
Functional Analysis,
Approximation and
Computation
6 (2) (2014), 43–50

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. A Banach space operator A is algebraic if there exists a non-trivial polynomial p(.) such that
p(A) = 0. Equivalently, A is algebraic if σ(A) is a finite set consisting of poles. The sum of two commuting
Banach space algebraic operators is algebraic, and the generalized derivation δAB = LA − RB (and, for
non-nilpotent A and B, the left right multiplication operator LARB) is algebraic if and only if A and B are
algebraic. We prove: If asc(dAB − λ) ≤ 1 for all complex λ, and if A∗,B have SVEP, then dAB − λ has closed
range for every complex λ if and only if A,B are algebraic; if A,B are simply polaroid, then dAB − λ has
closed range for every λ ∈ iso σ(dAB); and if A,B are normaloid, then LARB − λ has closed range at every λ
in the peripheral spectrum of LARB if and only if LARB is left polar at λ.

1. Introduction

For a Banach space X, let B(X) denote the algebra of operators, equivalently bounded linear transfor-
mations, on X into itself. Given an operator T ∈ B(X), the kernel T−1(0) of T is orthogonal to the range T(X)
of T, T−1(0) ⊥ T(X), in the sense of G. Birkhoff if ||x|| ≤ ||x + y|| for all x ∈ T−1(0) and y ∈ T(X) [6, Page 25].
Clearly, T−1(0) ⊥ T(X) =⇒ T−1(0) ∩ T(X) = {0} =⇒ T−1(0) ∩ T(X) = {0}. (Here, as also in the sequel, T(X)
denotes the closure of T(X).) The range-kernel orthogonality of an operator is related to its ascent. The
ascent of T ∈ B(X), asc(T), is the least non-negative integer n such that T−n(0) = T−(n+1)(0); if no such integer
n exists, then asc(T) = ∞. It is well known [1, 6] that asc(T) ≤ m < ∞ if and only if T−n(0) ∩ Tm(X) = {0} for
all integers n ≥ m, and that T−1(0) ⊥ T(X) implies asc(T) ≤ 1.

The range-kernel orthogonality T−1(0) ⊥ T(X) of Banach space operators has been studied by a number
of authors over the past few decades. A classical result of Sinclair [19, Proposition 1] says that “if 0 is in
the boundary of the numerical range of a T ∈ B(X), then T−1(0) ⊥ T(X)”. Anderson [2], and Anderson and
Foiaş [3], considered the generalized derivation δAB = LA − RB ∈ B(B(H)), δAB(X) = AX − XB, to prove that
if A,B ∈ B(H) are normal (Hilbert space) operators, then δ−1

AB(0) ⊥ δAB(B(H)). These results have since been
extended to a variety of elementary operators ΦAB(X) = A1XB1 − A2XB2 for a variety of choices of tuples
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of operators A = (A1,A2) and B = (B1,B2) (see [9, 11, 14, 15, 20] for further references). The range-kernel
orthogonality of an operator T ∈ B(X) does not imply that the range T(X) is closed or thatX = T−1(0)⊕T(X);
see [3, Example 3.1 and Theorem 4.1] and [19, Remark 2]. Indeed, range-kernel orthogonality neither
implies nor is implied by range closure. Thus, every bounded below operator has closed range and satisfies
range-kernel orthogonality, an injective compact quasi-nilpotent operator (for example, the Volterra integral
operator on L2(0, 1)) satisfies range-kernel orthogonality but does not have closed range, and no operator
T (whether it has closed range or not) with 2 ≤ asc(T) < ∞ satisfies range-kernel orthogonality. The
implication T−1(0) ⊥ T(X) =⇒ asc(T) ≤ 1 is strictly one way; if Ai,Bi ∈ B(H), 1 ≤ i ≤ 2, are normal Hilbert
space operators such that A1 commutes with A2 and B1 commutes with B2, then asc(ΦAB) ≤ 1 [12, Theorem
3.4] but Φ−1

AB(0) ⊥ ΦAB(B(H)) if and only if (A1 ⊕ B∗1)−1(0) ∩ (A2 ⊕ B∗2)−1(0) = {0} [20, Corollary 2.3].

Letting iso σ(A) (resp., iso σa(A)) denote the set of isolated points of the spectrumσ(A) (resp., approximate
point spectrum σa(A)) of A ∈ B(X), we say that A is polar at λ ∈ iso σ(A) (resp., left polar at λ ∈ iso σa(A)) if λ
is a pole of the resolvent of A (resp., there exists an integer d ≥ 1 such that asc(A− λ) ≤ d and (A− λ)d+1(X)
is closed); A is polaroid (resp., left polaroid) if A is polar at every λ ∈ iso σ(A) (resp., left polar at every
λ ∈ iso σa(A)). A well known result of Anderson and Foiaş [3, Theorem 4.2] says that if A,B ∈ B(H) are
scalar Hilbert space operators, then δAB−λ has closed range for every complex λ if and only if σ(A)∪σ(B) is
finite. Scalar Hilbert space operators are similar to normal operators, and normal operators are simply polar
(i.e., they have ascent less than or equal to 1). Hence, [1, Theorem 3.83], if A,B ∈ B(H) are scalar operators,
then δAB − λ has closed range for every complex λ if and only if A,B are algebraic operators.

This paper considers algebraic elementary operators. We start by observing that an A ∈ B(X) is algebraic
if and only if LA and RA are algebraic. The algebraic property transfers from commuting A,B ∈ B(X) to
A+B, δAB is algebraic if and only if A and B are algebraic, and if A,B are non-nilpotent then LARB is algebraic
if and only if A,B are algebraic. Let dAB denote either of δAB and LARB, where A,B ∈ B(X) are non-trivial.
In considering applications, we prove that: (i) If asc(dAB − λ) ≤ 1 for all complex λ, and if A∗,B have SVEP,
then dAB − λ has closed range for every complex λ if and only if A,B are algebraic; (ii) if A,B are simply
polaroid, then dAB − λ has closed range for every λ ∈ iso σ(dAB); and (iii) if A,B are normaloid operators,
then LARB−λ has closed range at every λ in the peripheral spectrum of LARB if and only if LARB is left polar
at λ.

2. Results — Part A: Algebraic

Let C denote the set of complex numbers. An operator A ∈ B(X), has the single-valued extension property at
λ0 ∈ C, SVEP at λ0 for short, if for every open discDλ0 centered at λ0 the only analytic function f : Dλ0 → X
which satisfies

(A − λ) f (λ) = 0 for all λ ∈ Dλ0

is the function f ≡ 0. A has SVEP if it has SVEP at every λ ∈ C. The single valued extension property plays
an important role in local spectral theory and Fredholm theory [1, 17]. Evidently, A has SVEP at points in
the resolvent set and the boundary ∂σ(A) of σ(A)

Let A ∈ B(X). The quasinilpotent part H0(A − λ) and the analytic core K(A − λ) of (A − λ) are defined by

H0(A − λ) = {x ∈ X : lim
n−→∞

||(A − λ)nx|| 1n = 0}

and

K(A − λ) = {x ∈ X : there exists a sequence {xn} ⊂ X and δ > 0 for
which x = x0, (A − λ)(xn+1) = xn and ∥xn∥ ≤ δn∥x∥ for all n = 1, 2, ...}.

H0(A−λ) and K(A−λ) are (generally) non-closed hyperinvariant subspaces of (A−λ) such that (A−λ)−q(0) ⊆
H0(A − λ) for all q = 0, 1, 2, ... and (A − λ)K(A − λ) = K(A − λ); also, if λ ∈ iso σ(A), then H0(A − λ) and
K(A − λ) are closed and X = H0(A − λ) ⊕ K(A − λ) [1].
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A ∈ B(X) is an algebraic operator if there exists a non-trivial polynomial p(.) such that p(A) = 0. It is
easily seen, [1, Theorem 3.83], that an operator A ∈ B(X) is algebraic if and only if σ(A) is a finite set
consisting of the poles of the resolvent of A (i.e., if and only if σ(A) is a finite set and A is polaroid). Since
σ(A) = σ(LA) = σ(RA), and since A is polaroid if and only if LA (RA) is polaroid [4, Theorem 11], we have:

Proposition 2.1. Let A ∈ B(X), and let EA = LA or RA. Then EA is algebraic if and only if A is algebraic.

The algebraic property transfers from commuting A,B ∈ B(X) to A + B.

Proposition 2.2. If A,B ∈ B(X) are algebraic operators such that [A,B] = AB − BA = 0, then A + B is algebraic.

A proof of the proposition (in a certain sense, a more direct proof) may be obtained as a consequence of
the easily proved fact that if A and B are commuting algebraic elements of an algebra, then each polynomial
p(A,B) is also algebraic: In keeping with the spirit of this paper, in the following we draw upon local spectral
theory to prove the proposition.

Proof. If A ∈ B(X) is algebraic, then there is an integer n ≥ 1 such that σ(A) = {λ1, λ2, · · · , λn} (for some
scalars λi, 1 ≤ i ≤ n), X =

⊕n
i=1 H0(A − λi), and to each i there corresponds an integer pi ≥ 1 such that

H0(A − λi) = (A − λi)−pi (0). Let Ai = A|H0(A−λi); then A =
⊕n

i=1 Ai, Ai − λ j is nilpotent for all 1 ≤ i = j ≤ n,
and Ai − λ j is invertible for all 1 ≤ i , j ≤ n. Furthermore, if we let Bi = B|H0(A−λi) for all 1 ≤ i ≤ n,
then B =

⊕n
i=1 Bi and (since [A,B] = 0) [Ai,Bi] = 0 for all 1 ≤ i ≤ n. Trivially, B algebraic implies σ(Bi)

is a finite set for all i. Consider Ai + Bi − λ = (Ai − λi) + (Bi − λ + λi), where λ ∈ σ(Bi) (= isoσ(Bi)). If
λ − λi < σ(Ai − λi + Bi) = σ(Bi), then Ai + Bi − λ is invertible, and hence

H0(Ai + Bi − λ) = {0} = (Ai + Bi − λ)−ri (0)

for every positive integer ri. If, on the other hand, λ − λi ∈ σ(Ai − λi + Bi) = σ(Bi), then H0(Bi + λi − λ) =
(Bi + λi − λ)−ri (0) for some integer ri ≥ 1. Observe that

||Bi + λi − λ)tx|| 1t = ||{(Ai + Bi − λ) − (Ai − λi)}t||
1
t

= ||
t∑

j=0

(−1) j
(

t
j

)
(Ai + Bi − λ)t− j(Ai − λi) jx|| 1t

≤ ||
t∑

j=0

{
(

t
j

)
||(Ai − λi)|| j}

1
t ||(Ai + Bi − λ)t− jx|| 1t

for all x ∈ X implies
H0(Bi + λi − λ) ⊆ H0(Ai + Bi − λ).

By symmetry
H0(Ai + Bi − λ) ⊆ H0(Ai + Bi − λ − Ai + λi) ⊆ H0(Bi + λi − λ),

and hence
H0(Ai + Bi − λ) = H0(Bi + λi − λ) = (Bi + λi − λ)−ri (0).

Now let ripi = mi. Then, for all x ∈ (Bi + λi − λ)−mi (0),

(Ai + Bi − λ)mi x =
mi∑

j=pi+1

{
(

mi
j

)
(Bi + λi − λ)mi− j(Ai − λi) j−pi }(Ai − λi)pi x = 0

implies
H0(Ai + Bi − λ) = (Bi + λi − λ)−mi (0) ⊆ (Ai + Bi − λ)−mi (0) ⊆ H0(Ai + Bi − λ).

Thus, there exists an integer mi ≥ 1 such that

H0(Ai + Bi − λ) = (Ai + Bi − λ)−mi (0)
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for every λ ∈ iso σ(Bi). Let m = max1≤i≤nmi, and let λ ∈ σ(A + B) = iso σ(A + B). Then

H0(A + B − λ) =
n⊕

i=1

H0(Ai + Bi − λ) =
n⊕

i=1

(Ai + Bi − λ)−mi (0) = (A + B − λ)−m(0)

at every λ ∈ σ(A + B). Since

X = H0(A + B − λ) ⊕ K(A + B − λ) = (A + B − λ)−m(0) ⊕ K(A + B − λ)
=⇒ X = (A + B − λ)−m(0) ⊕ (A + B − λ)mX

for every λ ∈ σ(A + B), A + B is polaroid. This, since σ(A + B) ⊆ σ(A) + σ(B) is finite, implies A + B is
algebraic.

The descent of A ∈ B(X), dsc(A), is the least non-negative integer n such that An(X) = An+1(X); if no such
integer exists, then dsc(A) = ∞. Evidently, A is polar at λ if and only if asc(A − λ) = dsc(A − λ) < ∞, and a
necessary and sufficient condition for an operator A with dsc(A − λ) to be polar at λ is that A has SVEP at
λ [1, Theorem 3.81]. The following corollary is immediate from Proposition 2.2 and [1, Theorem 3.83].

Corollary 2.3. If A,B ∈ B(X) are commuting algebraic operators, then the following statements are mutually
equivalent:
(i) There exists a non-trivial polynomial p(.) such that p(A + B) = 0.
(ii) dsc(A + B − λ) < ∞ for all complex λ.
(iii) dsc(A + B − λ) < ∞ for every λ in the topological boundary ∂σ(A + B) of σ(A + B).
(iv) A + B − λ is polar (at 0) for every complex λ.

The converse of Proposition 2.2 is false: For a general non-algebraic operator A ∈ B(X), A − A = 0 is
always algebraic. Propositions 2.1 and 2.2 have a number of consequences. Recall from [11, Lemma 3.8]
that if An is polaroid for some integer n ≥ 1 (and A ∈ B(X)), then A is polaroid. Since σ(An) = σ(A)n, we
have:

Corollary 2.4. A ∈ B(X) is algebraic if and only if An is algebraic for all natural numbers n.

Combining this corollary with Proposition 2.2 we have:

Corollary 2.5. If A,B ∈ B(X) are commuting algebraic operators, then AB is algebraic.

Proof. If AB = BA, then AB = 1
4 {(A + B)2 − (A − B)2}.

The converse of Corollary 2.5 is false: If A ∈ B(X) is a nilpotent and B ∈ B(X) is an operator which
commutes with A, then AB being nilpotent is algebraic irrespective of whether B is or is not. It is immediate
from Proposition 2.2 and Corollary 2.5 that A,B ∈ B(X) algebraic implies δAB, LARB, and △AB = LARB − λ
algebraic for all complex λ. The following proposition shows that the converse holds in the case of δAB.

Proposition 2.6. Let A,B ∈ B(X).
(a) δAB is algebraic if and only if A and B are algebraic.
(b) LARB algebraic does not imply A and B algebraic. However, if LARB is algebraic, then at least one of A and B is
algebraic.
(c) Furthermore, if neither of A and B is nilpotent, then LARB is algebraic if and only if A and B are algebraic.

Proof. (a) Assume that δAB is algebraic, i.e., assume that there exists a polynomial p(.) such that p(δAB) =∑n
i=0 αiδn−i

AB = 0. Then there exist scalars ai, 1 ≤ i ≤ n, not all zero such that

AnX + a1An−1XB + · · · + an−1AXBn−1 + anXBn = 0

for all X ∈ B(X). Considering only those powers Bi (including B0 = I) of B for which ai , 0, it is seen that the
linear independence of this set implies that Ai = 0 for every power of A which appears in the identity above
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(see [16, Theorem 1]). Hence Bn is a linear combination of elements from a maximal linearly independent
subset of the set {I,B,B2, · · · ,Bn−1}. Thus B is algebraic, and hence RB is algebraic. Since LA = δAB + RB, A is
also algebraic.

(b) The example of the operator A = 0 and B is a quasinilpotent proves that LARB algebraic does not imply
A and B algebraic. The hypothesis LARB algebraic implies the existence of scalars ai, 1 ≤ i ≤ n, not all 0 such
that

AnXBn + a1An−1XBn−1 + · · · + an−1AXB + anX = 0

for all X ∈ B(X). Denote by {an1 , an2 , . . . , anm , 1} the set of coefficients an−i, 0 ≤ i ≤ n − 1, which are non-
zero, and arrange the corresponding sets of ascending powers of B and A by SB = {B1,B2, · · · ,Bm,Bn}
and SA = {A1,A2, · · · ,Am,An}. If the set SB is linearly independent, then An = 0, and if SB is not linearly
independent then Bn is a linear combination of powers Bi, i < n, of B [16, Theorem 1]. Thus either A or B is
algebraic.

(c) Assume now that neither of A and B is nilpotent. Then the preceding argument implies that B is
algebraic. If {B1,B2, · · · ,Bk} is a maximal linearly independent subset of SB, then there exist scalars αkj, not
all zero, such that At =

∑m
j=k+1 αkjA j for all 1 ≤ t ≤ k [16, Theorem 1]. Hence A is also algebraic.

If A = (A1,A2, · · · ,An) and B = (B1,B2, · · · ,Bn) are n-tuples of mutually commuting operators in B(X),
then [LAi RBi ,LA j RB j ] = 0 for all 1 ≤ i, j ≤ n. Since Ai and Bi algebraic implies LAi RBi algebraic, we have:

Corollary 2.7. If A = (A1,A2, · · · ,An) and B = (B1,B2, · · · ,Bn) are n-tuples of mutually commuting algebraic
operators in B(X), then the operator EAB − λ, (EAB − λ)(X) =

∑n
i=1 AiXBi − λX, is algebraic for all complex λ.

Remark 2.8. (i) Given two complex infinite-dimensional Banach spaces X and Y, let X⊗Y denote the
completion, endowed with a reasonable uniform cross-norm, of the algebraic tensor product X ⊗ Y of X
and Y; let, for A ∈ B(X) and B ∈ B(Y), A ⊗ B ∈ B(X⊗Y) denote the tensor product operator defined by A
and B. If A and B are non-nilpotent operators, then A ⊗ B is an algebraic operator if and only if A and B are
algebraic operators: this may be proved directly or deduced from Proposition 2.2(b) using an argument of
Eschmeier [13, Pages 50 and 51] relating tensor products to the operator of left-right multiplication in the
operator ideal B(B(Y,X)). (Here, in using [13], one observes that B is algebraic if and only if B∗ is algebraic.)
It is evident from Proposition 2.2 that if Ai and Bi are algebraic for all 1 ≤ i ≤ n and [Ai,A j] = 0 = [Bi,B j] for
all 1 ≤ i, j ≤ n, then

∑n
i=1 Ai ⊗ Bi is an algebraic operator.

(ii) An operator A ∈ B(X) is meromorphic if its non-zero spectral points are poles of the resolvent [17, Page
225]. Clearly, a meromorphic operator possesses at most countably many spectral points {λi} (and 0 as
its only accumulation point) which we may arrange by decreasing modulus by |λ1| ≥ |λ2| ≥ · · · . Recall
that the polaroid property transfers from A and B to LA, RA, LARB and LA − RB [4, 5, 10]. Evidently, A
meromorphic implies LA and RA meromorphic. Let A and B ∈ B(X) be meromorphic operators, and let
0 , λ ∈ σ(LARB) = σ(A)σ(B). Then λ = µν for some 0 , µ ∈ σ(A) and 0 , ν ∈ σ(B), and it follows that LARB
is polar at λ. Conclusion: If A and B ∈ B(X) are meromorphic, then LARB is meromorphic. This fails for the
operator LA−RB, for the reason that σ(LA−RB) = σ(A)−σ(B) (and hence every µ ∈ σ(A) and every −ν ∈ σ(B)
is a point of accumulation. Note however that LA − RB is polaroid.

Part B: Range Closure

An operator A ∈ B(X) is left polar at a point λ ∈ iso σa(A) if there exists a positive integer d such that
asc(A − λ) ≤ d and (A − λ)d+1(X) is closed; A is left polaroid if it is left polar at every λ ∈ iso σa(T). Trivially,
a Banach space operator T, in particular the operator dAB or the operator EAB above, with ascent less than
or equal to one has closed range if and only if it left polar (at 0). Furthermore, if asc(T − λ) ≤ 1 and T∗ has
SVEP (everywhere), then T − λ has closed range for all complex λ if and only if T is an algebraic operator.
To prove this, start by observing that T algebraic implies T polaroid, and hence if asc(T − λ) ≤ 1 then T − λ
has closed range for all λ. Conversely, the hypothesis T∗ has SVEP implies σ(T) = σa(T), and hence T−λ has
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closed range implies T − λ is polar for every complex λ. But then we must have that (σ(T) has no points of
accumulation, consequently) σ(T) is a finite set. Since already T is polaroid, T is algebraic. This argument
extends to the operators δAB and LARB.

Proposition 2.9. Let A,B ∈ B(X) be two non-trivial operators, and let dAB denote either of δAB and LARB. If
asc(dAB −λ) ≤ 1 for all complex λ, and if either (i) A∗ and B have SVEP or (ii) d∗AB has SVEP, then dAB −λ has closed
range for all complex λ if and only if A and B are algebraic operators.

Proof. If A and B are algebraic operators in B(X), then so is dAB. Hence, since asc(dAB−λ) ≤ 1 for all complex
λ, dAB − λ has closed range for all complex λ. Conversely, asc(dAB − λ) ≤ 1 and dAB − λ has closed range
for all complex λ imply dAB is left polar at every complex λ. (Here, by a misuse of language we consider
points λ in the resolvent set as left poles of order 0.) Now let A∗ and B have SVEP. Then σ(A) = σa(A),
σ(B) = σs(B) (= to the surjectivity spectrum of B), σa(δAB) = σa(A) − σs(B) = σ(A) − σ(B) = σ(δAB) and
σa(LARB) = σa(A).σs(B) = σ(A).σ(B) = σ(LARB). Observe also that if d∗AB has SVEP, then σa(dAB) = σ(dAB).
Hence, if either of the hypotheses (i) and (ii) is satisfied, then dAB is polar at every complex λ (implies
λ ∈ iso σ(dAB) for every complex λ). Consequently, we must have that σ(dAB) is a finite set and the
operator dAB is algebraic. This, by Proposition 2.6 (a), implies that A and B are algebraic in the case in
which dAB = δAB. Consider now LARB. Since A, B non-trivial and either of A, B nilpotent implies LARB
nilpotent with asc(LARB) > 1, Proposition 2.6(c) applies and we conclude that LARB algebraic implies A and
B algebraic.

The “only if part” of Proposition 2.9 fails if one relaxes the requirement that “dAB−λ has closed range for
all complex λ”. Thus, if A,B are two unitary (hence non–algebraic) Hilbert space operators, then LARB − λ
has closed range for all λ < σ(A).σ(B∗). Proposition 2.9 generalizes [3, Theorem 4.2] (and other similar
results). Observe that A,B ∈ B(H) normal implies δAB normal, and hence asc(δAB − λ) = asc(δ(A−λ)B) ≤ 1 for
all complex λ and δ∗AB has SVEP. A,B ∈ B(H) normal does not in general imply LARB normal [11, Example
2.1]; however, Proposition 2.9 applies to LARB for normal A,B ∈ B(H) (for the reason that A, B∗ have SVEP
and asc(LARB − λ) ≤ 1 for all complex λ — see the proof of [7, Theorem 4.1]). An alternative argument
generalizing [3, Theorem 4.2], see the following proposition, is consequent from the observation that normal
operators T are simply polaroid (i.e., asc(T − λ) = dsc(T − λ) ≤ 1 at every λ ∈ iso σ(T)).

Proposition 2.10. If A and B ∈ B(X) are non-trivial simply polaroid operators, then dAB − λ has closed range for
every λ ∈ iso σ(dAB).

Proof. In view of the fact that the polaroid property transfers from A,B to δAB and LARB, we have only
to prove that asc(dAB − λ) ≤ 1 for all λ ∈ iso σ(dAB). Let λ ∈ iso σ(dAB). We start by considering the
case in which λ , 0. (Thus, if λ = µ − ν ∈ iso σ(δAB) then (only) one of µ and ν may equal 0, and if
λ = µν ∈ iso σ(LARB) then neither of µ and ν equals zero.) Then for every µ ∈ iso σ(A) and ν ∈ iso σ(B) such
that λ = µ− ν if dAB = δAB and λ = µν if dAB = LARB, X = X11 ⊕X12 = X21 ⊕X22, A = A|X11 ⊕A|X12 = A1 ⊕A2,
B = B|X21 ⊕ B|X22 = B1 ⊕ B2, A1 − µ is 1-nilpotent, A2 − µ is invertible, B1 − ν is 1-nilpotent and B2 − ν is
invertible. Let X : X21 ⊕ X22 −→ X11 ⊕ X12 have the matrix representation X = [Xi j]2

i, j=1. Then

(δAB − λ)2(X) = 0⇐⇒
(

0 (µR2
B2−ν)(X12)

ν(L2
A2−µ)(X21) (δA2B2 − λ)2(X22)

)
= 0

⇐⇒ X12 = X21 = X22 = 0 =⇒ (δAB − λ)(X) = 0.

A similar argument shows that (LARB − λ)2(X) = 0 if and only if (LARB − λ)(X) = 0. We consider next the
case λ = 0. If dAB = δAB, then either µ = ν = 0 or µ = ν , 0 for every µ ∈ iso σ(A) and ν ∈ iso σ(B) such that
λ = µ − ν. Defining Ai, Bi, X1i and X2i, 1 ≤ i ≤ 2, as above it is then seen that (A1 = 0 = B1 and) δ2

AB(X) = 0
implies X22 = 0 in the case in which µ = ν = 0 and X12 = X21 = X22 = 0 in the case in which µ = ν , 0. In
either case δAB(X) = 0. Finally, if dAB = LARB and 0 ∈ iso σ(LARB), then either 0 ∈ iso σ(A) and 0 < σ(B), or,
0 < σ(A) and 0 ∈ iso σ(B), or, 0 ∈ iso σ(A) and 0 ∈ iso σ(B). (Note that by hypothesis A,B are non-trivial and
polaroid; hence neither of σ(A) and σ(B) = {0}.) Trivially, if either of A or B is invertible, then asc(LARB) ≤ 1.
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If, instead, 0 ∈ {iso σ(A) ∩ iso σ(B)}, then upon defining Ai, Bi, X1i and X2i, 1 ≤ i ≤ 2, as above it is seen that
A1 = 0 = B1 and (LARB)2(X) = 0 implies X22 = 0. Hence (LARB)(X) = 0.

The hypotheses of Proposition2.10 are satisfied by a wide variety of classes of operators. We mention
here one such class, the class of paranormal Banach space operators [17, Page 229].

For an operator T ∈ B(X) with spectral radius r(T) = limn→∞ ||Tn|| 1n , the peripheral spectrum σπ(T) of T is
the set σπ(T) = {λ ∈ σ(T) : |λ| = r(T)}. As we saw earlier on, if A,B ∈ B(X) are meromorphic operators,
then the operator LARB is meromorphic. Since A,B normaloid (T ∈ B(X) is normaloid if r(T) = ||T||) implies
LARB normaloid, if A,B are normaloid then λ ∈ σπ(LARB) if and only if there exist µ ∈ σπ(A) and ν ∈ σπ(B)
such that λ = µν. Recall from [17, Proposition 54.4] that if LARB is a normaloid meromorphic operator, then
asc(LARB − λ) ≤ 1 for all λ ∈ σπ(LARB). Such an operator LARB being polaroid, we conclude: If A,B ∈ B(X)
are normaloid meromorphic operators, then LARB − λ has closed range for every λ ∈ σπ(LARB). The following
proposition is a generalization of this result.

Proposition 2.11. If A,B ∈ B(X) are normaloid operators, then the following assertions are mutually equivalent for
all λ ∈ σπ(LARB):
(i) LARB − λ has closed range.
(ii) LARB − λ is left polar at 0.
(iii) LARB − λ is polar at 0.

Proof. The proof of the proposition depends upon the known fact, [8, Proposition 2.4], that asc(LARB−λ) ≤ 1
for all λ ∈ σπ(LARB): we include a proof here for completeness.

If A,B are normaloid, then LARB is normaloid, r(LARB) = r(A)r(B) = ||A||||B||, and

σπ(LARB) = {λ ∈ C : λ = µν, µ ∈ σπ(A), ν ∈ σπ(B)}.

If we define the contractions A1 and B1 by A1 = A/||A|| and B1 = B/||B||, then LA1 RB1 is a contraction and

σπ(LA1 RB1 ) = {λ ∈ C : λ = µν, µ ∈ σπ(A1), ν ∈ σπ(B1), |µ| = |ν| = 1}.

Choose a λ0 = µ0ν0 ∈ σπ(LA1 RB1 ); let A10 = A1/µ0 and B10 = B1/ν0. Then

||λ0

n

n−1∑
i=0

(LA10 RB10 )i(LA10 RB10 − 1)(Z)|| = ||λ0

n
(Ln

A10
Rn

B10
− 1)(Z)||

=
1
n
||(LAn

10
RBn

10
− 1)(Z)|| −→ 0 as n −→ ∞

for all Z ∈ B(X). Set λ0||A||||B|| = λ ∈ σπ(LARB). Then X ∈ B(X) satisfies (LA10 RB10 )(X) = 0 if and only if
(LARB)(X) = 0. An easy calculation shows that X ∈ (LA10 RB10 − 1)−1(0) implies X = 1

n
∑n−1

i=0 (LA10 RB10 )i(X).
Hence if X ∈ (LARB − 1)−1(0) and Y = Z/||A||||B||, then for all Z ∈ B(X),

||X + λ0

n

n−1∑
i=0

(LA10 RB10 )i(LA10 RB10 − 1)(Z)||

= ||1
n

n−1∑
i=0

(LA10 RB10 )i(X + λ0(LA10 RB10 − 1)(Z))||

≤ ||X + λ0(LA10 RB10 − 1)(Z)|| = ||X + (LA1 RB1 − λ0)(Z)||
= ||X + (LARB − λ)(Y)||

for all Y ∈ B(X) and λ ∈ σπ(LARB).

The two way implication (i)⇐⇒(ii) is evident. Observe that if LARB is normaloid and λ ∈ σπ(LARB), then λ
is in the boundary of σ(LARB). Hence (LARB − λ)∗ has SVEP (at 0), and so LARB is left polar at λ if and only
if it is polar at λ. Hence (ii)⇐⇒(iii).
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