Algebraic elementary operators

B. P. Duggal ${ }^{\text {a }}$, S. V. Djordjevićb ${ }^{\text {b }}$, C. S. Kubrusly ${ }^{\text {c }}$
a 8 Redwood Grove, Northfield Avenue, Ealing, London W5 4SZ, United Kingdom
${ }^{b}$ Benemérita Universidad Autónoma de Puebla, Río Verde y Av. San Claudio, San Manuel, Puebla, Pue. 72570, Mexico
${ }^{\text {c }}$ Catholic University of Rio de Janeiro, 22453-900, Rio de Janeiro, RJ, Brazil

Abstract

A Banach space operator A is algebraic if there exists a non-trivial polynomial $p($.$) such that$ $p(A)=0$. Equivalently, A is algebraic if $\sigma(A)$ is a finite set consisting of poles. The sum of two commuting Banach space algebraic operators is algebraic, and the generalized derivation $\delta_{A B}=L_{A}-R_{B}$ (and, for non-nilpotent A and B, the left right multiplication operator $L_{A} R_{B}$) is algebraic if and only if A and B are algebraic. We prove: If $\operatorname{asc}\left(d_{A B}-\lambda\right) \leq 1$ for all complex λ, and if A^{*}, B have SVEP, then $d_{A B}-\lambda$ has closed range for every complex λ if and only if A, B are algebraic; if A, B are simply polaroid, then $d_{A B}-\lambda$ has closed range for every $\lambda \in$ iso $\sigma\left(d_{A B}\right)$; and if A, B are normaloid, then $L_{A} R_{B}-\lambda$ has closed range at every λ in the peripheral spectrum of $L_{A} R_{B}$ if and only if $L_{A} R_{B}$ is left polar at λ.

1. Introduction

For a Banach space \mathcal{X}, let $B(\mathcal{X})$ denote the algebra of operators, equivalently bounded linear transformations, on \mathcal{X} into itself. Given an operator $T \in B(\mathcal{X})$, the kernel $T^{-1}(0)$ of T is orthogonal to the range $T(\mathcal{X})$ of $T, T^{-1}(0) \perp T(\mathcal{X})$, in the sense of G. Birkhoff if $\|x\| \leq\|x+y\|$ for all $x \in T^{-1}(0)$ and $y \in T(\mathcal{X})$ [6, Page 25]. Clearly, $T^{-1}(0) \perp T(\mathcal{X}) \Longrightarrow T^{-1}(0) \cap \overline{T(\mathcal{X})}=\{0\} \Longrightarrow T^{-1}(0) \cap T(\mathcal{X})=\{0\}$. (Here, as also in the sequel, $\overline{T(\mathcal{X})}$ denotes the closure of $T(\mathcal{X})$.) The range-kernel orthogonality of an operator is related to its ascent. The ascent of $T \in B(X), \operatorname{asc}(T)$, is the least non-negative integer n such that $T^{-n}(0)=T^{-(n+1)}(0)$; if no such integer n exists, then $\operatorname{asc}(T)=\infty$. It is well known [1, 6] that $\operatorname{asc}(T) \leq m<\infty$ if and only if $T^{-n}(0) \cap T^{m}(X)=\{0\}$ for all integers $n \geq m$, and that $T^{-1}(0) \perp T(\mathcal{X})$ implies $\operatorname{asc}(T) \leq 1$.

The range-kernel orthogonality $T^{-1}(0) \perp T(\mathcal{X})$ of Banach space operators has been studied by a number of authors over the past few decades. A classical result of Sinclair [19, Proposition 1] says that "if 0 is in the boundary of the numerical range of a $T \in B(\mathcal{X})$, then $T^{-1}(0) \perp T(\mathcal{X})^{\prime \prime}$. Anderson [2], and Anderson and Foiaş [3], considered the generalized derivation $\delta_{A B}=L_{A}-R_{B} \in B(B(\mathcal{H})), \delta_{A B}(X)=A X-X B$, to prove that if $A, B \in B(\mathcal{H})$ are normal (Hilbert space) operators, then $\delta_{A B}^{-1}(0) \perp \delta_{A B}(B(\mathcal{H}))$. These results have since been extended to a variety of elementary operators $\Phi_{\mathrm{AB}}(X)=A_{1} X B_{1}-A_{2} X B_{2}$ for a variety of choices of tuples

[^0]of operators $\mathbf{A}=\left(A_{1}, A_{2}\right)$ and $\mathbf{B}=\left(B_{1}, B_{2}\right)$ (see $[9,11,14,15,20]$ for further references). The range-kernel orthogonality of an operator $T \in B(\mathcal{X})$ does not imply that the range $T(\mathcal{X})$ is closed or that $\mathcal{X}=T^{-1}(0) \oplus \overline{T(X)}$; see [3, Example 3.1 and Theorem 4.1] and [19, Remark 2]. Indeed, range-kernel orthogonality neither implies nor is implied by range closure. Thus, every bounded below operator has closed range and satisfies range-kernel orthogonality, an injective compact quasi-nilpotent operator (for example, the Volterra integral operator on $L^{2}(0,1)$) satisfies range-kernel orthogonality but does not have closed range, and no operator T (whether it has closed range or not) with $2 \leq \operatorname{asc}(T)<\infty$ satisfies range-kernel orthogonality. The implication $T^{-1}(0) \perp T(\mathcal{X}) \Longrightarrow \operatorname{asc}(T) \leq 1$ is strictly one way; if $A_{i}, B_{i} \in B(\mathcal{H}), 1 \leq i \leq 2$, are normal Hilbert space operators such that A_{1} commutes with A_{2} and B_{1} commutes with B_{2}, then asc $\left(\Phi_{\mathrm{AB}}\right) \leq 1[12$, Theorem 3.4] but $\Phi_{\mathbf{A B}}^{-1}(0) \perp \Phi_{\mathbf{A B}}(B(\mathcal{H}))$ if and only if $\left(A_{1} \oplus B_{1}^{*}\right)^{-1}(0) \cap\left(A_{2} \oplus B_{2}^{*}\right)^{-1}(0)=\{0\}$ [20, Corollary 2.3].

Letting iso $\sigma(A)$ (resp., iso $\sigma_{a}(A)$) denote the set of isolated points of the spectrum $\sigma(A)$ (resp., approximate point spectrum $\left.\sigma_{a}(A)\right)$ of $A \in B(X)$, we say that A is polar at $\lambda \in$ iso $\sigma(A)$ (resp., left polar at $\lambda \in$ iso $\sigma_{a}(A)$) if λ is a pole of the resolvent of A (resp., there exists an integer $d \geq 1$ such that $\operatorname{asc}(A-\lambda) \leq d$ and $(A-\lambda)^{d+1}(X)$ is closed); A is polaroid (resp., left polaroid) if A is polar at every $\lambda \in$ iso $\sigma(A)$ (resp., left polar at every $\lambda \in$ iso $\sigma_{a}(A)$). A well known result of Anderson and Foiaş [3, Theorem 4.2] says that if $A, B \in B(\mathcal{H})$ are scalar Hilbert space operators, then $\delta_{A B}-\lambda$ has closed range for every complex λ if and only if $\sigma(A) \cup \sigma(B)$ is finite. Scalar Hilbert space operators are similar to normal operators, and normal operators are simply polar (i.e., they have ascent less than or equal to 1). Hence, [1, Theorem 3.83], if $A, B \in B(\mathcal{H})$ are scalar operators, then $\delta_{A B}-\lambda$ has closed range for every complex λ if and only if A, B are algebraic operators.

This paper considers algebraic elementary operators. We start by observing that an $A \in B(\mathcal{X})$ is algebraic if and only if L_{A} and R_{A} are algebraic. The algebraic property transfers from commuting $A, B \in B(\mathcal{X})$ to $A+B, \delta_{A B}$ is algebraic if and only if A and B are algebraic, and if A, B are non-nilpotent then $L_{A} R_{B}$ is algebraic if and only if A, B are algebraic. Let $d_{A B}$ denote either of $\delta_{A B}$ and $L_{A} R_{B}$, where $A, B \in B(\mathcal{X})$ are non-trivial. In considering applications, we prove that: (i) If $\operatorname{asc}\left(d_{A B}-\lambda\right) \leq 1$ for all complex λ, and if A^{*}, B have SVEP, then $d_{A B}-\lambda$ has closed range for every complex λ if and only if A, B are algebraic; (ii) if A, B are simply polaroid, then $d_{A B}-\lambda$ has closed range for every $\lambda \in$ iso $\sigma\left(d_{A B}\right)$; and (iii) if A, B are normaloid operators, then $L_{A} R_{B}-\lambda$ has closed range at every λ in the peripheral spectrum of $L_{A} R_{B}$ if and only if $L_{A} R_{B}$ is left polar at λ.

2. Results - Part A: Algebraic

Let C denote the set of complex numbers. An operator $A \in B(X)$, has the single-valued extension property at $\lambda_{0} \in \mathrm{C}$, SVEP at λ_{0} for short, if for every open disc $\mathcal{D}_{\lambda_{0}}$ centered at λ_{0} the only analytic function $f: \mathcal{D}_{\lambda_{0}} \rightarrow \mathcal{X}$ which satisfies

$$
(A-\lambda) f(\lambda)=0 \text { for all } \lambda \in \mathcal{D}_{\lambda_{0}}
$$

is the function $f \equiv 0$. A has SVEP if it has SVEP at every $\lambda \in \mathrm{C}$. The single valued extension property plays an important role in local spectral theory and Fredholm theory [1, 17]. Evidently, A has SVEP at points in the resolvent set and the boundary $\partial \sigma(A)$ of $\sigma(A)$

Let $A \in B(X)$. The quasinilpotent part $H_{0}(A-\lambda)$ and the analytic core $K(A-\lambda)$ of $(A-\lambda)$ are defined by

$$
H_{0}(A-\lambda)=\left\{x \in \mathcal{X}: \lim _{n \longrightarrow \infty}\left\|(A-\lambda)^{n} x\right\|^{\frac{1}{n}}=0\right\}
$$

and
$K(A-\lambda)=\left\{x \in \mathcal{X}\right.$: there exists a sequence $\left\{x_{n}\right\} \subset \mathcal{X}$ and $\delta>0$ for
which $x=x_{0},(A-\lambda)\left(x_{n+1}\right)=x_{n}$ and $\left\|x_{n}\right\| \leq \delta^{n}\|x\|$ for all $\left.n=1,2, \ldots\right\}$.
$H_{0}(A-\lambda)$ and $K(A-\lambda)$ are (generally) non-closed hyperinvariant subspaces of $(A-\lambda)$ such that $(A-\lambda)^{-q}(0) \subseteq$ $H_{0}(A-\lambda)$ for all $q=0,1,2, \ldots$ and $(A-\lambda) K(A-\lambda)=K(A-\lambda)$; also, if $\lambda \in$ iso $\sigma(A)$, then $H_{0}(A-\lambda)$ and $K(A-\lambda)$ are closed and $\mathcal{X}=H_{0}(A-\lambda) \oplus K(A-\lambda)[1]$.
$A \in B(X)$ is an algebraic operator if there exists a non-trivial polynomial $p($.$) such that p(A)=0$. It is easily seen, [1, Theorem 3.83], that an operator $A \in B(\mathcal{X})$ is algebraic if and only if $\sigma(A)$ is a finite set consisting of the poles of the resolvent of A (i.e., if and only if $\sigma(A)$ is a finite set and A is polaroid). Since $\sigma(A)=\sigma\left(L_{A}\right)=\sigma\left(R_{A}\right)$, and since A is polaroid if and only if $L_{A}\left(R_{A}\right)$ is polaroid [4, Theorem 11], we have:

Proposition 2.1. Let $A \in B(X)$, and let $\mathcal{E}_{A}=L_{A}$ or R_{A}. Then \mathcal{E}_{A} is algebraic if and only if A is algebraic.
The algebraic property transfers from commuting $A, B \in B(X)$ to $A+B$.
Proposition 2.2. If $A, B \in B(\mathcal{X})$ are algebraic operators such that $[A, B]=A B-B A=0$, then $A+B$ is algebraic.
A proof of the proposition (in a certain sense, a more direct proof) may be obtained as a consequence of the easily proved fact that if A and B are commuting algebraic elements of an algebra, then each polynomial $p(A, B)$ is also algebraic: In keeping with the spirit of this paper, in the following we draw upon local spectral theory to prove the proposition.
Proof. If $A \in B(\mathcal{X})$ is algebraic, then there is an integer $n \geq 1$ such that $\sigma(A)=\left\{\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right\}$ (for some scalars $\left.\lambda_{i}, 1 \leq i \leq n\right), \mathcal{X}=\bigoplus_{i=1}^{n} H_{0}\left(A-\lambda_{i}\right)$, and to each i there corresponds an integer $p_{i} \geq 1$ such that $H_{0}\left(A-\lambda_{i}\right)=\left(A-\lambda_{i}\right)^{-p_{i}}(0)$. Let $A_{i}=\left.A\right|_{H_{0}\left(A-\lambda_{i}\right)}$; then $A=\bigoplus_{i=1}^{n} A_{i}, A_{i}-\lambda_{j}$ is nilpotent for all $1 \leq i=j \leq n$, and $A_{i}-\lambda_{j}$ is invertible for all $1 \leq i \neq j \leq n$. Furthermore, if we let $B_{i}=\left.B\right|_{H_{0}\left(A-\lambda_{i}\right)}$ for all $1 \leq i \leq n$, then $B=\bigoplus_{i=1}^{n} B_{i}$ and (since $\left.[A, B]=0\right)\left[A_{i}, B_{i}\right]=0$ for all $1 \leq i \leq n$. Trivially, B algebraic implies $\sigma\left(B_{i}\right)$ is a finite set for all i. Consider $A_{i}+B_{i}-\lambda=\left(A_{i}-\lambda_{i}\right)+\left(B_{i}-\lambda+\lambda_{i}\right)$, where $\lambda \in \sigma\left(B_{i}\right)\left(=i s o \sigma\left(B_{i}\right)\right)$. If $\lambda-\lambda_{i} \notin \sigma\left(A_{i}-\lambda_{i}+B_{i}\right)=\sigma\left(B_{i}\right)$, then $A_{i}+B_{i}-\lambda$ is invertible, and hence

$$
H_{0}\left(A_{i}+B_{i}-\lambda\right)=\{0\}=\left(A_{i}+B_{i}-\lambda\right)^{-r_{i}}(0)
$$

for every positive integer r_{i}. If, on the other hand, $\lambda-\lambda_{i} \in \sigma\left(A_{i}-\lambda_{i}+B_{i}\right)=\sigma\left(B_{i}\right)$, then $H_{0}\left(B_{i}+\lambda_{i}-\lambda\right)=$ $\left(B_{i}+\lambda_{i}-\lambda\right)^{-r_{i}}(0)$ for some integer $r_{i} \geq 1$. Observe that

$$
\begin{aligned}
\left.\| B_{i}+\lambda_{i}-\lambda\right)^{t} x \|^{\frac{1}{t}} & =\left\|\left\{\left(A_{i}+B_{i}-\lambda\right)-\left(A_{i}-\lambda_{i}\right)\right\}^{t}\right\|^{\frac{1}{t}} \\
& =\left\|\sum_{j=0}^{t}(-1)^{j}\binom{t}{j}\left(A_{i}+B_{i}-\lambda\right)^{t-j}\left(A_{i}-\lambda_{i}\right)^{j} x\right\|^{\frac{1}{t}} \\
& \leq\left\|\sum_{j=0}^{t}\left\{\binom{t}{j}\left\|\left(A_{i}-\lambda_{i}\right)\right\|^{j}\right\}^{\frac{1}{t}}\right\|\left(A_{i}+B_{i}-\lambda\right)^{t-j} x \|^{\frac{1}{t}}
\end{aligned}
$$

for all $x \in \mathcal{X}$ implies

$$
H_{0}\left(B_{i}+\lambda_{i}-\lambda\right) \subseteq H_{0}\left(A_{i}+B_{i}-\lambda\right) .
$$

By symmetry

$$
H_{0}\left(A_{i}+B_{i}-\lambda\right) \subseteq H_{0}\left(A_{i}+B_{i}-\lambda-A_{i}+\lambda_{i}\right) \subseteq H_{0}\left(B_{i}+\lambda_{i}-\lambda\right),
$$

and hence

$$
H_{0}\left(A_{i}+B_{i}-\lambda\right)=H_{0}\left(B_{i}+\lambda_{i}-\lambda\right)=\left(B_{i}+\lambda_{i}-\lambda\right)^{-r_{i}}(0)
$$

Now let $r_{i} p_{i}=m_{i}$. Then, for all $x \in\left(B_{i}+\lambda_{i}-\lambda\right)^{-m_{i}}(0)$,

$$
\left(A_{i}+B_{i}-\lambda\right)^{m_{i}} x=\sum_{j=p_{i}+1}^{m_{i}}\left\{\binom{m_{i}}{j}\left(B_{i}+\lambda_{i}-\lambda\right)^{m_{i}-j}\left(A_{i}-\lambda_{i}\right)^{j-p_{i}}\right\}\left(A_{i}-\lambda_{i}\right)^{p_{i}} x=0
$$

implies

$$
H_{0}\left(A_{i}+B_{i}-\lambda\right)=\left(B_{i}+\lambda_{i}-\lambda\right)^{-m_{i}}(0) \subseteq\left(A_{i}+B_{i}-\lambda\right)^{-m_{i}}(0) \subseteq H_{0}\left(A_{i}+B_{i}-\lambda\right)
$$

Thus, there exists an integer $m_{i} \geq 1$ such that

$$
H_{0}\left(A_{i}+B_{i}-\lambda\right)=\left(A_{i}+B_{i}-\lambda\right)^{-m_{i}}(0)
$$

for every $\lambda \in$ iso $\sigma\left(B_{i}\right)$. Let $m=\max _{1 \leq i \leq n} m_{i}$, and let $\lambda \in \sigma(A+B)=$ iso $\sigma(A+B)$. Then

$$
H_{0}(A+B-\lambda)=\bigoplus_{i=1}^{n} H_{0}\left(A_{i}+B_{i}-\lambda\right)=\bigoplus_{i=1}^{n}\left(A_{i}+B_{i}-\lambda\right)^{-m_{i}}(0)=(A+B-\lambda)^{-m}(0)
$$

at every $\lambda \in \sigma(A+B)$. Since

$$
\begin{aligned}
\mathcal{X} & =H_{0}(A+B-\lambda) \oplus K(A+B-\lambda)=(A+B-\lambda)^{-m}(0) \oplus K(A+B-\lambda) \\
\Rightarrow \quad \mathcal{X} & =(A+B-\lambda)^{-m}(0) \oplus(A+B-\lambda)^{m} \mathcal{X}
\end{aligned}
$$

for every $\lambda \in \sigma(A+B), A+B$ is polaroid. This, since $\sigma(A+B) \subseteq \sigma(A)+\sigma(B)$ is finite, implies $A+B$ is algebraic.

The descent of $A \in B(\mathcal{X}), \operatorname{dsc}(A)$, is the least non-negative integer n such that $A^{n}(\mathcal{X})=A^{n+1}(\mathcal{X})$; if no such integer exists, then $\operatorname{dsc}(A)=\infty$. Evidently, A is polar at λ if and only if $\operatorname{asc}(A-\lambda)=\operatorname{dsc}(A-\lambda)<\infty$, and a necessary and sufficient condition for an operator A with $\operatorname{dsc}(A-\lambda)$ to be polar at λ is that A has SVEP at λ [1, Theorem 3.81]. The following corollary is immediate from Proposition 2.2 and [1, Theorem 3.83].

Corollary 2.3. If $A, B \in B(X)$ are commuting algebraic operators, then the following statements are mutually equivalent:
(i) There exists a non-trivial polynomial $p($.$) such that p(A+B)=0$.
(ii) $d s c(A+B-\lambda)<\infty$ for all complex λ.
(iii) $\operatorname{dsc}(A+B-\lambda)<\infty$ for every λ in the topological boundary $\partial \sigma(A+B)$ of $\sigma(A+B)$.
(iv) $A+B-\lambda$ is polar (at 0) for every complex λ.

The converse of Proposition 2.2 is false: For a general non-algebraic operator $A \in B(X), A-A=0$ is always algebraic. Propositions 2.1 and 2.2 have a number of consequences. Recall from [11, Lemma 3.8] that if A^{n} is polaroid for some integer $n \geq 1$ (and $A \in B(X)$), then A is polaroid. Since $\sigma\left(A^{n}\right)=\sigma(A)^{n}$, we have:

Corollary 2.4. $A \in B(X)$ is algebraic if and only if A^{n} is algebraic for all natural numbers n.
Combining this corollary with Proposition 2.2 we have:
Corollary 2.5. If $A, B \in B(X)$ are commuting algebraic operators, then $A B$ is algebraic.
Proof. If $A B=B A$, then $A B=\frac{1}{4}\left\{(A+B)^{2}-(A-B)^{2}\right\}$.
The converse of Corollary 2.5 is false: If $A \in B(\mathcal{X})$ is a nilpotent and $B \in B(\mathcal{X})$ is an operator which commutes with A, then $A B$ being nilpotent is algebraic irrespective of whether B is or is not. It is immediate from Proposition 2.2 and Corollary 2.5 that $A, B \in B(X)$ algebraic implies $\delta_{A B}, L_{A} R_{B}$, and $\triangle_{A B}=L_{A} R_{B}-\lambda$ algebraic for all complex λ. The following proposition shows that the converse holds in the case of $\delta_{A B}$.

Proposition 2.6. Let $A, B \in B(X)$.
(a) $\delta_{A B}$ is algebraic if and only if A and B are algebraic.
(b) $L_{A} R_{B}$ algebraic does not imply A and B algebraic. However, if $L_{A} R_{B}$ is algebraic, then at least one of A and B is algebraic.
(c) Furthermore, if neither of A and B is nilpotent, then $L_{A} R_{B}$ is algebraic if and only if A and B are algebraic.

Proof. (a) Assume that $\delta_{A B}$ is algebraic, i.e., assume that there exists a polynomial $p($.$) such that p\left(\delta_{A B}\right)=$ $\sum_{i=0}^{n} \alpha_{i} \delta_{A B}^{n-i}=0$. Then there exist scalars $a_{i}, 1 \leq i \leq n$, not all zero such that

$$
A^{n} X+a_{1} A^{n-1} X B+\cdots+a_{n-1} A X B^{n-1}+a_{n} X B^{n}=0
$$

for all $X \in B(\mathcal{X})$. Considering only those powers B^{i} (including $B^{0}=I$) of B for which $a_{i} \neq 0$, it is seen that the linear independence of this set implies that $A^{i}=0$ for every power of A which appears in the identity above
(see [16, Theorem 1]). Hence B^{n} is a linear combination of elements from a maximal linearly independent subset of the set $\left\{I, B, B^{2}, \cdots, B^{n-1}\right\}$. Thus B is algebraic, and hence R_{B} is algebraic. Since $L_{A}=\delta_{A B}+R_{B}, A$ is also algebraic.
(b) The example of the operator $A=0$ and B is a quasinilpotent proves that $L_{A} R_{B}$ algebraic does not imply A and B algebraic. The hypothesis $L_{A} R_{B}$ algebraic implies the existence of scalars $a_{i}, 1 \leq i \leq n$, not all 0 such that

$$
A^{n} X B^{n}+a_{1} A^{n-1} X B^{n-1}+\cdots+a_{n-1} A X B+a_{n} X=0
$$

for all $X \in B(X)$. Denote by $\left\{a_{n_{1}}, a_{n_{2}}, \ldots, a_{n_{m}}, 1\right\}$ the set of coefficients $a_{n-i}, 0 \leq i \leq n-1$, which are nonzero, and arrange the corresponding sets of ascending powers of B and A by $S_{B}=\left\{B_{1}, B_{2}, \cdots, B_{m}, B^{n}\right\}$ and $S_{A}=\left\{A_{1}, A_{2}, \cdots, A_{m}, A^{n}\right\}$. If the set S_{B} is linearly independent, then $A^{n}=0$, and if S_{B} is not linearly independent then B^{n} is a linear combination of powers $B^{i}, i<n$, of $B[16$, Theorem 1]. Thus either A or B is algebraic.
(c) Assume now that neither of A and B is nilpotent. Then the preceding argument implies that B is algebraic. If $\left\{B_{1}, B_{2}, \cdots, B_{k}\right\}$ is a maximal linearly independent subset of S_{B}, then there exist scalars $\alpha_{k j}$, not all zero, such that $A_{t}=\sum_{j=k+1}^{m} \alpha_{k j} A_{j}$ for all $1 \leq t \leq k$ [16, Theorem 1]. Hence A is also algebraic.

If $\mathbf{A}=\left(A_{1}, A_{2}, \cdots, A_{n}\right)$ and $\mathbf{B}=\left(B_{1}, B_{2}, \cdots, B_{n}\right)$ are n-tuples of mutually commuting operators in $B(\mathcal{X})$, then $\left[L_{A_{i}} R_{B_{i}}, L_{A_{j}} R_{B_{j}}\right]=0$ for all $1 \leq i, j \leq n$. Since A_{i} and B_{i} algebraic implies $L_{A_{i}} R_{B_{i}}$ algebraic, we have:

Corollary 2.7. If $\mathbf{A}=\left(A_{1}, A_{2}, \cdots, A_{n}\right)$ and $\mathbf{B}=\left(B_{1}, B_{2}, \cdots, B_{n}\right)$ are n-tuples of mutually commuting algebraic operators in $B(X)$, then the operator $\mathcal{E}_{\mathbf{A B}}-\lambda,\left(\mathcal{E}_{\mathbf{A B}}-\lambda\right)(X)=\sum_{i=1}^{n} A_{i} X B_{i}-\lambda X$, is algebraic for all complex λ.

Remark 2.8. (i) Given two complex infinite-dimensional Banach spaces \mathcal{X} and \mathcal{Y}, let $\mathcal{X} \overline{\mathcal{V}}$ denote the completion, endowed with a reasonable uniform cross-norm, of the algebraic tensor product $\mathcal{X} \otimes y$ of \mathcal{X} and \mathcal{Y}; let, for $A \in B(\mathcal{X})$ and $B \in B(\mathcal{Y}), A \otimes B \in B(\mathcal{X} \bar{\otimes} \mathcal{Y})$ denote the tensor product operator defined by A and B. If A and B are non-nilpotent operators, then $A \otimes B$ is an algebraic operator if and only if A and B are algebraic operators: this may be proved directly or deduced from Proposition 2.2(b) using an argument of Eschmeier [13, Pages 50 and 51] relating tensor products to the operator of left-right multiplication in the operator ideal $B(B(\mathcal{Y}, \mathcal{X}))$. (Here, in using [13], one observes that B is algebraic if and only if B^{*} is algebraic.) It is evident from Proposition 2.2 that if A_{i} and B_{i} are algebraic for all $1 \leq i \leq n$ and $\left[A_{i}, A_{j}\right]=0=\left[B_{i}, B_{j}\right]$ for all $1 \leq i, j \leq n$, then $\sum_{i=1}^{n} A_{i} \otimes B_{i}$ is an algebraic operator.
(ii) An operator $A \in B(X)$ is meromorphic if its non-zero spectral points are poles of the resolvent [17, Page 225]. Clearly, a meromorphic operator possesses at most countably many spectral points $\left\{\lambda_{i}\right\}$ (and 0 as its only accumulation point) which we may arrange by decreasing modulus by $\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \cdots$. Recall that the polaroid property transfers from A and B to $L_{A}, R_{A}, L_{A} R_{B}$ and $L_{A}-R_{B}[4,5,10]$. Evidently, A meromorphic implies L_{A} and R_{A} meromorphic. Let A and $B \in B(X)$ be meromorphic operators, and let $0 \neq \lambda \in \sigma\left(L_{A} R_{B}\right)=\sigma(A) \sigma(B)$. Then $\lambda=\mu \nu$ for some $0 \neq \mu \in \sigma(A)$ and $0 \neq v \in \sigma(B)$, and it follows that $L_{A} R_{B}$ is polar at λ. Conclusion: If A and $B \in B(X)$ are meromorphic, then $L_{A} R_{B}$ is meromorphic. This fails for the operator $L_{A}-R_{B}$, for the reason that $\sigma\left(L_{A}-R_{B}\right)=\sigma(A)-\sigma(B)$ (and hence every $\mu \in \sigma(A)$ and every $-v \in \sigma(B)$ is a point of accumulation. Note however that $L_{A}-R_{B}$ is polaroid.

Part B: Range Closure

An operator $A \in B(X)$ is left polar at a point $\lambda \in$ iso $\sigma_{a}(A)$ if there exists a positive integer d such that $\operatorname{asc}(A-\lambda) \leq d$ and $(A-\lambda)^{d+1}(X)$ is closed; A is left polaroid if it is left polar at every $\lambda \in$ iso $\sigma_{a}(T)$. Trivially, a Banach space operator T, in particular the operator $d_{A B}$ or the operator $\mathcal{E}_{\mathrm{AB}}$ above, with ascent less than or equal to one has closed range if and only if it left polar (at 0). Furthermore, if $\operatorname{asc}(T-\lambda) \leq 1$ and T^{*} has SVEP (everywhere), then $T-\lambda$ has closed range for all complex λ if and only if T is an algebraic operator. To prove this, start by observing that T algebraic implies T polaroid, and hence if asc $(T-\lambda) \leq 1$ then $T-\lambda$ has closed range for all λ. Conversely, the hypothesis T^{*} has SVEP implies $\sigma(T)=\sigma_{a}(T)$, and hence $T-\lambda$ has
closed range implies $T-\lambda$ is polar for every complex λ. But then we must have that $(\sigma(T)$ has no points of accumulation, consequently) $\sigma(T)$ is a finite set. Since already T is polaroid, T is algebraic. This argument extends to the operators $\delta_{A B}$ and $L_{A} R_{B}$.

Proposition 2.9. Let $A, B \in B(X)$ be two non-trivial operators, and let $d_{A B}$ denote either of $\delta_{A B}$ and $L_{A} R_{B}$. If $\operatorname{asc}\left(d_{A B}-\lambda\right) \leq 1$ for all complex λ, and if either (i) A^{*} and B have SVEP or (ii) $d_{A B}^{*}$ has SVEP, then $d_{A B}-\lambda$ has closed range for all complex λ if and only if A and B are algebraic operators.

Proof. If A and B are algebraic operators in $B(X)$, then so is $d_{A B}$. Hence, $\operatorname{since} \operatorname{asc}\left(d_{A B}-\lambda\right) \leq 1$ for all complex $\lambda, d_{A B}-\lambda$ has closed range for all complex λ. Conversely, $\operatorname{asc}\left(d_{A B}-\lambda\right) \leq 1$ and $d_{A B}-\lambda$ has closed range for all complex λ imply $d_{A B}$ is left polar at every complex λ. (Here, by a misuse of language we consider points λ in the resolvent set as left poles of order 0 .) Now let A^{*} and B have SVEP. Then $\sigma(A)=\sigma_{a}(A)$, $\sigma(B)=\sigma_{s}(B)(=$ to the surjectivity spectrum of $B), \sigma_{a}\left(\delta_{A B}\right)=\sigma_{a}(A)-\sigma_{s}(B)=\sigma(A)-\sigma(B)=\sigma\left(\delta_{A B}\right)$ and $\sigma_{a}\left(L_{A} R_{B}\right)=\sigma_{a}(A) \cdot \sigma_{s}(B)=\sigma(A) \cdot \sigma(B)=\sigma\left(L_{A} R_{B}\right)$. Observe also that if $d_{A B}^{*}$ has SVEP, then $\sigma_{a}\left(d_{A B}\right)=\sigma\left(d_{A B}\right)$. Hence, if either of the hypotheses (i) and (ii) is satisfied, then $d_{A B}$ is polar at every complex λ (implies $\lambda \in$ iso $\sigma\left(d_{A B}\right)$ for every complex $\left.\lambda\right)$. Consequently, we must have that $\sigma\left(d_{A B}\right)$ is a finite set and the operator $d_{A B}$ is algebraic. This, by Proposition 2.6 (a), implies that A and B are algebraic in the case in which $d_{A B}=\delta_{A B}$. Consider now $L_{A} R_{B}$. Since A, B non-trivial and either of A, B nilpotent implies $L_{A} R_{B}$ nilpotent with $\operatorname{asc}\left(L_{A} R_{B}\right)>1$, Proposition 2.6(c) applies and we conclude that $L_{A} R_{B}$ algebraic implies A and B algebraic.

The "only if part" of Proposition 2.9 fails if one relaxes the requirement that " $d_{A B}-\lambda$ has closed range for all complex $\lambda^{\prime \prime}$. Thus, if A, B are two unitary (hence non-algebraic) Hilbert space operators, then $L_{A} R_{B}-\lambda$ has closed range for all $\lambda \notin \sigma(A) \cdot \sigma\left(B^{*}\right)$. Proposition 2.9 generalizes [3, Theorem 4.2] (and other similar results). Observe that $A, B \in B(\mathcal{H})$ normal implies $\delta_{A B}$ normal, and hence $\operatorname{asc}\left(\delta_{A B}-\lambda\right)=\operatorname{asc}\left(\delta_{(A-\lambda) B}\right) \leq 1$ for all complex λ and $\delta_{A B}^{*}$ has SVEP. $A, B \in B(\mathcal{H})$ normal does not in general imply $L_{A} R_{B}$ normal [11, Example 2.1]; however, Proposition 2.9 applies to $L_{A} R_{B}$ for normal $A, B \in B(\mathcal{H})$ (for the reason that A, B^{*} have SVEP and $\operatorname{asc}\left(L_{A} R_{B}-\lambda\right) \leq 1$ for all complex λ - see the proof of [7, Theorem 4.1]). An alternative argument generalizing [3, Theorem 4.2], see the following proposition, is consequent from the observation that normal operators T are simply polaroid (i.e., $\operatorname{asc}(T-\lambda)=\operatorname{dsc}(T-\lambda) \leq 1$ at every $\lambda \in$ iso $\sigma(T))$.

Proposition 2.10. If A and $B \in B(X)$ are non-trivial simply polaroid operators, then $d_{A B}-\lambda$ has closed range for every $\lambda \in$ iso $\sigma\left(d_{A B}\right)$.

Proof. In view of the fact that the polaroid property transfers from A, B to $\delta_{A B}$ and $L_{A} R_{B}$, we have only to prove that $\operatorname{asc}\left(d_{A B}-\lambda\right) \leq 1$ for all $\lambda \in$ iso $\sigma\left(d_{A B}\right)$. Let $\lambda \in$ iso $\sigma\left(d_{A B}\right)$. We start by considering the case in which $\lambda \neq 0$. (Thus, if $\lambda=\mu-v \in$ iso $\sigma\left(\delta_{A B}\right)$ then (only) one of μ and v may equal 0 , and if $\lambda=\mu v \in$ iso $\sigma\left(L_{A} R_{B}\right)$ then neither of μ and v equals zero.) Then for every $\mu \in$ iso $\sigma(A)$ and $v \in$ iso $\sigma(B)$ such that $\lambda=\mu-v$ if $d_{A B}=\delta_{A B}$ and $\lambda=\mu \nu$ if $d_{A B}=L_{A} R_{B}, \mathcal{X}=\mathcal{X}_{11} \oplus \mathcal{X}_{12}=\mathcal{X}_{21} \oplus \mathcal{X}_{22}, A=\left.\left.A\right|_{X_{11}} \oplus A\right|_{X_{12}}=A_{1} \oplus A_{2}$, $B=\left.\left.B\right|_{X_{21}} \oplus B\right|_{X_{22}}=B_{1} \oplus B_{2}, A_{1}-\mu$ is 1-nilpotent, $A_{2}-\mu$ is invertible, $B_{1}-v$ is 1-nilpotent and $B_{2}-v$ is invertible. Let $X: X_{21} \oplus \mathcal{X}_{22} \longrightarrow \mathcal{X}_{11} \oplus \mathcal{X}_{12}$ have the matrix representation $X=\left[X_{i j}\right]_{i, j=1}^{2}$. Then

$$
\begin{array}{lll}
& \left(\delta_{A B}-\lambda\right)^{2}(X)=0 \Longleftrightarrow\left(\begin{array}{cl}
0 & \left(\mu R_{B_{2}-v}^{2}\right)\left(X_{12}\right) \\
v\left(L_{A_{2}-\mu}^{2}\right)\left(X_{21}\right) & \left(\delta_{A_{2} B_{2}}-\lambda\right)^{2}\left(X_{22}\right)
\end{array}\right)=0 \\
\Longleftrightarrow & X_{12}=X_{21}=X_{22}=0 \Longrightarrow\left(\delta_{A B}-\lambda\right)(X)=0 .
\end{array}
$$

A similar argument shows that $\left(L_{A} R_{B}-\lambda\right)^{2}(X)=0$ if and only if $\left(L_{A} R_{B}-\lambda\right)(X)=0$. We consider next the case $\lambda=0$. If $d_{A B}=\delta_{A B}$, then either $\mu=v=0$ or $\mu=v \neq 0$ for every $\mu \in$ iso $\sigma(A)$ and $v \in$ iso $\sigma(B)$ such that $\lambda=\mu-v$. Defining $A_{i}, B_{i}, X_{1 i}$ and $\mathcal{X}_{2 i}, 1 \leq i \leq 2$, as above it is then seen that $\left(A_{1}=0=B_{1}\right.$ and) $\delta_{A B}^{2}(X)=0$ implies $X_{22}=0$ in the case in which $\mu=v=0$ and $X_{12}=X_{21}=X_{22}=0$ in the case in which $\mu=v \neq 0$. In either case $\delta_{A B}(X)=0$. Finally, if $d_{A B}=L_{A} R_{B}$ and $0 \in$ iso $\sigma\left(L_{A} R_{B}\right)$, then either $0 \in$ iso $\sigma(A)$ and $0 \notin \sigma(B)$, or, $0 \notin \sigma(A)$ and $0 \in$ iso $\sigma(B)$, or, $0 \in$ iso $\sigma(A)$ and $0 \in$ iso $\sigma(B)$. (Note that by hypothesis A, B are non-trivial and polaroid; hence neither of $\sigma(A)$ and $\sigma(B)=\{0\}$.) Trivially, if either of A or B is invertible, then $\operatorname{asc}\left(L_{A} R_{B}\right) \leq 1$.

If, instead, $0 \in\{$ iso $\sigma(A) \cap$ iso $\sigma(B)\}$, then upon defining $A_{i}, B_{i}, \mathcal{X}_{1 i}$ and $\mathcal{X}_{2 i}, 1 \leq i \leq 2$, as above it is seen that $A_{1}=0=B_{1}$ and $\left(L_{A} R_{B}\right)^{2}(X)=0$ implies $X_{22}=0$. Hence $\left(L_{A} R_{B}\right)(X)=0$.

The hypotheses of Proposition 2.10 are satisfied by a wide variety of classes of operators. We mention here one such class, the class of paranormal Banach space operators [17, Page 229].

For an operator $T \in B(\mathcal{X})$ with spectral radius $r(T)=\lim _{n \rightarrow \infty}\left\|T^{n}\right\|^{\frac{1}{n}}$, the peripheral spectrum $\sigma_{\pi}(T)$ of T is the set $\sigma_{\pi}(T)=\{\lambda \in \sigma(T):|\lambda|=r(T)\}$. As we saw earlier on, if $A, B \in B(\mathcal{X})$ are meromorphic operators, then the operator $L_{A} R_{B}$ is meromorphic. Since A, B normaloid ($T \in B(\mathcal{X})$ is normaloid if $\left.r(T)=\|T\|\right)$ implies $L_{A} R_{B}$ normaloid, if A, B are normaloid then $\lambda \in \sigma_{\pi}\left(L_{A} R_{B}\right)$ if and only if there exist $\mu \in \sigma_{\pi}(A)$ and $v \in \sigma_{\pi}(B)$ such that $\lambda=\mu \nu$. Recall from [17, Proposition 54.4] that if $L_{A} R_{B}$ is a normaloid meromorphic operator, then $\operatorname{asc}\left(L_{A} R_{B}-\lambda\right) \leq 1$ for all $\lambda \in \sigma_{\pi}\left(L_{A} R_{B}\right)$. Such an operator $L_{A} R_{B}$ being polaroid, we conclude: If $A, B \in B(X)$ are normaloid meromorphic operators, then $L_{A} R_{B}-\lambda$ has closed range for every $\lambda \in \sigma_{\pi}\left(L_{A} R_{B}\right)$. The following proposition is a generalization of this result.

Proposition 2.11. If $A, B \in B(X)$ are normaloid operators, then the following assertions are mutually equivalent for all $\lambda \in \sigma_{\pi}\left(L_{A} R_{B}\right)$:
(i) $L_{A} R_{B}-\lambda$ has closed range.
(ii) $L_{A} R_{B}-\lambda$ is left polar at 0 .
(iii) $L_{A} R_{B}-\lambda$ is polar at 0 .

Proof. The proof of the proposition depends upon the known fact, [8, Proposition 2.4], that asc $\left(L_{A} R_{B}-\lambda\right) \leq 1$ for all $\lambda \in \sigma_{\pi}\left(L_{A} R_{B}\right)$: we include a proof here for completeness.
If A, B are normaloid, then $L_{A} R_{B}$ is normaloid, $r\left(L_{A} R_{B}\right)=r(A) r(B)=\|A\|\|B\|$, and

$$
\sigma_{\pi}\left(L_{A} R_{B}\right)=\left\{\lambda \in \mathbf{C}: \lambda=\mu v, \mu \in \sigma_{\pi}(A), v \in \sigma_{\pi}(B)\right\}
$$

If we define the contractions A_{1} and B_{1} by $A_{1}=A /\|A\|$ and $B_{1}=B /\|B\|$, then $L_{A_{1}} R_{B_{1}}$ is a contraction and

$$
\sigma_{\pi}\left(L_{A_{1}} R_{B_{1}}\right)=\left\{\lambda \in \mathbf{C}: \lambda=\mu v, \mu \in \sigma_{\pi}\left(A_{1}\right), v \in \sigma_{\pi}\left(B_{1}\right),|\mu|=|v|=1\right\} .
$$

Choose a $\lambda_{0}=\mu_{0} v_{0} \in \sigma_{\pi}\left(L_{A_{1}} R_{B_{1}}\right) ;$ let $A_{10}=A_{1} / \mu_{0}$ and $B_{10}=B_{1} / v_{0}$. Then

$$
\begin{aligned}
& \left\|\frac{\lambda_{0}}{n} \sum_{i=0}^{n-1}\left(L_{A_{10}} R_{B_{10}}\right)^{i}\left(L_{A_{10}} R_{B_{10}}-1\right)(Z)\right\|=\left\|\frac{\lambda_{0}}{n}\left(L_{A_{10}}^{n} R_{B_{10}}^{n}-1\right)(Z)\right\| \\
& =\frac{1}{n}\left\|\left(L_{A_{10}^{n}} R_{B_{10}^{n}}-1\right)(Z)\right\| \longrightarrow 0 \text { as } n \longrightarrow \infty
\end{aligned}
$$

for all $Z \in B(\mathcal{X})$. Set $\lambda_{0}\|A\|\|B\|=\lambda \in \sigma_{\pi}\left(L_{A} R_{B}\right)$. Then $X \in B(X)$ satisfies $\left(L_{A_{10}} R_{B_{10}}\right)(X)=0$ if and only if $\left(L_{A} R_{B}\right)(X)=0$. An easy calculation shows that $X \in\left(L_{A_{10}} R_{B_{10}}-1\right)^{-1}(0)$ implies $X=\frac{1}{n} \sum_{i=0}^{n-1}\left(L_{A_{10}} R_{B_{10}}\right)^{i}(X)$. Hence if $X \in\left(L_{A} R_{B}-1\right)^{-1}(0)$ and $Y=Z /\|A\|\|B\|$, then for all $Z \in B(X)$,

$$
\begin{aligned}
& \left\|X+\frac{\lambda_{0}}{n} \sum_{i=0}^{n-1}\left(L_{A_{10}} R_{B_{10}}\right)^{i}\left(L_{A_{10}} R_{B_{10}}-1\right)(Z)\right\| \\
= & \left\|\frac{1}{n} \sum_{i=0}^{n-1}\left(L_{A_{10}} R_{B_{10}}\right)^{i}\left(X+\lambda_{0}\left(L_{A_{10}} R_{B_{10}}-1\right)(Z)\right)\right\| \\
\leq & \left\|X+\lambda_{0}\left(L_{A_{10}} R_{B_{10}}-1\right)(Z)\right\|=\left\|X+\left(L_{A_{1}} R_{B_{1}}-\lambda_{0}\right)(Z)\right\| \\
= & \left\|X+\left(L_{A} R_{B}-\lambda\right)(Y)\right\|
\end{aligned}
$$

for all $Y \in B(X)$ and $\lambda \in \sigma_{\pi}\left(L_{A} R_{B}\right)$.
The two way implication (i) \Longleftrightarrow (ii) is evident. Observe that if $L_{A} R_{B}$ is normaloid and $\lambda \in \sigma_{\pi}\left(L_{A} R_{B}\right)$, then λ is in the boundary of $\sigma\left(L_{A} R_{B}\right)$. Hence $\left(L_{A} R_{B}-\lambda\right)^{*}$ has SVEP (at 0), and so $L_{A} R_{B}$ is left polar at λ if and only if it is polar at λ. Hence (ii) \Longleftrightarrow (iii).

References

[1] P. Aiena, Fredholm and Local Spectral Theory with Applications to Multipliers, Kluwer, 2004.
[2] J. Anderson, On normal derivations, Proc. Amer. Math. Soc. 38 (1973), 136-140.
[3] J. Anderson and C. Foiaş, Properties which normal operators share with normal derivations and related operators, Pacific J. Math. 61 (1975), 313-325.
[4] E. Boasso, Drazin spectra of Banach space operators and Banach algebra elements, J. Math. Anal. Appl. 359 (2009), 48-55.
[5] E. Boasso, B. P. Duggal and I. H. Jeon, Generalized Browder's and Weyl,s theorems for left and right multiplication operators, J. Math. Anal. Appl. 370 (2010), 461-471.
[6] F. F. Bonsal and J. Duncan, Numerical Ranges II, Cambridge Univ. Press, London, 1973.
[7] M. Chō, S. Djordjević and B. P. Duggal, Bishop's property (β) and an elementary operator, Hokkaido Math. J. XL(3) (2011), 337-356.
[8] B. P. Duggal, S. Djordjević and C. S. Kubrusly, Elementary operators, finite ascent, range closure and compactness, Linear Alg. Appl. 449 (2014), 334-349.
[9] B. P. Duggal and R. E. Harte, Range-kernel orthogonality and range closure of an elementary operator, Monatsh. Math. 143 (2004), 179-187.
[10] B. P. Duggal, R. E. Harte and A. H. Kim, Weyl's theorem, tensor products and multiplication operators II, Glasg. Math. J. 52 (2010), 705-709.
[11] B. P. Duggal, Subspace gaps and range-kernel orthogonality of an elementary operator, Linear Alg. Appl. 383 (2004), 93-106.
[12] B. P. Duggal, The closure of the range of an elementary operator, Linear Alg. Appl. 392 (2004), 305-319.
[13] J. Eschmeier, Tensor products and elementary operators, J. Reine Angew. Math. 390(1988), 47-66.
[14] D. Kečkić, Orthogonality of the range and the kernel of some elementary operators, Proc. Amer. Math. Soc. 128 (2000), $3369-3377$.
[15] F. Kittaneh, Operators that are orthogonal to the range of a derivation, J. Math. Anal. Appl. 203 (1996), 868-873.
[16] C. K. Fong and A. R. Sourour, On the operator identity $\sum A_{r} X B_{r}=0$, Canadian J. Math. XXXI (1979), 845-857.
[17] H. G. Heuser, Functional Analysis, John Wiley and Sons, (1982).
[18] V. S. Shulman, On linear equations with normal coefficients, Sovt. Math. Dokl. 27 (1983), 726-729
[19] A. M. Sinclair, Eigenvalues in the boundary of the numerical range, Pacific J. Math. 35 (1970), 231-234.
[20] A. Turnšek, Generalized Anderson's inequality, J. Math. Anal. Appl. 263 (2001), 121-134.

[^0]: 2010 Mathematics Subject Classification. Primary 47A80, 47A53; Secondary 47A10.
 Keywords. Elementary operator; Algebraic; Range closure.
 Received: 8 July 2014; Accepted: 3 August 2014
 Communicated by Dragan S. Djordjević
 Email addresses: bpduggal@yahoo.co.uk (B. P. Duggal), slavdj@fcfm.buap.mx (S. V. Djordjević), carlos@ele.puc-rio.br (C. S. Kubrusly)

