preliminary results required in
characterizing the structure of complex range symmetric matrices over an indefinite inner product space.
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Equivalent conditions for the product of range symmetric matrices in ℘, an indefinite inner product space
in the setting of an indefinite matrix product with weight J, to be range symmetric are presented in Section
3. Factorization of a range symmetric matrix as a product of range symmetric matrices in ℘ and as an
indefinite product of range symmetric matrices in ℘ are presented in Section 4.

2. Preliminaries

We first recall the notion of an indefinite multiplication of matrices.
Definition 2.1: Let A ∈ Cm×n,B ∈ Cnxk. Let Jn be an arbitrary but fixed n × n complex matrix such that

Jn = J∗n = J−1
n . The indefinite matrix product of A and B (relative to J) is defined as A ◦ B = AJnB.

Definition 2.2: For A ∈ Cm×n,A[∗] = JnA∗ Jm is the adjoint of A relative to Jn and Jm, the weights in the
appropriate spaces.
Remark 2.1: When Jn is the identity matrix the product reduces to the usual product of matrices and it can
be easily verified that with respect to the indefinite matrix product, rank(A ◦A[∗]) = rank(A[∗] ◦A) = rank(A),
where as this rank property fails under the usual matrix multiplication. Thus the Moore -Penrose inverse
of a complex matrix over an indefinite inner product space, with respect to the indefinite matrix product
exists and this is one of its main advantages.

Definition 2.3: A matrix A ∈ Cn×n is said to be J-invertible if there exists X ∈ Cn×n, such that
A ◦ X = X ◦ A = Jn. Such an X is denoted as A[−1] = JA−1J.

Definition 2.4: A ∈ Cn×n and X ∈ Cn×n satisfying A ◦ X ◦ A = A is called a generalized inverse of A
relative to the weight J. AJ{1} is the set of all generalized inverses of A relative to the weight J.
Remark 2.2: For the identity matrix J, it reduces to a generalized inverse of A and AJ{1} = A{1}. It can be
easily verified that X is a generalized inverse of A under the indefinite matrix product if and only if JnXJm
is a generalized inverse of A under the usual product of matrices. Hence AJ{1} = {X/JnXJm is a generalized
inverse of A}.

Definition 2.5: For A ∈ Cm×n, a matrix X ∈ Cn×m is called the Moore-Penrose inverse if it satisfies the
following equations:
A ◦ X ◦ A = A,X ◦ A ◦ X = X, (A ◦ X)[∗] = A ◦ X and (X ◦ A)[∗] = X ◦ A.
Such an X is denoted by A[†] and represented as A[†] = JnA†Jm.

Definition 2.6: The Range space of A ∈ Cm×n is defined by R(A) =
{
y = A ◦ x ∈ Cm/x ∈ Cn} .

The Null space of A is defined by Nu(A) = {x ∈ Cn/A ◦ x = 0}. It is clear that Nu(A[∗]) = N(A∗).
Property 2.1: Let A ∈ Cn×n. Then

(i) (A[∗])[∗] = A.
(ii) (A[†])[†] = A.
(iii) (AB)[∗] = B[∗]A[∗].
(iv) R(A[∗]) = R(A[†]).
(v) R(A ◦ A[∗]) = R(A),R(A[∗] ◦ A) = R(A[∗]).
(vi) N(A ◦ A[∗]) = N(A[∗]),N(A[∗] ◦ A) = N(A).
We recall the definition of a range symmetric matrix in ℘, an indefinite inner product space with weight J,
analogous to that of a range symmetric matrix in the unitary space.

Definition 2.7: A matrix A ∈ Cn×n is range symmetric in ℘ if and only if R(A) = R(A[∗]).

Remark 2.2: For the identity matrix J it reduces to the definition of range symmetric matrix in unitary
space (or) equivalently to an EP matrix [1].
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In the sequel, we shall use the following equivalent characterizations of a range symmetric matrix estab-
lished in our earlier work [5].

Theorem 2.1: For A ∈ Cn×n, the following are equivalent:
(1) A is range symmetric in ℘.
(2) AJ is EP.
(3) JA is EP.
(4) N(A) = N(A[∗]).
(5) (A ◦ A[†]) = (A[†] ◦ A)
(6) (A†A)[∗] = JA†AJ = AA†.
(7) A is J − EP.

3. Product of range symmetric matrices in ℘

In this section, we have obtained necessary and sufficient conditions for the indefinite product of two
range symmetric matrices of rank r to be range symmetric in . Then we have extended the result to block
matrices in ℘.

Theorem 3.1: Let A and B be range symmetric matrices of rank r in ℘ and A ◦ B be of rank r. Then, A ◦ B
is range symmetric in ℘ if and only if R(A) = R(B).

Proof: Since A and B are range symmetric in ℘, by Theorem 2.1(2), AJ and BJ are EPr matrices.
A ◦ B is range symmetric in ℘ and of rank r⇔ (A ◦ B)J is EPr (By Theorem 2.1(7))

⇔ (AJ)(BJ) is EPr (By Definition2.1)
⇔ R(AJ) = R(BJ) (By Theorem 2 of [1])
⇔ R(A) = R(B).

Hence the Theorem holds.
Henceforth we are concerned with (m + n) × (m + n) matrices M partitioned in the form

M =
[
A B
C D

]
(3.1)

with rank(M)=rank(A), A and D are square matrices of orders m and n respectively. It is well known that
(p.21 of [8]) M of the form (3.1) satisfies the following:
C = YA for some Y ∈ Cn×m,B = AX for some X ∈ Cm×n and D = CA†B. (3.2)

Let J, Jm and Jn be the weights associated with the indefinite inner products in Cm+n,Cm and Cn respec-
tively. Since Jm = J∗m = J(−1)

m and Jn = J∗n = J(−1)
n , it can be verified that J is of the form

J =
[
Jm 0
0 Jn

]
(3.3)

Theorem 3.2: Let M be of the form (3.1). M is J − EP if and only if A is Jm − EP and there exists an m × n
matrix X such that

M =
[

A AX
X[∗]A X[∗]AX

]
.

Proof: Since M is of the form (3.1), by using (3.2) M reduces to the form

M =
[

A AX
YA YAX

]
. (3.4)

Since J is of the form (3.3),

JM =
[

JmA JmAX
JnYA JnYAX

]
. Then the proof runs as follows:
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M is J − EP⇔ JM is EP (By Theorem2.1)
⇔ JmA is EP and JnYA(JmA)† = ((JmA)†(JmAX))∗ (By Theorem3 of [4])
⇔ A is Jm − EP and JnYAA†Jm = (A†AX)∗ = X∗(A†A) (By Theorem 2.1)
⇔ A is Jm − EP and YAA† = (JnX∗ Jm)(JmA†AJm)
⇔ A is Jm − EP and YAA† = X([∗])AA† (By Definition 2.2 & Theorem2.1)
⇔ A is Jm − EP and YA = X[∗]A.

Then the Theorem follows on substitution for YA in the equation (3.4).
Theorem 3.3: Let

M =
[
A B
C D

]
and L =

[
F G
H K

]
be J − EP matrices in ℘, both of the form (3.1) and M ◦ L be of rank r, then the following are equivalent:

(i) M ◦ L is J − EP.
(ii) A ◦ F is Jm − EP and CA† = HF†.
(iii) A ◦ F is Jm − EP and A†B = F†G.

Proof: Since both M and L are J − EP matrices of the form (3.1), by Theorem 3.2, there exist m × n matrices

X and Y such that M =
[

A AX
X[∗]A X[∗]AX

]
and L =

[
F FY

Y[∗]F Y[∗]FY

]
.

Now, M ◦ L =
[

A AX
X[∗]A X[∗]AX

] [
Jm 0
0 Jn

] [
F FY

Y[∗]F Y[∗]FY

]
.

=

[
A(Jm + XY∗ Jm)F A(Jm + XY∗Jm)FY

X[∗]A(Jm + XY∗ Jm)F X[∗]A(Jm + XY∗ Jm)FY

]
.

=

[
AZF AZFY

X[∗]AZF X[∗]AZFY

]
where Z = (Jm + XY∗ Jm).

Clearly, N(AZF) ⊆ N(X[∗]AZF),N(AZF)[∗] ⊆ N(AZFY)[∗] and the Schur complement of AZF in M ◦ L is zero.
Indeed,
M ◦ L/AZF = X[∗]AZFY − X[∗](AZF)(AZF)†(AZF)Y = X[∗]AZFY − X[∗]AZFY = O.
Hence, rank(AZF)=rank(M ◦ L)=r. Thus M ◦ L is also of the form (3.1) . Since M and L are range symmetric
in ℘, by Theorem 2.1 M and L are J − EP. Then, by Theorem 3.2 A and F are Jm − EP. Clearly, R(AZF) ⊆ R(A)
and by property 2.1(iii) R(AZF)[∗] ⊆ R(F)[∗]. Since, rank(AZF)=rank(A)=rank(F)=r, we have R(AZF) = R(A)
and R((AZF)[∗] = R(F)([∗]). Therefore,
(AZF)(AZF)† = AA† and (AZF)†(AZF) = F†F. (3.5)
Since A and F are Jm − EP, by Theorem 2.1(6), we have
(A†A)[∗] = (JmA†AJm) = AA† and (F†F)[∗] = (JmF†FJm) = FF†. (3.6)
Further, A ◦ F isJm − EP⇔ R(A) = R(F) (By Theorem3.1).

⇔ R(AZF) = R(A) = R(F) = R(F)[∗] = R((AZF)[∗].
⇔ AZF is Jm − EP.

Thus for Jm − EP matrices A and F, with R(A) = R(F),we have
A ◦ F is Jm − EP⇔ AZF is Jm − EP.
Now the proof runs as follows:
M ◦ LisJ − EPr ⇔ AZFisJm − EPr and X[∗](AZF)(AZF)† = ((AZF)†(AZF)Y)[∗].

⇔ AZF is Jm − EPr and X[∗]AA† = (F†FY)[∗] (By using 3.5)
⇔ A ◦ FisJm − EPr and X[∗]AA† = Y[∗](FF)[∗] (By (3.7) & Property 2.1(iii))
⇔ A ◦ FisJm − EPr and X[∗]AA† = Y[∗]FF† (By using 3.6)
⇔ A ◦ FisJm − EPr and CA† = HF† (By using C = X[∗]A and H = Y[∗]F)
⇔ A ◦ FisJm − EPr and A†B = F†G (By Theorem 3 of [4]).

Hence the Theorem holds.
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4. Factorization

In this section, a set of conditions under which a complex matrix can be expressed as a product of range
symmetric matrices in ℘ and as the indefinite matrix product of range symmetric matrices in are derived.
Since, A is J − EP and A is range symmetric in ℘ are equivalent by Theorem 2.1, hence forth we use, A is
J − EPr if A is range symmetric in ℘ and of rank r.

Definition 4.1: A matrix P ∈ Cn×n is said to be J-unitary if P ◦ P[∗] = P[∗] ◦ P = Jn.

Lemma 4.1: Let A ∈ Cn×n
r . Then A is J − EPr if and only if A = P

[
D O
O O

]
P[∗], where P is J-unitary and

D ∈ Cr×r
r .

Proof: A is J − EPr ⇔ AJ is EPr (By Theorem 2.1(7))

⇔ AJ = U
[
D1 O
O O

]
U∗,where U is unitary and D1 ∈ Cr×r

r (By Theorem 1 of [6]).

⇔ A = (UJ)
[
D O
O O

]
U∗ J,where D ∈ Cr×r

r .

⇔ A = P
[
D O
O O

]
P[∗],where P = UJ is J- unitary and D ∈ Cr×r

r .

Hence the Lemma holds.

Lemma 4.2: Let A,B be J − EPr matrices. Then Nu(A) = Nu(B) ⇔ Nu(PAP[∗]) = Nu(PBP[∗]), where P is
J-unitary.
Proof: (⇒).x ∈ Nu(PAP[∗])⇔ PAP[∗] ◦ x = 0.

⇔ PAJP∗x = 0.
⇔ A ◦ y = 0,where y = P∗x (By Definition 4.1 & Definition 2.1)
⇔ B ◦ y = 0, (By using Nu(A) = Nu(B)).
⇔ PBJP∗x = 0.
⇔ ((PBP[∗]) ◦ x = 0
⇔ x ∈ Nu(PBP[∗]).

Reverse implication can be proved in the same manner and hence omitted.
Theorem 4.1: Let M of the form (3.1) be range symmetric in ℘. Then M can be expressed as a product of
range symmetric matrices in ℘. Also M can be written as an indefinite matrix product of range symmetric
matrices in ℘.

Proof: Since M is range symmetric in ℘ and of the form (3.1), by Theorem 3.2, A is Jm − EP and

there exists an m × n matrix X such that M =

[
A AX

X[∗]A X[∗]AX

]
. Then, by using J =

[
Jm 0
0 Jn

]
, we have

JM =
[

JmA JmAX
JnX[∗]A JnX[∗]AX

]
. (4.1)

Now, let us consider the matrices

P =
[

JmAA†Jm JmAA†JmX
X∗ JmAA† Jm X∗ JmAA†JmX

]
,L =

[
JmA O
O O

]
and Q =

[
A†A A†AX

X[∗]A†A X[∗]A†AX

]
.

Clearly, P,L and Q satisfy (3.2), hence, rank(P)=rank(Q)=rank(L)=rank(A)=r. Since A is Jm−EP, by Theorem
2.1(7) JmA is EP. Therefore L is EP. Again by Theorem 2.1(6), JmAA†Jm = A†A. Hence, P∗ = P = Q = Q∗. P
and Q are EP matrices being symmetric. Now, by using (4.1), we have,

PLQ =
[

JmA O
X∗ JmA O

] [
A†A A†AX

X[∗]A†A X[∗]A†AX

]
=

[
JmA JmAX

X[∗] JmA X[∗] JmAX

]
=

[
JmA JmAX

JnX[∗]A JnX[∗]AX

]
= JM. Thus JM is a

product of EPr matrices. Also, M can be written as M = (JP)(LJ)(JQ) and we conclude that M is expressed
as a product of J − EP matrices. Again M can be written as M = (JP)J(JL)J(JQ) = (JP) ◦ (JL) ◦ (JQ) and we
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conclude that M is expressed as the indefinite matrix product of J−EP matrices. Hence the Theorem holds.

5. Conclusion

Here we have determined conditions for the indefinite product of range symmetric matrices in an inner
product space to be range symmetric and discussed some decomposition of a matrix into product of range
symmetric matrices as a generalization of our earlier works established in [3&4].
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