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Abstract. The matter of biharmonic surfaces of the 3-dimensional Euclidean space has been studied (firstly)
from a differential geometric point of view by Bang-Yen Chen and others, who has showed that the only
biharmonic surfaces in E3 are minimal ones. In general, the biharmonicity condition on any hypersurface
x : Mn → En+1 is defined by ∆2x = 0, where ∆ is the Laplace operator on Mn. Many people have paid
attention to various extensions of Chen’s theorem. In this paper, we approve an advanced version of the
theorem, replacing ∆ by the operator L1, which stands for the linearized operator of the first variation
of the 2-th mean curvature arising from the normal variations of Mn in En+1. In the case n = 4, for any
L1-biharmonic hypersurface x : M4 → E5, having assumed that it has three distinct principal curvatures
and constant ordinary mean curvature, we prove that, M4 has to be 1-minimal.

1. Introduction

The study of biharmonic maps has several physical and geometric motivations. For instance, one can
find the role of biharmonic maps in the theory of elastics and fluid mechanics in [1, 12]. The theory of
biharmonic maps plays a central role in various fields in differential geometry, computational geometry
and the theory of Partial differential equations. In eighteen decade, Bang Yen Chen initiated to investigate
the differential geometric properties of biharmonic submanifolds in the Euclidean spaces. He introduced
some open problems and conjectures (in [6]), among them, a longstanding conjecture says that a biharmonic
submanifold in a Euclidean space is a minimal one. Chen himself has proved the conjecture for surfaces
in E3. Later on, I. Dimitrić has verified Chen conjecture in several different cases such as special curves,
submanifolds of constant mean curvature and also, hypersurfaces of the Euclidean spaces with at most two
distinct principal curvatures. T. Hasanis and T. Vlachos ([10]) has verified the conjecture for hypersurfaces
in E4. Having assumed the completeness, Akutagawa and Maeta ([2]) gave an affirmative answer to the
global version of Chen’s conjecture for biharmonic submanifolds in Euclidean spaces. Recently, in [9], it is
proved that the only biharmonic hypersurfaces with three distinct principal curvatures in E5 are minimal
ones.
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Email addresses: pouri@tabrizu.ac.ir (Corresponding author) (Akram Mohammadpouri ), f_pashaie@maragheh.ac.ir

(Firooz Pashaie)



Akram Mohammadpouri, Firooz Pashaie / FAAC 7 (1) (2015), 67–75 68

The biharmonicity condition on any hypersurface x : Mn → En+1 is defined by∆2x = 0, where∆ is the The
Laplace operator which can be seen as the first one of a sequence of n operators L0 = ∆,L1, . . . , Ln−1, where
Lr stands for the linearized operator of the first variation of the (r+1)th mean curvature arising from normal
variations of the hypersurface (see, for instance, [14]). These operators are given by Lr( f ) = tr(Pr ◦ ∇2 f )
for any f ∈ C∞(M), where Pr denotes the rth Newton transformation associated to the second fundamental
from of the hypersurface and ∇2 f is the hessian of f . From this point of view, as an extension of finite type
theory, S.M.B. Kashani ([11]) introduced the notion of L1-finite type hypersurface in the Euclidean space,
which has been followed in the first author in her doctoral thesis (see [5], chapter 11).

In this paper, we pay attention to a generalized version of the concept of biharmonic hypersurfaces by
replacing ∆ by L1. In [13], we proved that every L1-biharmonic surface inE3 is flat and every Lr-biharmonic
hypersurface inE4 with at most two distinct principal curvatures is r-minimal, r ≤ 2. In this paper, we study
the L1-biharmonic hypersurfaces having at most three distinct principal curvatures in E5. We prove that,
each L1-biharmonic hypersurface in E5 with constant mean curvature and at most three distinct principal
curvatures is 1-minimal.

Here is our main result:

Theorem 1.1. Every L1-biharmonic hypersurfaces in E5 with constant mean curvature and three distinct principal
curvatures is 1-minimal.

2. Preliminaries

In this section, we recall preliminary concepts from [4, 9, 13]. Let x : M4 → E5 be an isometrically
immersed hypersurface in the Euclidean 4-space, with the Gauss map N. We denote by ∇0 and ∇ the
Levi-Civita connections on E5 and M4, respectively, then, the basic Gauss and Weingarten formulae of
the hypersurface are written as ∇0

XY = ∇XY+ < SX,Y > N and SX = −∇0
XN, for all tangent vector fields

X,Y ∈ χ(M4), where S : χ(M4) → χ(M4) is the shape operator (or Weingarten endomorphism) of M4 with
respect to the Gauss map N.

As is well-known, for every point p ∈M4, S defines a linear self-adjoint endomorphism on the tangent
space TpM4, and its eigenvaluesλ1(p), λ2(p), λ3(p) andλ4(p) are the principal curvatures of the hypersurface.
The characteristic polynomial QS(t) of S is defined by

QS(t) = det(tI − S) = (t − λ1)(t − λ2)(t − λ3)(t − λ4) = t4 + a1t3 + a2t2 + a3t + a4,

where the coefficients of QS(t) are given by

a1 = −(λ1 + λ2 + λ3 + λ4), a2 = λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4,

a3 = −(λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4), a4 = λ1λ2λ3λ4.
(2.1)

The r-th mean curvature Hr or mean curvature of order r of M4 in E5 is defined by(
4
r

)
Hr = (−1)rar, with H0 = 1.

If Hr+1 = 0 then we say that M4 is a r-minimal hypersurface, a 0-minimal hypersurface is nothing but
a minimal hypersurface in E5. The r-th Newton transformation of M4 is the operator Pr : χ(M4) → χ(M4)
defined by

Pr =

r∑
j=0

(−1) j
(

4
r − j

)
Hr− jS j = (−1)r

r∑
j=0

ar− jS j.

In particular,
P0 = I, P1 = 4HI − S, P2 = 6H2I − S ◦ P1.
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Let us recall that, for every point p ∈ M4, each Pr(p) is also a self-adjoint linear operator on the tangent
hyperplane TpM4 which commutes with S(p). Indeed, S(p) and Pr(p) can be simultaneously diagonal-
ized. If {e1, e2, e3, e4} are the eigenvectors of S(p) corresponding to the eigenvalues {λ1(p), λ2(p), λ3(p), λ4(p)},
respectively, then they are also the eigenvectors of Pr(p) with corresponding eigenvalues given by

µi,r =

4∑
i1<···<ir

i j,i

λi1 · · ·λir . (i = 1, 2, 3, 4) (2.2)

In particular,

µ1,1 = λ2 + λ3 + λ4, µ2,1 = λ1 + λ3 + λ4, µ3,1 = λ1 + λ2 + λ4, µ4,1 = λ1 + λ2 + λ3,

µ1,2 = λ2λ3 + λ2λ4 + λ3λ4, µ2,2 = λ1λ3 + λ1λ4 + λ3λ4,

µ3,2 = λ1λ2 + λ1λ4 + λ2λ4, µ4,2 = λ1λ2 + λ1λ3 + λ2λ3.

(2.3)

We have the following formula for the Newton transformations from [4].

tr(S2 ◦ P1) = 12(2HH2 −H3).%& (2.4)

Associated to each Newton transformation Pr, we consider the second-order linear differential operator
Lr : C∞(M4) → C∞(M4) given by Lr( f ) = tr(Pr ◦ ∇2 f ). Here, ∇2 f : χ(M4) → χ(M4) denotes the self-adjoint
linear operator metrically equivalent to the Hessian of f and is given by < ∇2 f (X),Y >=< ∇X(∇ f ),Y >
, X,Y ∈ χ(M4). Therefore by considering the local orthonormal frame {e1, e2, e3, e4}, Lr( f ) is given by

Lr( f ) =
4∑

i=1

µi,r(eiei f − ∇ei ei f ). (2.5)

3. Lr-biharmonic hypersurfeces in E5

Let x : M4 → E5 be a connected orientable hypersurface immersed into the Euclidean 5-space, with
Gauss map N. By definition, M4 is called a Lr-biharmonic hypersurface if its position vector field satiesfies
the condition L2

r x = 0. By the equality Lrx = crHr+1N from [4], the condition L2
r x = 0 has another equivalent

expression as Lr(Hr+1N) = 0. It is clear that, r-minimal hypersurface is Lr-biharmonic. By formulae in [4]
page 122, we have

L2
r x = −2cr(S ◦ Pr)(∇Hr+1) − cr

(
4

r + 1

)
Hr+1∇Hr+1 − cr(tr(S2 ◦ Pr)Hr+1 − LrHr+1)N, (3.1)

where cr = (r + 1)
( 4

r+1
)
.

By using this formula for L2
r x and the identifying normal and tangent parts of the Lr-biharmonic condition

L2
r x = 0, one obtains necessary and sufficient conditions for M4 to be Lr-biharmonic in E5, namely

LrHr+1 = tr(S2 ◦ Pr)Hr+1 (3.2)

and

(S ◦ Pr)(∇Hr+1) = −1
2

(
4

r + 1

)
Hr+1∇Hr+1. (3.3)

From now on, we concentrate on L1-biharmonic hypersurfaces M4 in a Euclidean space E5 with three
distinct principal curvatures and constant ordinary mean curvature H = H1.
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3.1. Proof of Theorem 1.1

Let x : M4 → E5 be an L1-biharmonic hypersurfaces with constant ordinary mean curvature and three
distinct principal curvatures. Having assumed that the 2th mean curvature of M4, H2 is not constant, we
will get a contradiction. So, there exists a connected open subset U of M, on which we have ∇H2(p) , 0.
Let {e1, e2, e3, e4} be a local orthonormal frame of principal directions on onU, which are the eigenvectors of
the shape operator, S, of M, hence we have Sei = λiei for real numbers λi, and by (2.2) we have P2ei = µi,2ei,
for i = 1, 2, 3, 4. Using the expanded equality

H2 =
1
6

(λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4), (3.4)

and the inductive definition of P2, we get

P2(∇H2) = 9H2∇H2 onU. (3.5)

Observe from (3.5) that ∇H2 is an eigenvector of P2 with the corresponding eigenvalue 9H2. Without
loss of generality, we can choose e1 such that e1 is parallel to ∇H2. Since the shape operator S and P2 can be
simultaneously diagonalized, therefore the shape operator S of M4 takes the form with respect to a suitable
orthonormal frame {e1, e2, e3, e4}

λ1
λ2

λ3
λ4

 . (3.6)

Then we have

µ1,2 = 9H2. (3.7)

We can decompose ∇H2 =
4∑

i=1
ei(H2)ei. Since e1 is parallel to ∇H2, it follows that

e1(H2) , 0, e2(H2) = e3(H2) = e4(H2) = 0. (3.8)

We write

∇ei e j =

4∑
k=1

ωk
i jek, i, j = 1, 2, 3, 4. (3.9)

The compatibility conditions ∇ek < ei, ei >= 0 and ∇ek < ei, e j >= 0 imply respectively that

ωi
ki = 0, ω j

ki + ω
i
k j = 0, (3.10)

for i , j and i, j, k = 1, 2, 3, 4. Furthermore, it follows from the Codazzi equation that

ei(λ j) = (λi − λ j)ω
j
ji, (3.11)

(λi − λ j)ω
j
ki = (λk − λ j)ω

j
ik (3.12)

for distinct i, j, k = 1, 2, 3, 4.
Since µ1,2 = 9H2, from (3.4) we have

H2 =
1
3
λ1(λ1 − 4H), (3.13)
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therefore, we get

e1(λ1) , 0, e2(λ1) = e3(λ1) = e4(λ1) = 0. (3.14)

One can compute that
[e2, e3](λ1) = [e3, e4](λ1) = [e2, e4](λ1) = 0,

which yields directly

ω1
23 = ω

1
32, ω1

34 = ω
1
43, ω1

24 = ω
1
42. (3.15)

Now we show that λ j , λ1 for j = 2, 3, 4. In fact, if λ j = λ1 for j , 1, by putting i = 1 in (3.11) we have
that

0 = (λ1 − λ j)ω
j
j1 = e1(λ j) = e1(λ1),

which contradicts the first expression of (3.14).
By the assumption, M4 has three distinct principal curvatures, without loss of generality, we assume

that λ2 = λ3 = λ and λ4 , λ, hence λ4 = 4H − λ1 − 2λ.
Consider Eqs. (3.11) and (3.12).
Let j = 2, i = 3, and j = 3, i = 2 respectively in (3.11). One has

e2(λ) = e3(λ) = 0. (3.16)

For j = 1 and i , 1 in (3.11), by (3.14) we have ω1
1i = 0 (i , 1). Moreover, by the first expression of (3.10) we

have
ω1

1i = 0, i = 1, 2, 3, 4.

For j = 4, i = 2, 3 in (3.11), by (3.16) we have

ω4
42 = ω

4
43 = 0.

For i = 1, j = 2, 3, 4 in (3.11), we obtain

ω2
21 = ω

3
31 =

e1(λ)
λ1 − λ

, ω4
41 = −

e1(λ1 + 2λ)
2λ1 + 2λ − 4H

. (3.17)

For i = 4, j = 2, 3 in (3.11), we obtain

ω2
24 = ω

3
34 =

e4(λ)
4H − λ1 − 3λ

.

For i = 1, by choosing j = 2, k = 3 or j = 3, k = 2 in (3.12), we have

ω2
31 = ω

3
21 = 0.

For i = 4, by choosing j = 2, k = 3 or j = 3, k = 2 in (3.12), we get

ω2
34 = ω

3
24 = 0.

For i = 4 and j = 1, k = 2, 3 in (3.12), we have

(2λ1 + 2λ − 4H)ω1
24 = (λ1 − λ)ω1

42,

(2λ1 + 2λ − 4H)ω1
34 = (λ1 − λ)ω1

43,

which together with the second and third expressions of (3.15) give

ω1
24 = ω

1
42,= ω

1
34 = ω

1
43 = 0.
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Similarly, we can also obtain
ω4

12 = ω
4
13 = 0.

Let us introduce two smooth functions α and β as follows:

α =
e1(λ)
λ1 − λ

, β =
e1(λ1 + 2λ)

2λ1 + 2λ − 4H
. (3.18)

Combining the above remarks with (3.10) and summarizing, the covariant derivatives ∇ei e j simplify to

∇e1 e1 = 0, ∇e2 e1 = αe2, ∇e3 e1 = αe3, ∇e4 e1 = −βe4,

∇e1 e2 = ω
3
12e3, ∇e2 e2 = −αe1 + ω

3
22e3 −

e4(λ)
4H − λ1 − 3λ

e4, ∇e3 e2 = ω
3
32e3, ∇e4 e2 = ω

3
42e3,

∇e1 e3 = ω
2
13e2, ∇e2 e3 = ω

2
23e2, ∇e3 e3 = −αe1 + ω

2
33e2 −

e4(λ)
4H − λ1 − 3λ

e4, ∇e4 e3 = ω
2
43e2,

∇e1 e4 = 0, ∇e2 e4 =
e4(λ)

4H − λ1 − 3λ
e2, ∇e3 e4 =

e4(λ)
4H − λ1 − 3λ

e3, ∇e4 e4 = βe1.

(3.19)

Recall the definition of the Gauss curvature tensor

R(X,Y)Z = ∇X∇YZ − ∇Y∇XZ − ∇[X,Y]Z.

One can compute the curvature tensor R by (3.19) and apply the Gauss equation for different values of
X,Y and Z. After comparing the coefficients with respect to the orthonormal basis {e1, e2, e3, e4} we get the
following:
• X = e1, Y = e2, Z = e1,

e1(α) + α2 = −λ1λ; (3.20)

• X = e1, Y = e2, Z = e4,

e1

(
e4(λ)

4H − λ1 − 3λ

)
+ α

e4(λ)
4H − λ1 − 3λ

= 0; (3.21)

• X = e1, Y = e4, Z = e1,

−e1(β) + β2 = −λ1(4H − λ1 − 2λ); (3.22)

• X = e3, Y = e4, Z = e1,

e4(α) + (α + β)
e4(λ)

4H − λ1 − 3λ
= 0; (3.23)

• X = e4, Y = e2, Z = e4,

−e4

(
e4(λ)

4H − λ1 − 3λ

)
+ αβ −

(
e4(λ)

4H − λ1 − 3λ

)2

= λ(4H − λ1 − 2λ). (3.24)

Now, we consider the L1-biharmonic equation (3.2). It follows from (2.5) and (3.19) that

(λ1 − 4H)e1e1(H2) + (2(λ − 4H)α + (λ1 + 2λ)β)e1(H2) − 12H2(2HH2 −H3) = 0. (3.25)

From (3.8) and (3.19), we obtain

eie1(H2) = 0, i = 2, 3, 4. (3.26)
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Differentiating α and β along e4, we get Eqs

(λ1 − λ)e4(α) − αe4(λ) = e4e1(λ),

(λ1 + λ − 2H)e4(β) + βe4(λ) = e4e1(λ),

respectively and eliminating e4e1(λ), we have

(λ1 + λ − 2H)e4(β) = (λ1 − λ)e4(α) − (α + β)e4(λ).

Putting the value of e4(α) from (3.23) in the above equation, we find

e4(β) =
e4(λ)(α + β)(4λ − 4H)

(λ1 + λ − 2H)(4H − λ1 − 3λ)
.

Differentiating (3.25) along e4 and using (3.26), (3.23) and e4(β), we get

e4(λ)
[

2(α + β)(8Hλ1 − λ1
2 − 3λλ1 + 12Hλ − 16H2)e1(H2)
λ1 + λ − 2H

+ 6H2λ(4H − λ1 − 3λ)2
]
= 0. (3.27)

We claim that e4(λ) = 0. Indeed, if e4(λ) , 0, then

2(α + β)Ae1(H2)
λ1 + λ − 2H

+ 6H2λ(4H − λ1 − 3λ)2 = 0, (3.28)

where A := 8Hλ1 − λ1
2 − 3λλ1 + 12Hλ − 16H2.

Now, differentiating (3.28) along e4, we have

2(α + β) [A(6λ − 6H) + B] e1(H2)

(λ1 + λ − 2H)2 − 36H2(4H − λ1 − 3λ)2 = 0, (3.29)

where B := (−3λ1 + 12H)(λ1 + λ − 2H)(4H − λ1 − 3λ).
Eliminating e1(H2) from (3.28) and (3.29), we obtain

2A(3H − λ1 − 2λ) = (−λ1 + 4H)(λ1 + λ − 2H)(4H − λ1 − 3λ). (3.30)

Differentiating (3.30) along e4, we get that 4H = λ1, which is not possible, since λ1 is not constant.
Consequently, e4(λ) = 0. Therefore, (3.24) reduces to

αβ = λ(4H − λ1 − 2λ). (3.31)

Note that (3.13) yields

e1(H2) = −4
3

(λ1 − 2H)e1(λ) +
4
3

(λ1 + λ − 2H)(λ1 − 2H)β. (3.32)

By using (3.32), (3.31), (3.22) and (3.20), we obtain

e1e1(H2) =
4
3
λ1λ(λ1 − λ)(λ1 − 2H) +

4
3

(4H − λ1 − 2λ)(λ1 − 2H)(5λ1λ + λ1
2 − 4Hλ − 2Hλ1)

+

[
−4α + 3β + 2

(λ1 + λ − 2H)β − (λ1 − λ)α
λ1 − 2H

]
e1(H2).

(3.33)

Combining (3.25) with (3.33) gives

(P1,2α + P2,2β)e1(H2) = P3,6, (3.34)
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where P1,2, P2,2 and P3,6 are polynomials in terms of λ and λ1 of degrees 2, 2 and 6 respectively.
Differentiating (3.34) along e1 and using (3.31), (3.22), (3.20) and (3.34), we get following relation

P4,8α + P5,8β = P6,5e1(H2), (3.35)

where P4,8, P5,8 and P6,5 are polynomials in terms of λ and λ1 of degrees 8, 8 and 5 respectively.
Also, we have

e1(H2) =
4
3

(λ1 − 2H)
(¢

¢
β(λ1 + λ − 2H) − α(λ1 − λ)

)
. (3.36)

Combining (3.35) and (3.36), we obtain(
P4,8 +

4
3

P6,5(λ1 − λ)(λ1 − 2H)
)
α +

(
P5,8 −

4
3

P6,5(λ1 + λ − 2H)(λ1 − 2H)
)
β = 0. (3.37)

On the other hand, combining (3.36) with (3.34) and using (3.31), we find

P2,2(λ1 + λ − 2H)(λ1 − 2H)β2 − P1,2(λ1 − λ)(λ1 − 2H)α2 = L, (3.38)

where L is given by

L = λ(4H − λ1 − 2λ)(λ1 − 2H)
(¢

¢
P2,2(λ1 − λ) − P1,2(λ1 + λ − 2H)

)
+

3
4

P3,6.

Using (3.37) and (3.31), we get

α2 =
4
3 P6,5(λ1 + λ − 2H)(λ1 − 2H) + P5,8

P4,8 +
4
3 P6,5(λ1 − λ)(λ1 − 2H)

λ(4H − λ1 − 2λ),

β2 =
4
3 P6,5(λ1 − λ)(λ1 − 2H) − P4,8

P5,8 − 4
3 P6,5(λ1 + λ − 2H)(λ1 − 2H)

λ(4H − λ1 − 2λ).

(3.39)

Eliminating α2 and β2 from (3.38), we obtain

λ(4H − λ1 − 2λ)(λ1 − 2H)
[
P1,2(λ1 − λ)

(
P5,8 −

4
3

P6,5(λ1 + λ − 2H)(λ1 − 2H)
)2

−P2,2(λ1 + λ − 2H)
(
P4,8 +

4
3

P6,5(λ1 − λ)(λ1 − 2H)
)2]

= L
(
P5,8 −

4
3

P6,5(λ1 + λ − 2H)(λ1 − 2H)
) (

P4,8 +
4
3

P6,5(λ1 − λ)(λ1 − 2H)
)
,

(3.40)

which is a polynomial equation of degree 22 in terms of λ and λ1.
Now consider an integral curve of e1 passing through p = γ(t0) as γ(t), t ∈ I. Since ei(λ1) = ei(λ) = 0 for

i = 2, 3, 4 and e1(λ1), e1(λ) , 0, we can assume t = t(λ) and λ1 = λ1(λ) in some neighborhood of λ0 = λ(t0).
Using (3.37), we have

dλ1

dλ
=

dλ1

dt
dt
dλ
=

e1(λ1)
e1(λ)

= 2
(λ1 + λ − 2H)β − (λ1 − λ)α

(λ1 − λ)α

=
2
(
P4,8 +

4
3 P6,5(λ1 − λ)(λ1 − 2H)

)
(λ1 + λ − 2H)(

4
3 P6,5(λ1 + λ − 2H)(λ1 − 2H) − P5,8

)
(λ1 − λ)

− 2

(3.41)
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Differentiating (3.40) with respect to λ and substituting dλ1
dλ from (3.41), we get

f (λ1, λ) = 0, (3.42)

another algebraic equation of degree 30 in terms of λ1 and λ.
We rewrite (3.40) and (3.42) respectively in the following forms

22∑
i=0

fi(λ1)λi,
30∑
i=0

1i(λ1)λi, (3.43)

where fi(λ1) and 1 j(λ1) are polynomial functions of λ1. We eliminate λ30 between these two polynomials
of (3.43) by multiplying 130λ8 and f22 respectively on the first and second equations of (3.43), we obtain a
new polynomial equation in λ of degree 29. Combining this equation with the first equation of (3.43), we
successively obtain a polynomial equation in λ of degree 28. In a similar way, by using the first equation of
(3.43) and its consequences we are able to gradually eliminate λ. At last, we obtain a non-trivial algebraic
polynomial equation in λ1 with constant coefficients. Therefore, we conclude that the real function λ1 must
be a constant, which is a contradiction. Hence H2 is constant on M4. If H2 , 0, by using (3.2) and (2.4) we
obtain that H3 is constant. Therefore all the mean curvatures Hi are constant functions, this is equivalent
to M4 is isoparametric. An isoparametric hypersurface of Euclidean space can have at most two distinct
principal curvatures ([15]), which is a contradiction. So H2 ≡ 0. �
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