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Abstract. In this paper, we study a detailed treatment of some subsets of M-essential spectra of closed
linear operators subjected to additive perturbations not necessarily belonging to any ideal of the algebra
of bounded linear operators and we investigate some properties of the M-essential spectra of 2 × 2 matrix
operator acting on a Banach space. This study led us to generalize some well known results for essential
spectra of closed linear operator.

1. Introduction

Let X and Y be two infinite-dimensional Banach spaces. By an operator A from X to Y we mean a linear
operator with domain D(A) ⊂ X and range R(A) ⊂ Y. We denote by C(X,Y) (resp. L(X,Y)) the set of all
closed, densely defined linear operators (resp. the Banach algebra of all bounded linear operators) from
X into Y and we denote by K (X,Y) the subspace of all compact operators from X into Y. We denote by
σ(A) and ρ(A) respectively the spectrum and the resolvent set of A. The nullity, α(A), of A is defined as the
dimension of N(A) and the deficiency, β(A), of A is defined as the codimension of R(A) in Y.

Let A and M be two operators on X such that M is nonzero and bounded and A is closed. We define the
M-resolvent set by:

ρM(A) :=
{
λ ∈ C such that λM − A has a bounded inverse

}
.

The M-spectrum of an operator A acting on a Banach space X is usually defined as

σM(A) := C\ ρM(A).

Subsequently, the operator M should be taken as non invertible. For, otherwise the M-resolvent coincides
with usual resolvent of the operator M−1A, this analysis is meaningless.
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Now, we introduce the following important operator classes: The set of upper semi-Fredholm operators is
defined by

Φ+(X,Y) = {A ∈ C(X,Y) such that α(A) < ∞,R(A) is closed in Y}.
and the set of lower semi-Fredholm operators is defined by

Φ−(X,Y) = {A ∈ C(X,Y) such that R(A) < ∞,R(A) is closed in Y}.

The set of Fredholm operators from X into Y is defined by

Φ(X,Y) = Φ+(X,Y) ∩Φ−(X,Y).

The set of bounded upper ( resp. lower ) semi-Fredholm operator from X into Y is defined by

Φb
+(X,Y) = Φ+(X,Y) ∩ L(X,Y) (resp. Φ−(X,Y) ∩ L(X,Y)).

We denote by Φb(X,Y) = Φ(X,Y) ∩ L(X,Y) the set of bounded Fredholm operators from X into Y. If A is
semi-Fredholm operator (either upper or lower) the index of A, is defined by i(A) = α(A) − β(A). It is clear
that if A ∈ Φ(X,Y) then i(A) < ∞. If A ∈ Φ+(X,Y) \ Φ(X,Y) then i(A) = −∞ and if A ∈ Φ−(X,Y) \ Φ(X,Y)
then i(A) = +∞. A complex number λ is in Φ+A,M, Φ−A,M or ΦA,M if λM − A is in Φ+(X,Y), Φ−(X,Y) or
Φ(X,Y), respectively. If X = Y then L(X,Y), C(X,Y), K (X,Y), Φ(X,Y), Φ+(X,Y) and Φ−(X,Y) are replaced
by L(X), C(X), K (X), Φ(X), Φ+(X) and Φ−(X) respectively.

Proposition 1.1. [2, Proposition 1.1.] Let A ∈ C(X) and M a non null bounded linear operator on X. Then we
have the following results
(i) ΦA,M is open.
(ii) i(λM − A) is constant on any component of ΦA,M.

(iii) α(λM − A) and β(λM − A) are constant on any component of ΦA,M except on a discrete set of points at which
they have larger values.

There are several and in general non-equivalent definitions of the essential spectrum of a bounded linear
operator on a Banach space. For a self-adjoint operator in a Hilbert space, there seems to be only one
reasonable way to define the essential spectrum: The set of all points of the spectrum that are not isolated
eigenvalues of finite algebraic multiplicity. Numerous mathematical and physical problems lead to operator
pencils, λM − A (operator-valued functions of a complex argument) (see, for example, [13] and [20]).
Recently, the spectral theory of operator pencils attracts an attention of many mathematicians. If X is a
Banach space and A ∈ C(X), M ∈ L(X) various notions of essential M− spectrum appear in application of
spectral theory. In the following of this paper we introduce the M-essential spectra (see, for instance[1, 2])
and the references therein.

σe1,M(A) :=
{
λ ∈ C such that λM − A < Φ+(X)

}
:= C\Φ+A,M

σe2,M(A) :=
{
λ ∈ C such that λM − A < Φ−(X)

}
:= C\Φ−A,M

σe3,M(A) :=
{
λ ∈ C such that λM − A < Φ±(X)

}
:= C\Φ±A,M

σe4,M(A) :=
{
λ ∈ C such that λM − A < Φ(X)

}
:= C\ΦA,M

σe5,M(A) := C\ρe5,M(A)
σe6,M(A) := C\ρe6,M(A)
σeap,M(A) := C\ρeap,M(A)
σeδ,M(A) := C\ρeδ,M(A)

where ρe5,M(A) :=
{
λ ∈ C such that λM − A ∈ Φ(X) and i(λM − A) = 0

}
,

ρe6,M(A) :=
{
λ ∈ ρe5,M(A) such that all scalars near λ are in ρM(A)

}
,
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ρeap,M(A) :=
{
λ ∈ C such that λM − A ∈ Φ+(X) and i(λM − A) ≤ 0

}
,

and
ρeδ,M(A) :=

{
λ ∈ C such that λM − A ∈ Φ−(X) and i(λM − A) ≥ 0

}
.

They can be ordered as
σe5,M(A) =

(
σeap,M(A) ∪ σeδ,M(A)

)
⊂ σe6,M(A).

σe1,M(A) ⊂ σeap,M(A) and σe2,M(A) ⊂ σeδ,M(A).

Note that if M = I, we recover the usual definition of the essential spectra of a closed linear operator A.
We call σe1,I(.) and σe2,I(.) the Gustafson and Weidmann essential spectra [5], σe3,I(.) is the Kato essential
spectrum [12], σe4,I(.) is the Wolf essential spectrum [5, 6, 8], and σe5,I(.) the Schechter essential spectrum
[5, 8, 9, 18, 19]. σeap,I(.) is the essential approximate point spectrum [10, 15, 16] and σeδ,I(.) is the essential
defect spectrum [7, 10, 16, 21].

Remark 1.2. If M is invertible, then σei,M(A) = σei(M−1A), i ∈
{
1, 2 , 3, 4, 5, ap, δ

}
.

In the next, we will suppose that M is not invertible and we denote the complement of a subset Ω ⊂ C by
CΩ.

Lemma 1.3. Let A ∈ C(X),M ∈ L(X). Then,

(i) σe5,M(A) :=
∩

K∈K (X)

σM(A + K) =
∩

K∈F0(X)

σM(A + K) =
∩

K∈F (X)

σM(A + K).

(ii) σeap,M(A) :=
∩

K∈K (X)

σap,M(A + K) =
∩

K∈F0(X)

σap,M(A + K) =
∩

K∈F+(X)

σap,M(A + K).

(ii) σeδ,M(A) :=
∩

K∈K (X)

σδ,M(A + K) =
∩

K∈F0(X)

σδ,M(A + K) =
∩

K∈F−(X)

σδ,M(A + K).

where
σap,S(A) :=

{
λ ∈ C such that inf

∥x∥=1, x∈D(A)
∥(λM − A)∥ = 0

}
,

σδ,M(A) :=
{
λ ∈ C such that λM − A is not surjective

}
.

Proof. (i) Let λ < O =
∩

K∈F0(X)

σM(A + K). Then, there exists K ∈ F0(X) such that λ ∈ ρM(A + K), then

A + K − λM ∈ Φ(X) and i(A + K − λM) = 0. Now, the operator A − λM can be written in the form

A − λM = A + K − λM − K.

By [17, Theorem 3.1] we have A − λM ∈ Φ(X) and i(A − λS) = 0. Then, λ < σe5,M(A).

Conversely, we suppose that λ < σe5,M(A) then, (A − λM) ∈ Φ(X) and i(A − λM) = 0.
Let n = α(A−λM) = β(A−λM),

{
x1, ..., xn

}
be bases for the N((A−λM)

′
) and

{
y′1, ..., y

′
n

}
be basis for annihilator

R(A − λM)⊥. By [17, Theorems 1.2.5, 1.2.6] there are functionals x′1, ..., x
′
n in X′

(the adjoint space of X) and
elements y1, ..., yn such that

x
′

j(xk) = δ jk and y′j(yk) = δ jk, 1 ≤ j, k ≤ n,

where δ jk = 0 if j , k and δ jk = 1 if j = k. The operator K is defined by :

Kx =
n∑

k=1

x
′

k(x)yk, x ∈ X.
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Clearly K is a linear operator defined everywhere on X. It is bounded, since

∥Kx∥ ≤
 n∑

k=1

∥x′k∥∥yk∥
 ∥x∥.

Moreover the range of K is contained in a finite dimensional subspace of X. Then K is a finite rank operator
in X ([17, Lemma 1.3]).We prove that

N(A − λM) ∩N(K) = {0} and R(A − λM) ∩ R(K) = {0}. (1)

Let x ∈ N(A − λM), then

x =
n∑

k=1

αkxk,

therefore x′j(x) = α j, 1 ≤ j ≤ n. On the other hand, if x ∈ N(K) then x′j(x) = 0, 1 ≤ j ≤ n. This proves the first
relation in Eq. (1). The second inclusion is similar.
In fact, if y ∈ R(K), then

y =
n∑

k=1

αkyk,

and hence,
y j(y) = α j, 1 ≤ j ≤ n.

But, if y ∈ R(A − λM), then,
y
′

j(y) = 0, 1 ≤ j ≤ n.

This gives the second relation in Eq. (1). On the other hand K is a compact operator. We deduce from
[17, Theorem 3.1] that λ ∈ ΦA,M and i(A − λM + K) = 0. If x ∈ N(A − λM + K) then (A − λM)x is in
R(A− λM)∩R(K) this implies that x ∈ N(A− λM)∩N(K) hence x = 0. Thus α(A−λM+K) = 0. In the same
way, one proves that R(A − λM + K) = X.We get λ < O. Also, σe5,M(A) :=

∩
K∈F0(X)

σM(A + K).

LetO1 :=
∩

F∈F (X) σM(A+F). Since,F0(X) ⊂ F (X) we infer thatO ⊂ σe5,M(A).Conversely, letλ < O1 then there
exist F ∈ F (X) such that λ < σM(A + F). Then, λ ∈ ρM(A + F). So, A+ F − λM ∈ Φ(X) and i(A+ F − λM) = 0.
The use of [10, Lemma 2.1] makes us conclude that A − λM ∈ Φ(X) and i(A − λM) = 0. Then, λ < σe5,M(A).
So, σe5,M(A) :=

∩
K∈F0(X)

σM(A + K) =
∩

K∈F (X)

σM(A + K).

Now, we use the following relations F0(X) ⊂ K (X) ⊂ F (X), we have
σe5,M(A) =

∩
K∈F (X)

σM(A + K) ⊂
∩

K∈K (X)

σM(A + K) ⊂
∩

K∈F0(X)

σM(A + K) = σe5,M(A).

Statement (ii) and (iii) can be checked similarly from the assertion (i).

Lemma 1.4. Let A ∈ C(X) and M ∈ L(X).

(a) If ΦA,M is connected and ρM(A) , ∅, then

(i) σe5,M(A) = σe4,M(A).

(ii) σe1,M(A) = σeap,M(A).

(iii) σe2,M(A) = σeδ,M(A).

(b) If Cσe5,M(A) is connected and ρM(A) , ∅, then

σe5,M(A) = σe6,M(A).
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Proof. (i) The inclusion σe4,M(A) ⊂ σe5,M(A) is known, it suffices to show that λ ∈ σe5,M(A) ⊂ σe4,M(A) which
is equivalent to

Cσe4,M(A) ∩ {λ ∈ C such that i(A − λM) , 0} = ∅.
Suppose that Cσe4,M(A)∩ {λ ∈ C such that i(A−λM) , 0} , ∅ and let λ0 ∈ Cσe4,M(A)∩ {λ ∈ C such that i(A−
λM) , 0}. SinceρM(A) , ∅, then there existsλ1 ∈ ρM(A) and consequentlyλ1M−A ∈ Φ(X) and i(λ1M−A) = 0.
On the other side, ΦA,M is connected, it follows from Proposition 1.1 (ii) that i(λM − A) is constant on any
component of ΦA,M. Therefore i(λ1M − A) = i(λ0M − A) = 0, which is a contradiction. Then σe5,M(A) ⊂
σe4,M(A).

(ii) It is easy to check that σe1,M(A) ⊂ σeap,M(A). For the second inclusion we take λ ∈ Cσe1,M(A), then
λ ∈

(
ΦA,M ∪ (Φ+A,M \ΦA,M)

)
. Hence, we will discuss the following two cases:

Case 1: If λ ∈ ΦA,M then i(A−λM) = 0. Indeed, let λ0 ∈ ρM(A), then λ0 ∈ ΦA,M and i(A−λ0M) = 0. It follows
from Proposition 1.1 that i(A − λM) is constant on any component of ΦA,M, therefore ρM(A) ⊆ ΦA,M, then
i(A − λM) = 0 for all λ ∈ ΦA,M. This shows that λ ∈ ρeap,M(A).

Case 2: If µ ∈ (Φ+A,M \ ΦA,M), then α(A − λM) < ∞ and β(A − µM) = +∞. So, i(A − λM) = −∞ < 0. Thus,
we obtain from the above σeap,M(A) ⊂ σe1,M(A).

Statement (iii) can be checked similarly from the assertion (ii).

(b) The inclusion σe5,M(A) ⊂ σe6,M(A) is known, it suffices to show that σe6,M(A) ⊂ σe5,M(A). We have the
set ρe5,M(A) , ∅, because it contains points of ρe5,M(A). Because α(λM − A) and β(λM − A) are constant on
any component of ΦM,A except possibly on a discrete set of points at which they have large values (see
Proposition 1.1 (iii)) then ρe5,M(A) ⊂ ρe6,M(A). that is equivalent to σe6,M(A) ⊂ σe5,M(A) and so we have the
equality.

Definition 1.5. Let F ∈ L(X,Y).
(i) F is called Fredholm perturbation if A + F ∈ Φb(X,Y) whenever A ∈ Φb(X,Y).
(ii) F is called an upper (resp. lower) semi-Fredholm perturbation if A + F ∈ Φb

+(X,Y) (resp. A + F ∈ Φb
−(X,Y) )

whenever A ∈ Φb
+(X,Y) (resp. A ∈ Φb

−(X,Y)).

The sets of Fredholm, upper semi Fredholm and lower semi Fredholm perturbations are denoted by
F b(X,Y), F b

+(X,Y) and F b
−(X,Y) respectively. These classes of operators were introduced and investigated

in [3]. In particular, it is shown that F b
+(X,Y) and F b(X,Y) are closed subsets of L(X,Y) and if X = Y then

F b
+(X) and F b(X) are closed two-sided ideals ofL(X).We recall the following useful result due to Gohberg,

Markus and Fel’dman [3, page 69-70].

Lemma 1.6. Let X, Y and Z be three Banach spaces.
(i) F1 ∈ F b(X,Y) and A ∈ L(Y,Z) then AF1 ∈ F b(X,Z).
(ii) F2 ∈ F b(Y,Z) and B ∈ L(X,Y) then F1B ∈ F b(Y,Z).

Definition 1.7. Let X and Y be two Banach spaces and let F ∈ L(X,Y). F is called strictly singular, if for every
infinite-dimensional closed subspaceM of X, the restriction of F toM is not an homeomorphism.

Let SS(X,Y) denotes the set of strictly singular operators from X into Y. If X = Y, the set of strictly singular
operators on X will be denoted by SS(X).

The concept of strictly singular operators was introduced in the pioneering paper by T. Kato [11] as a
generalization of the notion of compact operators. For a detailed study of the properties of strictly singular
operators, we refer to [4, 11]. Note that SS(X) is a closed two-sided ideal ofL(X) containingK (X). If X is a
Hilbert space, then SS(X) = K (X).

Definition 1.8. Let X and Y be two Banach spaces and let F ∈ L(X,Y). F is called strictly cosingular if there exists
no closed subspace N of X with codim(N) = ∞ such that πNF : X −→ X/N is surjective.
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Let SC(X) denote the set of strictly cosingular operators on X. This class of operators was introduced by
Pelczynski [14], it forms a closed two-sided ideal of L(X) ([22]).

Let A be a closed linear operator on a Banach space X. For x ∈ D(A) the graph norm of x is defined by

∥x∥A := ∥x∥ + ∥Ax∥.

It follows from the closedness of A that D(A) endowed with the norm ∥.∥A is a Banach space. Let XA
denote (D(A), ∥.∥A). In this new space the operator T satisfies ∥Ax∥ ≤ ∥x∥A and consequently A is a bounded
operator from XA into X.

Definition 1.9. Let A ∈ C(X) and let B be an arbitrary A defined linear operator on X.We say that B is A-compact
(resp. A-weakly compact, A-strictly singular, A-strictly cosingular) if B̂ ∈ K (XA,X) (resp. B̂ ∈ W(XA,X),
B̂ ∈ SS(XA,X), B̂ ∈ SC(XA,X)).

Let AK (X), AW(X), ASS(X) and ASC(X), denote, respectively, the sets of A-compact, A-weakly compact, A-strictly
singular and A-strictly cosingular operators on X.

Definition 1.10. Let A ∈ C(X) and let B be an A-defined linear operator on X. We say that B is A-Fredholm
perturbation if B̂ ∈ F b(XA,X). B is called an upper ( resp. lower ) A-semi-Fredholm perturbation if B̂ ∈ F b

+(XA,X)
(resp. B̂ ∈ F b

−(XA,X)).

Let AF (X), AF+(X) and AF−(X) designate the sets of A-Fredholm, upper A-semi Fredholm and lower A-semi-
Fredholm perturbations, respectively.

Remark 1.11. (i) If B is bounded, then B is A-bounded, B is compact (resp. weakly compact, strictly singular, strictly
cosingular ) implies that B is A-compact (resp. A-weakly compact, A-strictly singular, A-strictly cosingular).
(ii) Notice that the concept of A-compactness and A-Fredholmness are not connected with the operator A itself, but
only with its domain.
(iii) Using the Definition 1.10 and [3, page 69] we have

AK (X) ⊆ ASS(X) ⊆ AF+(X) ⊆ AF (X).

AK (X) ⊆ ACS(X) ⊆ AF−(X) ⊆ AF (X).

(iv) Let B be an arbitrary A-Fredholm perturbaion operator, hence we can regard A and B as operators from XA into
X, they will be denoted by Â and B̂ respectively, these belong toL(XA,X). Furthermore, we have the obvious relations

α(Â) = α(A), β(B̂) = β(B), R(Â) = R(A),
α(Â + B̂) = α(A + B),
β(Â + B̂) = β(A + B) and R(Â + B̂) = R(A + B).

(2)

The first purpose of this work is inspired by [1, 2] where the author studied the various types of M-
essential spectra of linear bounded operators on a Banach space X. We begin by study a detailed treatment
of some subsets of M-essential spectra of closed linear operators subjected to additive perturbations not
necessarily belonging to any ideal of the algebra of bounded linear operators and we investigate some
properties of the M-essential spectra of 2 × 2 matrix operator acting on a Banach space. We organize our
paper in the following way: In Section 2, we give the characterization of different M-essential spectra of
closed linear operator and in Section 3, we study the stability the M− essential spectra of the matrix operator.

2. Stability of M-essential spectra of closed linear operator

The purpose of this this Section, we also the following useful stability result for the M-essential spectra
of a closed, densely defined linear operator on a Banach space X.we begin with the following useful result.
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Theorem 2.1. Let A ∈ C(X), M ∈ L(X) and let B be an operator on X.
(i) If A − λM ∈ Φ(X) and B ∈ AF (X) then A + B − λM ∈ Φ(X) and i(A + B − λM) = i(A − λM).
(ii) If A − λM ∈ Φ+(X) and B ∈ AF+(X) then A + B − λM ∈ Φ+(X)
(iii) If A − λM ∈ Φ−(X) and B ∈ AF−(X) then A + B − λM ∈ Φ−(X).
(iv) A − λM ∈ Φ±(X) and B ∈ AF+(X) ∩ AF−(X) then A + B − λM ∈ Φ±(X).

Proof. Assume that A − λM ∈ Φ(X). Then, using (2) we infer that Â − λM̂ ∈ Φb(XA,X). Hence, it follows
from [18, Theorem 1.4 p 108] that there exist A0 ∈ L(X,XA) and K ∈ K (X) such that

(Â − λM̂)A0 = I − K, on X (3)

Thus,

(Â + B̂ − λM̂)A0 = I − K + B̂A0, on X (4)

Next, using Eq. (3) we get (Â − λM̂)A0 ∈ Φb(X) and i
[
(Â − λM̂)A0

]
= 0. So, using of [18, Theorem 3.4 p 117]

and [18, Theorem 2.3 p 111] we implies that A0 ∈ Φb(XA,X) and

i(Â − λM̂) = −i(A0).

Since, B ∈ AF (X) and A0 ∈ L(X). Applying Lemma 3.2 we have B̂A0 ∈ F b(X), so K − B̂A0 ∈ F b(X). Using
Eq. (4) we get (Â + B̂ − λM̂)A0 ∈ Φb(X) and i((Â + B̂ − λM̂)A0) = 0. As, A0 ∈ Φb(X,XA), and according of the
[18, Theorem 3.4 p 117] we have (Â + B̂ − λM̂) ∈ Φb(XA,X) and

i(Â + B̂ − λM̂) = −i(A0). (5)

Now, by Eqs. (2), (3) and (5) we find that i(A + B − λM) = i(A − λM) which completes the proof of (i).
The assertion (ii), the first part of (iii) and (iv) are immediate. To prove the second part of (iii) we proceed as
follows. Let A − λM ∈ Φ−(X). [12, Theorem 5.13 p. 234] we infer that (A − λM)∗ = A∗ − λM∗ ∈ Φ+(X). Since
B∗ ∈ AF+(X∗) then implied that (A+B−λM)∗ = A∗ +B∗ −λM∗ ∈ Φ+(X∗).According of the [12, Theorem 5.13
p. 234] we get A + B − λM ∈ Φ−(X).

Corollary 2.2. Let A ∈ C(X), M ∈ L(X) and let B be an operator on X.
(i) If A − λM ∈ Φ+(X) and B ∈ ASS(X) then A + B − λM ∈ Φ+(X).
(ii) If A − λM ∈ Φ−(X) and B ∈ ACS(X) then A + B − λM ∈ Φ−(X).

Theorem 2.3. Let A ∈ C(X), B be an operator on X and M ∈ L(X). The following statements are satisfied.
(i) If B ∈ AF+(X) then

σe1,M(A + B) = σe1,M(A)

If in addition we suppose that the sets ΦA,M and ΦA+B,M are connected and the sets ρM(A) and ρM(A + B) are not
empty, then

σeap,M(A + B) = σeap,M(A).

(ii) If B ∈ AF−(X) then
σe2,M(A + B) = σe2,M(A).

If in addition we suppose that the sets ΦA,M and ΦA+B,M are connected and the sets ρM(A) and ρM(A + B) are not
empty, then

σeδ,M(A + B) = σeδ,M(A).

(iii) If B ∈ AF+(X) ∩ AF−(X) then
σe3,M(A + B) = σe3,M(A)
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(iv) If B ∈ AF (X) then
σei,M(A + B) = σei,M(A), i = 4, 5.

Moreover, if Cσe5,M(A) is connected. If neither ρM(A) nor ρM(A + B) is empty, then

σe6,M(A + B) = σe6,M(A).

Proof. (i) Let λ < σe1,M(A) then λ ∈ Φ+A,M. Since B ∈ AF+(X), applying Theorem 2.1 (ii) we infer that
λM−A−B ∈ Φ+(X). Thus, λ < σe1,M(A+B). Conversely, let λ < σe1,M(A+B), then λM−A−B ∈ Φ+(X), using
Theorem 2.1 (ii) and since −B ∈ AF+(X) we get λ ∈ Φ+A,M. So, λ < σe1,M(A).We infer that

σe1,M(A + B) = σe1,M(A).

Now, we have ΦA,M and ΦA+B,M are connected and the sets ρM(A) and ρM(A + B) are not empty, then by
Lemma 1.4 we have

σeap,M(A) = σe1,M(A) and σeap,M(A + B) = σe1,M(A + B).

We deduce that
σeδ,M(A + B) = σeδ,M(A).

A similar proof as (ii) and (iii).
(iv) For i = 5. Let λ < σe5,M(A) then λ ∈ ΦA,M and i(λM − A) = 0. Since B ∈ AF (X), applying Theorem 2.1 (i)
we infer that λ ∈ ΦA+B,M and i(λM−A−B) = 0, and therefore λ < σe5,M(A+B). Thus σe5,M(A+B) ⊆ σe5,M(A).
Similarly, If λ < σe5,M(A + B) then using Theorem 2.1 (i) and arguing as above we derive the opposite
inclusion σe5,M(A) ⊆ σe5,M(A+B).Now, we get Cσe5,M(A+B) = Cσe5,M(A),which is connected by hypothesis. Thus
by, Lemma 1.4 we have

σe5,M(A) = σe6,M(A) and σe5,M(A + B) = σe6,M(A + B).

We deduce that σe6,M(A + B) = σe6,M(A).

Theorem 2.4. Let A ∈ C(X) and let Ii(X), i ∈ {1, 2, 3} be any be any subset of operators satisfying
(i)K (X) ⊆ I1(X) ⊆ AF (X). Then,

σe5,M(A) =
∩

B∈I1(X)

σM(A + B).

(ii)K (X) ⊆ I2(X) ⊆ AF+(X). Then,

σeap,M(A) =
∩

B∈I2(X)

σap,M(A + B).

(iii)K (X) ⊆ I3(X) ⊆ AF−(X). Then,

σeδ,M(A) =
∩

B∈I3(X)

σδ,M(A + B).

Proof. (i) Let O =
∩

B∈I1(X)

σM(A + B). According of the Remark 1.11, we have K (X) ⊆ AK (X) ⊆ AF (X). So,

O ⊆ σe5,M(A). So, we have only to prove that σe5,M(A) ⊆ O. Let λ0 < O, then there exists B ∈ I(X) such that
λ0 ∈ ρM(A + B). Let x ∈ X and put y = (λ0M − A − B)−1x. It follows from the estimate

∥y∥A+B = ∥y∥ + ∥(Â + B̂)y∥ = ∥y∥ + ∥x − λ0M̂y∥
= ∥(λ0M̂ − Â − B̂)−1x∥ + ∥x − λ0M̂(λ0M̂ − Â − B̂)−1x∥
≤

(
1 + (1 + |λ0|∥M̂∥)∥(λ0M − Â − B̂)−1∥

)
∥x∥.
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Thus, (λ0M̂ − Â − B̂)−1 ∈ L(X,XA+B). Since B ∈ I(X) ⊆ AF (X), applying Lemma 1.6 we conclude that
(λ0M̂ − Â − B̂)−1B̂ ∈ F b(XA,XA+B). Let I denote the imbedding operator which maps every x ∈ XA onto the
same element x ∈ XA+B. Clearly we have N(I) = 0 and R(I) = XA+B. So,

∥I(x)∥ = ∥x∥A+B ≤ ∥x∥ + ∥Ax∥X + ∥Bx∥X
≤

(
1 + ∥B∥L(X,XA+B)

)
∥x∥XA , ∀x ∈ XA.

Thus, I ∈ Φb(XA,XA+B) and i(I) = 0. Next, since (λ0M̂ − Â − B̂)−1B̂ ∈ F b(XA,XA+B) and using Theorem 2.1
(i) we get

I + (λ0M̂ − Â − B̂)−1B̂ ∈ Φb(XA,XA+B) and i(I + (λ0M̂ − Â − B̂)−1B̂) = 0. (6)

On the other hand, since λ0 ∈ ρM(A + B) it follows from Eq. (2) that

(λ0M̂ − Â − B̂) ∈ Φb(XA,XA+B) and i(λ0M̂ − Â − B̂) = 0. (7)

Writing λ0M̂ − Â in the from

λ0M̂ − Â = (λ0M̂ − Â − B̂)(I + (λ0M̂ − Â − B̂)−1B̂.

Using the Eqs. (6) and (7) we get

λ0M̂ − Â ∈ Φb(XA,X) and i(λ0M̂ − Â) = 0.

Now using (2) we infer that
λ0M − A ∈ Φb(XA,X) and i(λ0M − A) = 0.

We deduce that, σe5,M(A) ⊆ O. A similar proof as (ii) and (iii).

3. The M-essential spectra of 2 × 2 matrix operator

The purpose of this section is to discuss the M− essential spectra of the matrix operatorL, closure ofL0,
we begin with the following useful result

Definition 3.1. [2] (i) Let A ∈ C(X) and λ0 be isolated point of σM(A). For an admissible contour Γλ0 ,

Pλ0,M = −
M
2πi

∮
Γλ0

(A − λM)−1 dλ,

is called the M-Riesz integral for A, M and λ0 with range and Kernel denote by Rλ,M and Kλ,M.
(ii) The M-discrete spectrum of A denoted σdM (A), and for λ ∈ ρb,M(A) = σdM (A)∪ρM(A).we denote by Rb,M(A, λ) =(
A − λM) | Kλ,M)−1(I − Pλ,M) + Pλ,M.

Proposition 3.2. Let A ∈ C(X), M ∈ L(X). Then for any µ, λ ∈ ρb,M(A) we have

Rb,M(A, λ) − Rb,M(A, µ) = (λ − µ)Rb,M(A, λ)MRb,M(A, µ) +M(λ, µ), (8)

whereM(λ, µ) is a finite rank operator with the following expression

M(λ, µ) = Rb,M(A, λ)
[
(A − (λM + 1))Pλ,M − (A − (µM + 1))Pµ,M

]
Rb,M(A, µ) (9)

is a finite rank operator with rank(M(λ, µ)) = rank(Pλ,M) + rank(Pµ,M) in case λ , µ.
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Proof. We have
Rb,M(A, λ) − Rb,M(A, µ) = Rb,M(A, λ)[Aµ,M − Aλ,M]Rb,M(A, µ).

So,
Aµ,M − Aλ,M = [(A − µM)(I − Pµ,M) + Pµ,M] − [(A − λM)(I − Pλ,M) + Pλ,M]

= [(A − (λM + 1))Pλ,M − (A − (µM + 1))Pµ,M] + (λ − µ)M.

Therefore Rb,M(A, λ) − Rb,M(A, µ) = (λ − µ)Rb,M(A, λ)MRb,M(A, µ) +M(λ, µ).

Proposition 3.3. Let X and Y be two complex Banach spaces. A ∈ C(X), M ∈ L(X) and B : Y −→ X, C : X −→ Y
be two linear operators. Then, we have:

(i) Rb,M(A, µ)B is closable for some µ ∈ ρb,M(A) if and only if it is closable for all µ ∈ ρb,M(A).

(ii) C is A-bounded if and only if CRb,M(A, µ) is bounded for some (hence for every) µ ∈ ρb,M(A).

(iii) If B and C satisfy the conditions (i) and (ii), respectively, and B is densely defined, then CMA,M(λ, µ),MA,M(λ, µ)B,
and CMA,M(λ, µ)B are operators of finite rank for any µ, λ ∈ ρb,M(A).

Proof. From the resolvent identity we have, for any µ, λ ∈ ρb,M(A),

Rb,M(A, λ)B = Rb,M(A, µ)B + (λ − µ)Rb,M(A, λ)M(Rb,M(A, µ)B) +M(λ, µ)B,

CRb,M(A, λ) = CRb,M(A, µ) + (λ − µ)(CRb,M(A, λ))MRb,S(A, µ) + CM(λ, µ). (10)

(i) Since M is bounded then Rb,M(A, λ)M(Rb,M(A, µ)B) is bounded. According of Proposition 3.2 the operator
[(A − (λM + 1))Pλ,M − (A − (µM + 1))Pµ,M] is bounded, thus M(λ, µ)B has finite dimensional range, then
Rb,M(A, λ)B − Rb,M(A, µ)B is bounded, hence Rb,M(A, µ)B is closable for some µ ∈ ρb,M(A) if and only if it is
closable for all µ ∈ ρb,M(A).

(ii) If CRb,M(A, λ) is bounded for some λ ∈ ρb,M(A), then clearly CRb,M(A, µ) is also bounded for any µ and it
follows from the Eq.(10) that CRb,M(A, µ) is bounded for any µ. The well-known fact that C is A-bounded if
and only if C(A − µM)−1 is bounded for some λ ∈ ρb,M(A).

(iii) According of Proposition 3.2 the operatorM(λ, µ) is a finite rank operator, so, CM(λ, µ) andM(λ, µ)B
are a finite rank operator, hence, it is clear thatM(λ, µ)B is of finite rank if B is densely defined. Since,

CM(λ, µ)B = (CRb,M(A, µ))[(A − λM)(I − Pλ,M) + Pλ,M](Rb,M(A, µ)B)

and if B and C satisfy the conditions (i) and (ii), respectively, then CM(λ, µ)B will again be continuous and
densely defined with finite-dimensional range.

The purpose of this section is to discuss the M-essential spectra σeap,M(.) and σeδ,M(.) of the 2× 2 matrix
operator L act on the space X × Y where M is a bounded operator formally defined on the product space
X × Y by a matrix

M =
(

M1 M2
M3 M4

)
and L is given by

L =
(

A B
C D

)
where where the operator A acts on X and has domainD(A), D is defined onD(D) and acts on the Banach
space Y, and the intertwining operator B (resp. C) is defined on the domainD(B) (resp. D(C)) and acts on
X (resp. Y).
In what follows, we will assume that the following conditions hold:
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(H1) A is closed, densely defined linear operator on X with non empty M1-resolvent set ρM1 (A).

(H2) The operator B is densely defined linear operator on X and for some (hence for all) µ ∈ ρb,M1 (A), the
operator Rb,M1 (A, µ)B is closable (in particular, if B is closable, then Rb,M1 (A, µ)B is closable).

(H3) The operator C satisfiesD(A) ⊂ D(C), and for some (hence for all)µ ∈ ρb,M1 (A), the operator CRb,M1 (A, µ)
is bounded (in particular, if C is closable, then CRb,M1 (A, µ) is bounded).

(H4) The lineal D(B) ∩ D(D) is dense in Y, and for some (hence for all) µ ∈ ρb,M1 (A), the operator D −
CRb,M1 (A, µ)B is closable, we will denote by S(µ) its closure.

Remark 3.4. (i) Under the hypotheses (H1) and (H4) and from Proposition 3.3 (ii) the following operator

F(µ) = (C − µM3)Rb,M1 (A, µ)

is bounded on X.
(ii) It follows from (H2) and the closed graph theorem that the operator

G(µ) = Rb,M1 (A, µ)(B − µM2)

is bounded on Y for every µ ∈ ρb,M1 (A).
(iii) The resolvent identity (8) implies that

S(µ) − S(µ0) = (µ − µ0)[M3G(µ0) + F(µ)M2 + F(µ0)M1G(µ)]
+ (C − µM3)M(µ, µ0)(B − µM2)

for any µ, µ0 ∈ ρb,S(A), whereM(µ, µ0) is the finite rank operator given by (9), It follows from Remark 3.4 (i) and
(ii) that the difference S(µ) − S(µ0) is a bounded operator. Therefore, neither the domain of S(µ) nor the property of
being closable depend on µ.

For each µ ∈ ρb,M1 (A),we define the bounded, lower and upper triangular operator-matrices

T1(µ) =
(

I 0
F(µ) I

)
, T2(µ) =

(
I G(µ)
0 I

)
,

the finite rank operator-matrix

N(µ) =
(

[A − (µM1 + 1)]Pµ,M1 0
0 0

)
and the diagonal operator-matrix

D(µ) =
(

Aµ,M1 0
0 S(µ) − µM4

)
.

Theorem 3.5. Under the hypotheses (H1) − (H4), the matrix operator L0 is closable. Its closure is given by the
relation

L = L0 = µM + T1(µ)D(µ)T2(µ) +N(µ) (11)

for all µ ∈ ρb,M1 (A).
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Proof. Let µ ∈ ρb,M1 (A) ∩ ρb,M1 (S(µ)) the lower-upper factorization sense

L = µM +
(

I 0
F(µ) I

) (
Aµ,M1 0

0 S(µ) − µM4

) (
I G(µ)
0 I

)
+

(
[A − (µM1 + 1)]Pµ,M1 0

0 0

)
= µM +

(
Aµ,M1 Aµ,M1 G(µ)

F(µ)Aµ,M1 F(µ)Aµ,M1 G(µ) + S(µ) − µM4

)
+

(
[A − (µM1 + 1)]Pµ,M1 0

0 0

)
or, spelled out,

D(L) =
{
(x, y) ∈ X × Y, x + G(µ)y ∈ D(A), y ∈ D(S(µ))

}
= D(A) ×D(S(µ))

and

L
(

x
y

)
=

(
Aµ,M1 x + Aµ,M1 G(µ)y

F(µ)Aµ,M1 x + F(µ)Aµ,M1 G(µ)y + S(µ)y

)
.

Note that, in view of the previous remark, the description of the operator L does not depend on the
choice of the point µ ∈ ρb,M1 (A).

Lemma 3.6. (i) If F(µ) ∈ F b
+(X,Y) for someµ ∈ ρb,M1 (A), then F(µ) ∈ F b

+(X,Y) for allµ ∈ ρb,M1 (A) andσeap,M1 (S(µ))
does not depend on the choice of µ.

(ii) If F(µ) ∈ F b
−(X,Y) for some µ ∈ ρb,M1 (A), then F(µ) ∈ F b

−(X,Y) for all µ ∈ ρb,M1 (A) and σeδ,M1 (S(µ)) does not
depend on the choice of µ.

Proof. Let µ, µ0 ∈ ρb,M1 (A). Using (8) we have

F(µ) − F(µ0) = (µ − µ0)[F(µ0)M1Rb,S(A, µ) +M3Rb,M1 (A, µ0)]
+ (C − µM3)M(µ, µ0).

If we assume that F(µ0) ∈ F b
+(X,Y), then it follows from the item (iii) Proposition 3.3 that the right-hand

side of the previous equality is in F b
+(X,Y). Hence F(µ) ∈ F b

+(X,Y). This proves the first result in (i).
Similar reasoning leads to (ii).

In the sequel we will denote byM(µ) the matrix-operator defined as follows

M(µ) =
(

0 M1G(µ) −M2
F(µ)M1 −M3 F(µ)M1G(µ)

)
.

We are now in the position to express the main result of this section

Theorem 3.7. Let the assumptions (H1) − (H4) hold, then:

(i) If for some µ ∈ ρb,M1 (A) the operator F(µ) ∈ F b
+(X,Y) andM(µ) ∈ F+(X × Y), then

σe1,M(L) = σe1,M1 (A) ∪ σe1,M4 (S(µ)),

and

σeap,M(L) ⊆ σeap,M1 (A) ∪ σeap,M4 (S(µ)).
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If in addition we suppose that the sets ΦM1,A and ΦM4,S(µ) are connected and the sets ρM4 (S(µ)) and ρM(L) are not
empty, then

σeap,M(L) = σeap,M1 (A) ∪ σeap,M4 (S(µ)).

(ii) If for some µ ∈ ρb,M1 (A) the operator F(µ) ∈ F b
−(X,Y) andM(µ) ∈ F−(X × Y), then

σe2,M(L) = σe2,M1 (A) ∪ σe2,M4 (S(µ)),

and

σeδ,M(L) ⊆ σeδ,M1 (A) ∪ σeδ,M4 (S(µ)).

If in addition we suppose that the sets ΦM,L, ΦM1,A and ΦM4,S(µ) are connected and the sets ρM4 (S(µ)) and ρM(L) are
not empty, then

σeδ,M(L) = σeδ,M1 (A) ∪ σeδ,M4 (S(µ)) (12)

Proof. Let µ ∈ C be such thatM(µ) ∈ F+(X × Y). Using the Eq. (11), we have

L − µM = T1(µ)D(µ)T2(µ) +N(µ) + (µ − λ)M
= T1(µ)V(λ)T2(µ) + (µ − λ)M(µ) − P(µ) +N(µ). (13)

where the matrix-operatorsV(λ) and P(µ) are defined by

V(λ) =
(

A − λM1 0
0 S(λ) − λM4

)
and

P(µ) =
(

[A − (µM1 + 1)]Pµ,M1 [A − (µM1 + 1)]Pµ,M1 G(µ)
F(µ)[A − (µM1 + 1)]Pµ,M1 F(µ)[A − (µM1 + 1)]Pµ,M1 G(µ)

)
.

(i) Let µ ∈ ρb,M1 (A). As,M(µ) ∈ F+(X × Y) andN(µ) and P(µ) are finite rank matrix-operators, we have

(µ − λ)M(µ) − P(µ) +N(µ) ∈ F+(X × Y).

Then, from Eq. (13), we getL−λM ∈ Φ+(X×Y) if and only ifT1(µ)V(λ)T2(µ) if and only if A−λM1 ∈ Φ+(X)
and S(µ) − λM4 ∈ Φ+(Y), since T1(µ) and T2(µ) are bounded and have bounded inverse, then

σe1,M(L) = σe1,M1 (A) ∪ σe1,M4 (S(µ)).

Now, let λ < [σeap,M1 (A) ∪ σeap,M4 (S(µ))] then, A − λM1 ∈ Φ+(X), S(µ) − λM4 ∈ Φ+(Y) and i(A − λM1) ≤
0, i(S(µ) − λM4) ≤ 0. SinceN(µ) and P(µ) are finite rank matrix-operators, then

(µ − λ)M(µ) − P(µ) +N(µ) ∈ F+(X × Y).

As, T1(µ) and T2(µ) are bounded and have bounded inverse, then L− λM ∈ Φ+(X × Y) and i(L− λM) ≤ 0.
Hence λ < σeap,M(L).We infer that

σeap,M(L) ⊆ σeap,M1 (A) ∪ σeap,M4 (S(µ))

Now, suppose thatΦM1 andΦM4,S(µ) are connected, then σeap,M1 (A) = σe1,M1 (A) and σeap,M4 (S(µ)) = σe1,M4 (S(µ)).
We deduce that

σeap,M(L) = σeap,M1 (A) ∪ σeap,M4 (S(µ)).

(ii) The proof of (ii) is similar.
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