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Abstract. In this paper we construct an iterative method, based on classical Newton method, for approx-
imating the pseudoinverse of a linear bounded operator with closed range between Hilbert spaces. The
method is always convergent and, moreover, we obtain an estimation of the error. Also we consider the
behavior of the method when the iterates are subject to perturbations.

1. Introduction

The role of the pseudoinverse (Moore-Penrose inverse) of a linear bounded operator with closed
range between Hilbert spaces in statistics, prediction theory, control system analysis, curve fitting and
numerical analysis is well recognized, as many publications show (see, for example, [3], [5]).

The most famous iterative method for computing the pseudoinverse of a matrix is described by Adi Ben-
Israel in two articles (see [1], [2]). His method extends the Schulz method for the matrix inversion, which
is based on classical Newton method. In the first article, the initial conditions to ensure the convergence of
the method are restrictive and the algorithm requires the knowledge of a special projection operator. In the
second article it is necessary to know an eigenvalue of a particular matrix. The method of Ben-Israel was
extended in many papers in the finite-dimensional case (see, for example [4], [7]-[10]).

In order to calculate the solutions of the inconsistent equations in Hilbert spaces, the pseudoinverse
plays an important role, because it determines the minimum least square solution.

In this paper we extend the Ben-Israel method for determining the pseudoinverse of a linear bounded
operator with closed range between Hilbert spaces. We get an initial iteration which does not depend on
a particular projection operator or on a particular eigenvalue. It is only defined by the adjoint and the
norm of the operator. With this initial iteration the method is always convergent. Moreover, we obtain an
estimation of the error. Finally we present stability problems of the method. In our proofs we do not use
the functional calculus method as in [6], p. 56, where the initial iteration depends on the of the spectrum of
a particular operator.

The stable perturbations of pseudoinverse operator is described in [13], Chapter 3.
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Let X and Y be two real Hilbert spaces and let L(X,Y) denote the space of all bounded linear operators
between X and Y. For T ∈ L(X,Y) let R(T), N(T) and T∗ denote the range, the null space and the adjoint of T.

Let T ∈ L(X,Y) be a self-adjoint operator. T is positive (respectively, strictly positive) if ⟨Tx, x⟩ ≥ 0,
∀ x ∈ X (respectively, ⟨Tx, x⟩ > 0, ∀ x , 0). T ≥ 0 (respectively, T > 0)means that T is positive (respectively,
strictly positive). If T,U ∈ L(X,Y) are self-adjoint operators, we say that T ≤ U (respectively, T < U) if T−U
is positive (respectively, strictly positive).

It is well known that if T,U ∈ L(X,Y) are self-adjoint positive operators (respectively, strictly positive
operators) and commute, then TU is a self-adjoint positive operator (respectively, strictly positive operator).

Definition 1.1. The operator T ∈ L(X,Y) admits pseudoinverse (Moore-Penrose inverse) if there exists an operator
S ∈ L(X,Y) such that TST = T, STS = S, (TS)∗ = TS, (ST)∗ = ST.

It is well known that the operator T ∈ L(X,Y) admits pseudoinverse if and only if the subspace R(T) is
closed. Let LC(X,Y) denote the space of all bounded linear operators with closed range. If T ∈ LC(X,Y)
then the pseudoinverse operator is unique and it is denoted by T+.

If y ∈ Y then x = T+y is the unique element

x ∈ A :=
{
x′ ∈ X | ∥Tx′ − y∥ = inf

z∈X
∥Tz − y∥

}
such that ∥x∥ ≤ ∥x′∥ for all x′ ∈ A. x is the minimum norm solution of the previous least square problem.

2. Main result

Let X,Y be a Hilbert spaces and T ∈ LC(X,Y). We consider the sequence of operators (Xn)n∈N defined
by

X0 = T∗TT∗

and

Xn+1 = 2Xn − XnTXn, ∀ n ∈ N.

It is useful to observe, using the method of mathematical induction, that the operators TXn and XnT are
self-adjoint operators.

Lemma 2.1. If T ∈ LC(X,Y) and ∥T∥ < 4√2, then

0 ≤ XnT < 2IX, ∀n ∈ N, (1)

where IX is the identity operator of the space X.

Proof. We have

0 ≤ X0T < 2IX ⇔ 0 ≤ (T∗T)2 < 2IX.

Obviously, (T∗T)2 ≥ 0, and

(T∗T)2 < 2IX ⇔ (
√

2IX − T∗T)(
√

2IX + T∗T) > 0.

Since
√

2IX +T∗T is strictly positive and commutes with
√

2IX −T∗T, it will be sufficient to demonstrate that√
2IX − T∗T > 0. Indeed, if x , 0,

⟨T∗Tx, x⟩ ≤ ∥T∥2∥x∥ <
√

2⟨x, x⟩.

For n ≥ 1, from (1), Xn+1T = XnT(2IX − XnT) ≥ 0 and then

2IX − Xn+1T = (XnT)2 − 2XnT + 2IX = (XnT − IX)2 + IX > 0.
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Lemma 2.2. If T ∈ LC(X,Y) and ∥T∥ < 4√2, then

N(Xn) = N(X0) = R(T)⊥, ∀ n ∈ N.

Proof. We have N(X0) = N(T∗TT∗). If x ∈ N(T∗TT∗), then T∗x ∈ N(T∗T) = N(T). Thus, x ∈ N(TT∗) = N(T∗),
hence N(X0) = N(T∗TT∗) = N(T∗) = R(T)⊥.

We deduce from the recurrence relation that N(Xn) ⊂ N(Xn+1).

Let y ∈ N(Xn+1). Therefore Xn+1y = 0, i.e. Xny =
1
2

XnTXny. Then

Xny =
1
2k

(XnT)kXny, ∀ k ≥ 1.

We have

2kIX − (XnT)k = (2IX − XnT)(2k−1IX + 2k−2XnT + · · · + (XnT)k−1)

and from Lemma 2.1 it follows that (XnT)k < 2kIX. If we suppose that Xny , 0, then

⟨Xny,Xny⟩ = 1
2k
⟨(XnT)kXny,Xny⟩ < ⟨Xny,Xny⟩,

which is a contradiction. It remains that Xny = 0. Therefore N(Xn+1) ⊂ N(Xn) and

N(Xn+1) = N(Xn) = N(X0).

Let T ∈ LC(X,Y) and let P, respectively Q denote the orthogonal projection on R(T∗), respectively on
R(T).

Proposition 2.3. Let T ∈ LC(X,Y), T , 0, ∥T∥ ≤ 1. Then there exists γ ∈ (0, 1] such that

γP ≤ XnT ≤ P, ∀ n ∈ N

and

γQ ≤ TXn ≤ Q, ∀ n ∈ N.

Proof. The operator T∗T : N(T)⊥ → N(T)⊥ is invertible. Indeed, if x, y ∈ N(T)⊥ and T∗Tx = T∗Ty, then
x − y ∈ N(T∗T) = N(T), therefore x = y. For y ∈ N(T)⊥ there exists x ∈ N(T)⊥ such that T∗Tx = y because
N(T)⊥ = R(T∗) and R(T∗T) = R(T∗). Then there exists γ > 0 such that

∥T∗Tx∥ ≥ √γ∥x∥,∀ x ∈ N(T)⊥.

From

√
γ∥x∥ ≤ ∥T∗Tx∥ ≤ ∥T∗T∥∥x∥ = ∥T∥2∥x∥ ≤ ∥x∥,

it follows that γ ≤ 1. Next

⟨X0Tx, x⟩ = ⟨(T∗T)2x, x⟩ = ∥T∗Tx∥2 ≥ γ∥x∥2, ∀ x ∈ N(T)⊥,

i.e.

⟨X0Tx, x⟩ ≥ γ⟨Px, x⟩, ∀ x ∈ N(T)⊥.
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We have γPx = X0Tx = 0, ∀ x ∈ N(T). Finally, if x ∈ X, x = x1 + x2 with x1 ∈ N(T) and x2 ∈ N(T)⊥, we have

⟨X0Tx, x⟩ − γ⟨Px, x⟩ = ⟨X0Tx2, x1⟩ + ⟨X0Tx2, x2⟩ − γ⟨x2, x2⟩ =

= ⟨X0Tx2, x2⟩ − γ⟨x2, x2⟩ ≥ 0.

It results that γP ≤ X0T.
The inequality X0T ≤ P is proved in a similar manner: if x ∈ N(T)⊥, we have ∥T∗Tx∥2 ≤ ∥T∗T∥2∥x∥2 ≤ ∥x∥2

and therefore

⟨X0Tx, x⟩ ≤ ⟨Px, x⟩, ∀ x ∈ N(T)⊥.

If x ∈ N(T), ⟨X0Tx, x⟩ = ⟨Px, x⟩ = 0. As above, from R(X0T) = R((T∗T)2) ⊂ R(T∗) = N(T)⊥ it follow that
X0T ≤ P.

Then we proceed by induction. We suppose that

γP ≤ XnT ≤ P.

Obviously, XnTP = XnT. Since Xn is a composition which has in the left side the operator T∗, we have
R(Xn) ⊂ R(T∗) = N(T)⊥ and PXnT = XnT. It results that

(XnT − P)2 = (XnT)2 − 2XnT + P

and

P − Xn+1T = P2 + (XnT)2 − 2XnT ≥ 0,

i.e. Xn+1T ≤ P. Then

Xn+1T ≥ γP⇔ (XnT)2 − 2XnT + γP2 ≤ 0⇔

⇔ (XnT − (1 −
√

1 − γ)P)(XnT + (1 +
√

1 − γ)P) ≤ 0,

which is true because (1 −
√

1 − γ)P ≤ γP ≤ XnT.
The inequalities γQ ≤ TXn ≤ Q are proved in a similar manner, following the next steps: TX0 ≥

γQ, TX0 ≤ Q. Any Xn being as AT∗ and N(Xn) = R(T)⊥ (from Lemma 2.2), we have TXnQ = TXn and
obviously QTXn = TXn.Whence (TXn−Q)2 = (TXn)2−2TXn+Q and then Q−TXn+1 = Q+(TXn)2−2TXn ≥ 0.
Next

TXn+1 ≥ γQ⇔ (TXn − (1 −
√

1 − γ)Q)(TXn + (1 −
√

1 − γ)Q) ≤ 0,

which is true because (1 −
√

1 − γ)Q ≤ γQ ≤ XnT.

Proposition 2.4. If T ∈ LC(X,Y) and ∥T∥ ≤ 1, then the sequence (Xn)n∈N is pointwise convergent.

Proof. We have

Xn+1T − XnT = XnT − (XnT)2 = XnT(P − XnT) = (P − XnT)XnT.

From the Proposition 2.3 it results that the sequence of self-adjoint operators (XnT)n∈N is increasing (i.e.
XnT ≤ Xn+1T, ∀n ∈ N) and XnT ≤ P, ∀ n ∈ N. In this case we know that the sequence has an upper bound
which is the pointwise limit of the sequence.

Let Ux = lim
n→∞

XnTx, ∀ x ∈ X. We prove that the sequence (Xn)n∈N is also pointwise convergent.
If y ∈ R(T), i.e. y = Tx with x ∈ X, then Xny = XnTx, hence lim

n→∞
Xny = lim

n→∞
XnTx = Ux. The limit does

not depend on the representation y = Tx. Indeed, if y = Tz then UnTy = UnTz, ∀ n ∈ N and, consequently,
the sequences (UnTy)n∈N, (UnTz)n∈N have the same upper bound.

If y ∈ R(T)⊥, according to the Lemma 2.2, we have Xny = 0, so lim
n→∞

Xny = 0. Finally, for y ∈ Y, y = y1+ y2,

y1 ∈ R(T), y2 ∈ R(T)⊥ we have Xny = Xny1, hence lim
n→∞

Xny exists and is equal to the limit lim
n→∞

Xny1.
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Corollary 2.5. If Sy = lim
n→∞

Xny, ∀ y ∈ Y, then STS = S.

Proof. From Banach−Steinhaus theorem, the sequence (∥Xn∥)n∈N is bounded and S is linear and bounded.
For n ∈ N and y ∈ Y, we have

∥XnTXny − STSy∥ ≤ ∥XnTXny − XnTSy∥ + ∥XnTSy − STSy∥ ≤

≤ ∥Xn∥T∥∥Xny − Sy∥ + ∥XnTSy − STSy∥.
It results that lim

n→∞
XnTXny = STSy. From Xn+1 = 2Xn − XnTXn we deduce that Sy = 2Sy − STSy, hence

STSy = Sy.

Proposition 2.6. If T ∈ LC(X,Y) and ∥T∥ ≤ 1, then the sequence (XnT)n∈N converges to P and we have

ST = P,

∥ST − XnT∥ ≤ (1 − γ)2n
, ∀ n ∈ N.

Proof. If ∥T∥ = 1 and γ = 1, then XnT = P, ∀ n ∈ N and the proof is obvious.
Next, we suppose that ∥T∥ < 1 or ∥T∥ = 1 and γ < 1. From

P − Xn+1T = P2 − 2XnT + (XnT)2 = (P − XnT)2,

we deduce that

P − XnT = (P − X0T)2n
.

We have 0 ≤ P − X0T ≤ (1 − γ)P and therefore ∥P − X0T∥ ≤ 1 − γ. It results that

∥P − XnT∥ ≤ (1 − γ)2n
. (2)

Let x ∈ Y. Then ∥Px −XnT∥ ≤ ∥P −XnT∥∥x∥ ≤ (1 − γ)2n∥x∥, which shows that Px = lim
n→∞

XnTx = ST. From

(2) we deduce that ∥ST − XnT∥ ≤ (1 − γ)2n
.

Proposition 2.7. If T ∈ LC(X,Y) and ∥T∥ ≤ 1, then the sequence (TXn)n∈N converges to Q and we have

TS = Q,

∥Q − TXn∥ ≤ (1 − γ)2n
, ∀ n ∈ N.

Proof. The proof of this proposition is similar to the proof of the previous proposition.

Remark 2.8. From the Corollary 2.5 and the Propositons 2.6, 2.7 and the fact that T+ is the unique operator
S ∈ L(Y,X) such that STS = S, ST = P and TS = Q it results that if T ∈ LC(X,Y) and ∥T∥ ≤ 1, then
lim
n→∞

Xny = Sy = T+y, ∀ y ∈ Y. Therefore, the sequence (Xn)n∈N converges pointwise to T+.

Remark 2.9. If ∥T∥ = 1 and γ = 1, then X0 = T+ and Xn = X0, ∀ n ∈ N. Indeed, in this case X0T = P, TX0 = Q
and X0TX0 = PT∗TT∗ = T∗TT∗ = X0, hence X0 = T+. For a given n, if Xn = T+, then Xn+1 = 2T+−T+TT+ = T+.
Thus, Xn = T+, ∀ n ∈ N.

Next we present the main result of this paper.

Theorem 2.10. Let T ∈ LC(X,Y) with ∥T∥ ≤ 1. Consider X0 = T∗TT∗ and Xn+1 = 2Xn − XnTXn, ∀ n ∈ N. Then
the sequence (Xn)n∈N converges to T+.

Moreover, there exist α > 0 and γ ∈ (0, 1] such that

∥T+ − Xn∥ ≤ α(1 − γ)2n
, ∀ n ∈ N.
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Proof. Since T : N(T)⊥ → R(T) is invertible, then there exists β > 0 such that

∥Tx∥ ≥ β∥x∥, ∀ x ∈ N(T)⊥.

If y ∈ R(T), then

∥Sy − Xny∥ = ∥STx − XnTx∥ ≤ (1 − γ)2n∥x∥ ≤

≤ 1
β

(1 − γ)2n∥y∥ = α(1 − γ)2n∥y∥,

where α = 1/β.
If y = y1 + y2, with y1 ∈ R(T) and y2 ∈ R(T)⊥, then

∥Sy − Xny∥ = ∥S(y1 + y2) − Xn(y1 + y2)∥ = ∥Sy1 − Xny1∥ ≤

≤ α(1 − γ)2n∥y1∥ ≤ α(1 − γ)2n∥y∥.
In conclusion, lim

n→∞
Xn = S = T+ and

∥T+ − Xn∥ ≤ α(1 − γ)2n
, ∀ n ∈ N.

Remark 2.11. In finite dimensional case (i.e. dim X < ∞, dim Y < ∞) γ is min{λ2 | λ ∈ σp(T∗T), λ , 0},
where σp(T∗T) is the point spectrum of T∗T. In this case, if ∥T∥ = 1 and γ = 1, it results that T∗T = Im, where
m is the dimension of space X, and T+ = X0 = T∗.

Suppose now that T ∈ L(X,Y), T , 0. The operator
1
∥T∥T has the norm equal to 1. Then we can use this

operator in Theorem 2.10. It results that

X0 =
1
∥T∥3 T∗TT∗

and

Xn+1 = 2Xn −
1
∥T∥XnTXn,∀ n ∈ N.

With the notation Yn =
1
∥T∥Xn, we have

Y0 =
1
∥T∥4 T∗TT∗ (3)

and

Yn+1 = 2Yn − YnTYn, ∀ n ∈ N. (4)

From Theorem 2.10 it results that lim
n→∞

Xn =
( 1
∥T∥T

)+
= ∥T∥T+ and consequently

lim
n→∞

Yn = T+.

To evaluate the error of the approximation we also use Theorem 2.10. Then we deduce that there exist α > 0
and γ ∈ (0, 1] such that

∥T+ − Yn∥ ≤
α
∥T∥ (1 − γ)2n

, ∀ n ∈ N,
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where α = 1/β, β verifies the inequality

∥Tx∥ ≥ β∥T∥∥x∥, ∀ x ∈ N(T)⊥ = R(T∗),

and γ verifies the inequality

∥T∗Tx∥ ≥ √γ∥T∥2∥x∥,∀ x ∈ N(T)⊥ = R(T∗).

In conclusion, we get the following theorem:

Theorem 2.12. Let T ∈ LC(X,Y) with ∥T∥ , 0. Consider Y0 =
1
∥T∥4 T∗TT∗ and Yn+1 = 2Yn − YnTYn, ∀ n ∈ N.

Then the sequence (Yn)n∈N converges to T+.
Moreover, there exist α > 0 and γ ∈ (0, 1] such that

∥T+ − Yn∥ ≤
α
∥T∥ (1 − γ)2n

, ∀ n ∈ N.

Therefore, the sequence defined by (3) and (4) always converges to the pseudoinverse operator with
quadratic speed of convergence. Finally, we present some examples of this method.

Example 2.13. Let T : l2(R)→ l2(R) with T(x) = (x2, x3, x4, . . .), ∀x = (xk)k≥1 ∈ l2(R) (the left shift operator).
We have ∥T∥ = 1 and T∗T = Il2(R), where T∗(x) = (0, x1, x2, x3, . . .), ∀x = (xk)k≥1 ∈ l2(R). Then X0 = T+. But

X0 = T∗TT∗ = T∗. Thus, T+ = T∗.

Example 2.14. Let T : L2([0, 1])→ L2([0, 1]), Tx(s) = s
∫ 1

0
tx(t)dt, ∀ x ∈ L2([0, 1]), ∀ s ∈ [0, 1].

We have T ∈ L(L2([0, 1]),L2([0, 1])), R(T) is closed, T = T∗ and ∥T∥ = 1/3. Then Xn = αnT, ∀n ∈ N,

with α0 = 1/9 and αn+1 = 2αn −
α2

n

9
, ∀ n ∈ N. The sequence (αn)n∈N is convergent and lim

n→∞
αn = 9. Then

lim
n→∞

Xn = 9T. Therefore, from Theorem 2.10, we deduce that T+ = 9T.

Example 2.15. Let T : L2([0, π])→ L2([0, π]),

Tx(s) = x(s) − 2
π

∫ π

0

(
sin s sin ξ +

1
2

cos s cos ξ
)

x(ξ)dξ,

∀ x ∈ L2([0, π]), ∀ s ∈ [0, π].
We have T ∈ L(L2([0, 1]),L2([0, 1])), R(T) is closed, T = T∗, ∥T∥ = 1 and T is not invertible (see [11], [12]).
Then

Yn(s) = x(s) − 2
π

∫ π

0
(sin s sin ξ + αn cos s cos ξ) x(ξ)dξ,

where α0 =
7
8

and αn+1 = 2αn −
1 + 2αn − α2

n

2
=
α2

n + 2αn − 1
2

. The sequence (αn)n∈N is convergent and
lim
n→∞
αn = −1. Consequently, from Theorem 2.12, we deduce that

T+x(s) = x(s) − 2
π

∫ π

0
(sin s sin ξ − cos s cos ξ) x(ξ)dξ.

The minimum norm solution x∗ of the least square problem determined by the inconsistent equation
Tx(s) = b(s) with b(s) = s, ∀ s ∈ [0, π], i.e.

x(s) − 2
π

∫ π

0

(
sin s sin ξ +

1
2

cos s cos ξ
)

x(ξ)dξ = s,

is

x∗(s) = T+b(s) = s − 2 sin s − 4
π

cos s.
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Example 2.16. Let T =


1 1 2 0
1 2 1 2
2 1 6 −3
0 1 2 −1
1 0 1 0

. We have rank(T) = 3 and from Theorem 2.12, using MATLAB,

we obtain

Y0 =
1
α


44 25 127 41 23
36 31 89 31 17
120 50 374 122 62
−40 6 −158 −50 −22

 ,

where α =
(

74
3
+

4
√

703
3

cos
(

1
3

arccos
20197

793
√

793

))2

and

Y15 =


5/56 3/112 11/112 −55/112 7/16
1/56 23/112 −9/112 45/112 −5/16
1/28 1/28 5/56 3/56 0
1/14 11/56 −1/14 −1/7 1/8

 ,
which is T+, the matrix pseudoinverse of T.

Example 2.17. Let A = (ai j)i, j=1,100, where aii = 2, ∀ i = 1, 100, ai+1 i = −1 ∀ i = 1, 100, ai i+1 = −1, ∀ i = 1, 100
and ai j = 0, otherwise. From Theorem 2.12, we obtain Y54 is the pseudoinverse (inverse) of A, with an
acuracy of ten decimals. We observe that the pseudoinverse is obtained in a number of steps smaller than
the dimension of the matrix A.

We now consider the behavior of the method when the iterates are subject to perturbations. One case,
in finite-dimensional spaces, when the method is unstable is described in [9]. Next we consider a more
general situation. We suppose that the operator Ỹk, in kth iteration differs from the original operator Yk by
the error operator ∆k. Then

Ỹk+1 = 2Ỹk − ỸkTỸk ⇔

∆k+1 = 2∆k − (YkT∆k + ∆kTYk) − ∆kT∆k =

= 2∆k − (YkT∆k + ∆kTYk) +O(∥∆k∥2).

It is easy to observe, using the method of mathematical induction, that TYk = YkT. If we ignore the
expression O(∥∆k∥2) and if we suppose that ∆k(TYk) = (TYk)∆k, it results that

∆k+1 = 2∆k(IX − TYk).

Since

IX − TYk = IX − 2TYk−1 + (TYk−1)2 = (IX − TYk−1)2,

we deduce that

∆k+1 = 2∆k(IX − TY0)2n
= 2∆k

(
IX −

1
∥T∥4 (T∗T)2

)2n

.

Then

∥∆k+1∥ ≤ 2∥∆k∥
∥∥∥∥∥IX −

1
∥T∥4 (T∗T)2

∥∥∥∥∥2n

=
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= 2∥∆k∥
(
1 − 1
∥T∥4 inf

∥x∥=1
⟨(T∗T)2x, x⟩

)2n

=

But

inf
∥x∥=1
⟨(T∗T)2x, x⟩ =

{
0 if N(T) , {0}
γ if N(T) = {0} .

Therefore, if N(T) , 0, then ∥∆k+1∥ = 2∥∆k∥ and if N(T) = 0 then ∥∆k+1∥ = 2∥∆k∥
(
1 − γ

∥T∥4

)2n

> ∥∆k∥ ⇔ γ <(
1 +

1
n

)
∥T∥4 ≤ 2∥T∥4. In conclusion, in both cases the method is eventual unstable.

Acknowledgment. We are grateful to the referees for helpful comments concerning the paper.
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