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COMMON FIXED POINTS BY TWO STEP ITERATIVE SCHEME FOR
ASYMPTOTICALLY NONEXPANSIVE MAPPINGS
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Abstract. In this paper, we introduce an iteration scheme for approximating common fixed points of
two asymptotically nonexpansive mappings in the framework of a uniformly convex Banach spaces and
established weak and strong convergence results for common fixed points of asymptotically nonexpansive
mappings. The results obtained in this paper are generalizations of Khan [9]. Our result also illustrated
with help of an example.

1. Introduction

Let E be a real Banach space, K be a nonempty, closed and convex subset of E. Throughout this paper,
N denotes the set of all positive integers and F(T) := {x : Tx = x} is the set of fixed point of T. A mapping
T : K → K is said to be asymptotically nonexpansive if for a sequence {kn} ⊂ [1,∞) with limn→∞ kn = 1, if
∥ Tnx − Tny ∥≤ kn ∥ x − y ∥, for all x, y ∈ K and for all n ∈ N. This class of asymptotically nonexpansive
mappings was introduced by Goebel and Kirk [7] in 1972. They proved that if K is a nonempty bounded
closed convex subset of a uniformly convex Banach space E, then every asymptotically nonexpansive
self-mapping T of K has a fixed point. The fixed point iteration process for asymptotically nonexpansive
mapping in Banach spaces including Mann and Ishikawa iterations processes have been studied extensively
by many authors; see ([1]-[20]).

The Picard and Mann [21] introduced the following iteration process: T : K→ K are defined by{
x1 = x0 ∈ K,
xn+1 = Tnxn

(1)

for all n ∈N is called the Picard iteration process and{
x1 = x0 ∈ K,
xn+1 = (1 − αn)xn + αnTnxn,n ∈N, (2)
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where {αn} is in (0, 1) is called the Mann iteration process.
Recently Khan [9] defined two-step iteration procedure as:{

x1 = x0 ∈ K,
xn+1 = Tn[(1 − βn)xn + βnTnxn],n ∈N, (3)

where {βn} ∈ (0, 1).
The aim of this paper is to establish a new two-step iterative process and compute the common fixed

points for two asymptotically nonexpansive mappings. Let S,T : K→ K be two asymptotically nonexpan-
sive mappings. Then, our process read as follows:{

x1 = x0 ∈ K,
xn+1 = Tn[(1 − βn)Snxn + αnTnxn],n ≥ 1, (4)

where {βn} ∈ [0, 1]. However, iteration process (4) reduce to iteration process (3) when S = I, that is, the
identity mapping.

Our purpose in the rest of the paper is to use the scheme (4) to prove weak and strong convergence
results for approximating common fixed points of two asymptotically nonexpansive mappings.

2. Preliminaries

Let X = {x ∈ E : ∥x∥ = 1} and E∗ be the dual of E. The space E has :
(i) Gâteaux differentiable norm if

lim
t→0

∥x + ty∥ − ∥x∥
t

,

exists for each x, y ∈ K;
(ii) Frèchet differentiable norm (see e.g. [23]) for each x in S, the above limit exists and is attained uniformly
for y in S and in this case, it is also well-known that

⟨h, J(x)⟩ + 1
2
∥x∥2 ≤ 1

2
∥x + h∥2 ≤ ⟨h, J(x)⟩ + 1

2
∥x∥2 + b(∥h∥) (5)

for all x, h ∈ E, where J is the Frèchet derivative of the function 1
2∥.∥2 at x ∈ E, ⟨., .⟩ is the dual pairing between

E and E∗, and b is an increasing function defined on [0,∞) such that limt→0
b(t)

t = 0;
(iii) Opial’s condition [24] if for any sequence {xn} in E, xn ⇀ x implies that

lim sup
n→∞

∥xn − x∥ < lim sup
n→∞

∥xn − y∥,

for all y ∈ E with y , x.

Let us recall the following definitions.

Definition 2.1. Let K be a nonempty, closed and convex subset of Banach space E and T : K → K be a mapping.
Then, T is said to be asymptotically quasi-nonexpansive if there exists a sequence {kn}∞0 in [1,+∞) with lim

n→+∞
kn = 1

such that
∥Txn − p∥ ≤ kn∥x − p∥

for all x ∈ K and for all q ∈ F(T) (F(T) denotes the set of fixed points of T) and n ≥ 1.

Definition 2.2. [11] . Let E be a Banach space, K be a nonempty, closed and convex subset of Banach space E, and
T : K → K be a nonexpansive mapping. Then I − T is said to be demi-closed at 0, if xn → x (converges weakly) and
xn − Txn → 0 (converges strongly), then it is implies that x ∈ K and Tx = x.
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Definition 2.3. [6] . Let two mappings S,T : K → K, where K is a subset of a normed space E, said to be satisfy
condition (A′) if there exists a nondecreasing function f : [0,∞)→ [0,∞) with f (0) = 0, f (r) > 0 for all r ∈ (0,∞)
such that either ∥x − Sx∥ ≥ f (d(x,F)) or ∥x − Tx∥ ≥ f (d(x,F)) for all x ∈ K where d(x,F) = in f {∥x − p∥ : p ∈ F =
F(S) ∩ F(T)}.

Now, we state the following useful lemma to prove our main results.

Lemma 2.4. [25]: If {rn}, {tn} are two sequences of nonnegative real numbers such that rn+1 ≤ (1 + tn)rn,n ≥ 1 and∑∞
n=1 tn < ∞, then lim

n→∞
rn exists.

Lemma 2.5. [14]: Let E be a uniformly convex Banach space and 0 < p ≤ tn ≤ q < 1 for all n ∈ N. Let {xn} and
{yn} be two sequences of E such that lim sup

n→∞
∥xn∥ ≤ r, lim sup n→∞∥yn∥ ≤ r and lim

n→∞
∥(1− tn)xn + tnyn∥ = r hold

for some r ≥ 0. Then lim
n→∞
∥xn − yn∥ = 0.

3. Convergence Results

In this section, we prove weak and strong convergence theorems for two asymptotically nonexpansive
mappings in the frame work of a uniformly convex Banach spaces.

Theorem 3.1. Let K be a nonempty, closed and convex subset of a uniformly convex Banach space E. Let S,T : K→ K
be two asymptotically nonexpansive mappings with F(S)∩ F(T) , ϕ and a sequence {kn} of real numbers with kn ≥ 1
and
∑∞

n=1(k2
n − 1) < ∞. Let {xn} be the sequence defined by (4), where βn is a sequence in [ϵ, 1 − ϵ] for some ϵ ∈ (0, 1)

satisfying:

∥xn − Tnxn∥ ≤ λ∥Snxn − Tnxn∥, (6)

for all x, y ∈ K, where λ > 1, then

lim
n→∞
∥Sxn − xn∥ = lim

n→∞
∥Txn − xn∥ = 0

.

Proof. Let p ∈ F(S) ∩ F(T) and F(S) ∩ F(T) , ϕ. Put, for simplicity, yn = (1 − βn)Snxn + βnTnxn. From (4), we
have

∥xn+1 − p∥ = ∥Tnyn − p∥
≤ kn∥yn − p∥, (7)

and,

∥yn − p∥ = ∥(1 − βn)Snxn + βnTnxn − p∥
≤ (1 − βn)∥Snxn − p∥ + βn∥Tnxn − p∥
≤ (1 − βn)kn∥xn − p∥ + βnkn∥yn − p∥
≤ kn∥xn − p∥. (8)

From (7) and (8), we have

∥xn+1 − p∥ ≤ k2
n∥xn − p∥

≤ [1 + (k2
n − 1)∥xn − p∥.

Hence by using Lemma 2.4, lim
n→∞
∥xn − q∥ exists. Let lim

n→∞
∥xn − p∥ = c and suppose that c > 0. Now, from (8) ,

we have

∥yn − p∥ ≤ lim sup
n→∞

∥xn − p∥ ≤ c, (9)
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Note that,

∥yn − p∥ = ∥Tnxn − p∥ ≤ kn∥xn − p∥ ≤ c. (10)

Combining the estimates in (9) and (10), we have

∥yn − p∥ = c. (11)

Next, consider

c = ∥yn − p∥ = ∥(1 − βn)Snxn + βnTnxn − p∥
≤ (1 − βn)∥Snxn − p∥ + βn∥Tnxn − p∥.

Applying Lemma 2.5 , we have

lim
n→∞
∥Snxn − Tnxn∥ = 0. (12)

Using (6) and (12), it follows then that

∥Snxn − xn∥ = ∥Snxn − Tnxn∥ + ∥Tnxn − xn∥
≤ ∥Snxn − Tnxn∥ + λ∥Snxn − Tnxn∥
≤ (1 + λ)∥Snxn − Tnxn∥
→ 0 as n→∞.

Taking limsup on both sides of the above inequality, we obtain

lim
n→∞
∥Snxn − xn∥ = 0.

Now, note that

∥Tnxn − xn∥ ≤ ∥Tnxn − Snxn∥ + ∥Snxn − xn∥
→ 0 as n→∞.

which implies that

lim
n→∞
∥Tnxn − xn∥ = 0.

Now, by definition of {xn}, we have

∥xn+1 − Tnxn∥ ≤ kn∥Snxn − Tnxn∥.

Taking limit as n→∞ in both sides of the above inequality, we obtain

lim
n→∞
∥xn+1 − Tnxn∥ = 0. (13)

Again note that, ∥xn+1 − Snxn∥ ≤ ∥xn+1 − Tnxn∥ + ∥Tnxn − Snxn∥.
Using (12) and (13), we obtain

lim
n→∞
∥xn+1 − Snxn∥ = 0. (14)

Also, ∥xn+1 − xn∥ ≤ ∥xn+1 − Tnxn∥ + ∥Tnxn − xn∥, we get

lim
n→∞
∥xn+1 − xn∥ = 0, (15)
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and

∥xn+1 − Sxn∥ ≤ ∥xn+1 − Sn+1xn+1∥ + ∥Sn+1xn+1 − Sn+1xn∥
+ ∥Sn+1xn − Sxn+1∥

≤ ∥xn+1 − Sn+1xn+1∥ + kn+1∥xn+1 − xn∥
+ k1∥Snxn − xn+1∥,

It follows from (14) and (15), we have

lim
n→∞
∥xn − Sxn∥ = 0.

Similarly, we may show that

lim
n→∞
∥xn − Txn∥ = 0.

This proof is completed.

Example 3.2. Let E be the real line with the usual norm |.| and suppose K = [0, 1]. Define S,T : K→ K by

Tx =
2 − x

2

and

Sy =
y + 2

4

for all x, y ∈ K. Obviously both S and T are an asymptotically nonexpansive with the common fixed point 2
3 for all

x, y ∈ K. Now we check that our condition ∥x − Sy∥ ≤ λ∥Tx − Sx∥ for all x, y ∈ K is true. If x, y ∈ [0, 1] and λ > 1,
then

|x − Sy| = |x − (y + 2)
4
|

= |4x − y − 2
4

|,

and

|Tx − Sy| = |2 − x
2
− y + 2

4
|

= |2x + y − 2
4

|.

It is clear that | 4x−y−2
4 | ≤ λ| 2x+y−2

4 |, where λ > 1, so |x − Sy| ≤ λ|Tx − Sx| exists, for all x, y ∈ K. Now, we check that
S and T are quasi-nonexpansive type mappings. In fact, if x ∈ [0, 1] and p = 0 ∈ [0, 1], then

|Tx − p| = |2 − x
2
− 0| = |2 − x

2
|

= |2 − x
2
| ≤ |x| = |x − 0| = |x − p|,

that is

|Tx − p| ≤ |x − p|.

Similarly, we can prove that

|Sx − p| ≤ |x − p|.

So that S and T are quasi-nonexpansive type mappings.
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Lemma 3.3. : Let K be a nonempty, closed and convex subset of a uniformly convex Banach space E. Let {xn} be
the sequence defined in Theorem (3.4) with F , ϕ. Then, for any p1, p2 ∈ F, lim

n→∞
⟨xn, J(p1 − p2)⟩ exist, in particular,

⟨p − q, J(p1 − p2)⟩ = 0 for all p, q ∈ ωω(xn).

Proof. Take x = p1 − p2, with p1 , p2 and h = t(xn − p1) in the inequality (5) to get:

1
2
∥p1 − p2∥2 + t⟨xn − p1, J(p1 − p2)⟩ ≤ 1

2
∥txn + (1 − t)p1 − p2∥2

≤ 1
2
∥p1 − p2∥2 + t⟨xn − p1, J(p1 − p2)⟩

+ b(t∥xn − p1∥).
As supn≥1∥xn − p1∥ ≤M′ for some M′ > 0, it follows that

1
2
∥p1 − p2∥2+t lim sup

n→∞
⟨xn − p1, J(p1 − p2)⟩

≤ 1
2

lim
n→∞
∥txn + (1 − t)p1 − p2∥2

≤ 1
2
∥p1 − p2∥2 + b(tM′) + t lim inf

n→∞
⟨xn − p1, J(p1 − p2)⟩.

That is,

lim sup
n→∞

⟨xn − p1, J(p1 − p2)⟩ ≤ lim inf
n→∞

⟨xn − p1, J(p1 − p2)⟩ + b(tM′)
tM′ M′.

If t→ 0, then limn→∞⟨xn − p1, J(p1 − p2)⟩ exists for all p1, p2 ∈ F, in particular, we get

⟨p − 1, J(p1 − p2)⟩ = 0

for all p, q ∈ ωω(xn).

Theorem 3.4. Let E be a uniformly convex Banach space satisfying Opial condition and K,T,S and {xn} be taken as
Theorem 3.1. If F(S) ∩ F(T) , ϕ, I − T and I − S are demiclosded at zero, then {xn} converges weakly to a common
fixed point of S and T.

Proof. Let p ∈ F(S) ∩ F(T), then as proved in Theorem 3.1 lim
n→∞
∥xn − p∥ exist. Since E is uniformly convex

Banach space. Thus there exists subsequences {xnk } ⊂ {xn} such that {xnk } converges weakly to z1 ∈ K. From
Theorem 3.1, we have

lim
n→∞
∥Txnk − xnk∥ = 0,

and

lim
n→∞
∥Sxnk − xnk∥ = 0.

Since I − T and I − S are demiclosed at zero, therefore Sz1 = z1. Similarly Tz1 = z1. Finally, we prove that
{xn} converges weakly to z1. Let on contrary that there exists a subsequence {xni} ⊂ {xn} and {xn j } ⊂ {xn} such
that {xn j } converges weakly to z2 ∈ K and z1 , z2. Again in the same way, we can prove that z2 ∈ F(S)∩F(T).
From Theorem 3.1 the limits limn→∞ ∥xn − z1∥ and limn→∞ ∥xn − z2∥ exists. Suppose that z1 , z2, then by the
Opial’s condition, we get

lim
n→∞
∥xn − z1∥ = lim

ni→∞
∥xni − z1∥ < lim

ni→∞
∥xni − z2∥

= lim
n→∞
∥xn − z2∥ = lim

n j→∞
∥xn j − z2∥

< lim
n j→∞

∥xn j − z1∥ = lim
n→∞
∥xn − z1∥.

This is a contradiction so z1 = z2. Hence {xn} converges weakly to a common fixed point of T and S.
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Theorem 3.5. Let E be a Banach space and K,S,T,F, {xn} be as in Lemma 3.1. If F(T) , ϕ, then {xn} converges
strongly to a common fixed point of T if and only if lim inf

n→∞
d(xn,F) = 0 where d(x,F) = inf{∥x − p∥ : p ∈ F}.

Proof. Necessity is obvious. Conversely, suppose that lim inf
n→∞

d(xn,F) = 0. As in the proof of Lemma 3.1, we
have

∥xn+1 − p∥ ≤ kn∥xn − p∥.

This gives

∥xn+1 − F∥ ≤ kn∥xn − F∥.

So that lim
n→∞

d(xn,F) exists. But by hypothesis lim inf
n→∞

d(xn,F), so we must have lim
n→∞

d(xn,F) = 0.

Next, we show that {xn} is a Cauchy sequence in K. Suppose ϵ > 0 be given. Since lim
n→∞

d(xn,F) = 0, there

exists n0 in N such that for all n ≥ n0, we get d(xn, F) < ϵ2 . In particular, inf{∥xn0 − p∥ : p ∈ F} < ϵ2 . There must
exist p∗ ∈ F such that ∥xn0 − p∗∥ < ϵ2 . Now for n,m ≥ n0, we have

∥nn+m − xn∥ ≤ ∥nn+m − p∗∥ + ∥p∗ − xn∥
≤ 2∥p∗ − xn∥

≤ 2
ϵ
2
= ϵ.

Hence {xn} is a Cauchy sequence in a closed subset K of a Banach space E, therefore it must converge in K.
Suppose lim

n→∞
xn = q. Now lim

n→∞
d(xn,F) = 0 gives that d(x,F) = 0. It is well-known that F is closed and so

q ∈ F.

Using Theorem 3.5, we obtain a strong convergence theorem of the iteration scheme (4) under the
condition (A′) as below:

Theorem 3.6. Let E be a uniformly convex Banach space and K,S,T, , F, {xn} be as in Theorem 3.1. Let S,T satisfy
the condition (A′) and F , ϕ. Then {xn} converges strongly to a point of F.

Proof. We proved in Theorem 3.1, i.e.

lim
n→∞
∥Sxn − xn∥ = 0 = lim

n→∞
∥Txn − xn∥

Then from the definition of condition (A′), we obtain

lim
n→∞

f (d(xn,F)) ≤ lim
n→∞
∥Txn − xn∥ = 0

or

lim
n→∞

f (d(xn,F)) ≤ lim
n→∞
∥Sxn − xn∥ = 0.

In above cases, we get

lim
n→∞

f (d(xn,F)) = 0.

But f : [0,∞) → [0,∞) is a nondecreasing function satisfying f (0) = 0, f (r) > 0 for all r ∈ (0,∞), so that we
get

lim
n→∞

d(xn,F) = 0.
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All the conditions of Theorem 3.5 are satisfied, therefore by its conclusion {xn} converges to strongly to a
fixed point of F.

We now state two strong convergence theorems. The mapping T : K→ K with F(T) , ϕ is said to satisfy
condition (A) [22] if there is a nondecreasing function f : [0,∞) → [0,∞) with f (0) = 0 and f (r) > 0 for all
r ∈ (0,∞) such that for all x ∈ K, ∥x − Tx∥ ≥ d(x,F(T)).

Theorem 3.7. Let E be a uniformly convex Banach space and K a nonempty, closed, convex subset of E which is also
a asymptotically nonexpansive retract of E. Let T : K→ K be a asymptotically nonexpansive mapping with F(T) , ϕ.
Let {βn} be sequences in [ϵ, 1− ϵ] for some ϵ ∈ (0, 1). From arbitrary x1 ∈ K, define the sequence {xn} by the recursion
(3). Suppose T satisfies condition (A). Then {xn} converges strongly to some fixed point of T.

Theorem 3.8. Let E be a uniformly convex Banach space and K a nonempty, closed, convex subset of E which is also
a asymptotically nonexpansive retract of E. Let T : K→ K be a asymptotically nonexpansive mapping with F(T) , ϕ.
Let {βn} be sequences in [ϵ, 1− ϵ] for some ϵ ∈ (0, 1). From arbitrary x1 ∈ K, define the sequence {xn} by the recursion
(3). Suppose that T(K) is contained in a compact subset of E. Then {xn} converges strongly to some fixed point of T.
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