Functional Analysis, Approximation and Computation 5:2 (2013), 59–66

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/faac

Generalized Jordan derivations on Frechet algebras

Ismail Nikoufar^a

^aDepartment of Mathematics, Payame Noor University, P.O. Box 19395-3697 Tehran, Iran

Abstract. In this paper, we investigate generalized Jordan derivations on Frechet algebras. Moreover, we prove the generalized Hyers-Ulam-Rassias stability and superstability of generalized Jordan derivations on Frechet algebras. An important issue is so that we do not assume that the Frechet algebra is unital.

1. Introduction

Frechet algebras, named after Maurice Frechet, are special topological algebras. A topological algebra \mathcal{A} is a Frechet algebra if it satisfies the following properties:

- (1) it is complete as a uniform space;
- (2) its topology may be induced by a countable family of submultiplicative semi-norms $\|\cdot\|_k$, $k = 0, 1, 2, \cdots$.

This means that a subset \mathcal{U} of \mathcal{A} is open if and only if for every u in \mathcal{U} there exist a positive integer K and a nonnegative real number c such that $\{v : ||u - v||_k < c, 0 \le k \le K\}$ is a subset of \mathcal{U} . Note that the topology on \mathcal{A} can be induced by a translation invariant metric, i.e., a metric $\rho : \mathcal{A} \times \mathcal{A} \longrightarrow \mathbb{R}^+$ such that $\rho(x, y) = \rho(x + a, y + a)$ for all $a, x, y \in \mathcal{A}$.

A classical question in the theory of functional equations is the following: When is it true that a function which approximately satisfies a functional equation ζ must be close to an exact solution of ζ ? If the problem accepts a solution, we say that the equation ζ is stable. There are cases in which each 'approximate mapping' is actually a 'true mapping'. In such cases, we call the equation ζ superstable. The first stability problem concerning group homomorphisms was raised by Ulam [24] in 1940. We are given a group \mathcal{G} and a metric group \mathcal{G}' with metric d. Given $\varepsilon > 0$, does there exist a $\delta > 0$ such that if $f : \mathcal{G} \longrightarrow \mathcal{G}'$ satisfies $d(f(xy), f(x)f(y)) < \delta$ for all $x, y \in \mathcal{G}$, then a homomorphism $h : \mathcal{G} \longrightarrow \mathcal{G}'$ exists with $d(f(x), h(x)) < \varepsilon$ for all $x \in \mathcal{G}$? Ulam problem was partially solved by Hyers [17]. Let $f : E \longrightarrow E'$ be a mapping between Banach spaces such that

$$\|f(x+y) - f(x) - f(y)\| \le \varepsilon$$

²⁰¹⁰ Mathematics Subject Classification. Primary 39B52; Secondary 39B52, 46H25.

Keywords. Generalized Hyers-Ulam-Rassias stability; generalized derivation; generalized Jordan derivation; Frechet algebra. Received: 27 May 2013; Accepted: 21 June 2013

Communicated by Dragan S. Djordjević

This research was supported by a grant from Payame Noor University, Iran.

Email address: nikoufar@pnu.ac.ir (Ismail Nikoufar)

for all $x, y \in E$, and for some $\varepsilon > 0$. Then there exists a unique additive mapping $T : E \longrightarrow E'$ such that

$$\|f(x) - T(x)\| \le \varepsilon \tag{1}$$

for all $x \in E$. Also, if for each x the function $t \mapsto f(tx)$ from \mathbb{R} to E' is continuous on \mathbb{R} , then T is linear. If f is continuous at a single point of E, then T is continuous everywhere in E. Moreover (1) is sharp.

In 1978, Th. M. Rassias [21] formulated and proved the following theorem, which implies Hyers Theorem as a special case. Suppose that *E* and *E*' are real normed spaces with *E*' complete, $f : E \longrightarrow E'$ is a mapping such that for each fixed $x \in E$ the mapping $t \mapsto f(tx)$ is continuous on \mathbb{R} , and that there exist $\varepsilon > 0$ and $p \in [0, 1)$ such that

$$||f(x+y) - f(x) - f(y)|| \le \varepsilon(||x||^p + ||y||^p)$$
⁽²⁾

for all $x, y \in E$. Then there exists a unique linear mapping $T : E \longrightarrow E'$ such that

$$||f(x) - T(x)|| \le \frac{\varepsilon ||x||^p}{1 - 2^{p-1}}$$

for all $x \in E$. In 1990, Th. M. Rassias [22] during the 27th International symposium on functional equations asked the question whether such a theorem can also be proved for $p \ge 1$. In 1991, Z. Gajda following the same approach as in Th. M. Rassias [21], gave an affirmative solution to this question for p > 1. It was proved by Gajda [14], as well as by Th. M. Rassias and Semrl [23] that one can not prove a Th. M. Rassias type theorem when p = 1. In 1994, P. Gavruta [15] provided a further generalization of Th. M. Rassias Theorem in which he replaced the bound $\varepsilon(||x||^p + ||y||^p)$ in (2) by a general control function $\varphi(x, y)$ for the existence of a unique linear mapping. Badora [2] proved the generalized Hyers-Ulam stability of ring homomorphisms and generalized the result of Bourgin. Miura [20] proved the generalized Hyers-Ulam stability of functional equation on Banach algebras, the reader refer to [3], [5], [8], and [10].

During the last decades several stability problems of functional equations have been investigated by many mathematicians. A large list of references concerning the stability of functional equations can be found in [1], [4], [6], [16], [18], and [19].

Let \mathcal{A} be an algebra. A linear mapping $\delta : \mathcal{A} \longrightarrow \mathcal{A}$ is called a generalized derivation if there exists a derivation (in the usual sense) $d : \mathcal{A} \longrightarrow \mathcal{A}$ such that $\delta(ab) = \delta(a)b + ad(b)$ for all $a, b \in \mathcal{A}$. Also, a linear mapping $\delta : \mathcal{A} \longrightarrow \mathcal{A}$ is called a generalized Jordan derivation if there exists a Jordan derivation (in the usual sense) $d : \mathcal{A} \longrightarrow \mathcal{A}$ such that $\delta(a^2) = \delta(a)a + ad(a)$ for all $a, b \in \mathcal{A}$. The stability of derivations was studied by Park in [13]. M. Moslehian [11] investigated the Hyers-Ulam-Rassias stability of generalized derivations from a unital normed algebra \mathcal{A} to a unit linked Banach \mathcal{A} -bimodule. M. Eshaghi et al. [9] proved the Hyers-Ulam-Rassias stability and superstability of generalized Jordan derivations from a unital normed algebra \mathcal{A} to a unit linked Banach \mathcal{A} -bimodule.

In this paper, our aim is to establish the generalized Hyers-Ulam-Rassias stability of generalized Jordan derivations on Frechet algebras associated with the following functional equation

$$f(\frac{a+b}{2}) + f(\frac{a-b}{2}) = f(a).$$

Note that for our methods there is no need to assume that the Frechet algebra is unital (see [9] and [11]).

2. Superstability

Throughout this paper, it is assumed that \mathcal{A} is an arbitrary Frechet algebra equipped with a metric ρ such that $\rho(2^n x, 0) = 2^n \rho(x, 0)$ for all $x \in \mathcal{A}$ and all nonnegative integers n. It is clear that $\rho(2^n x, 0) = 2^n \rho(x, 0)$ holds true for all $x \in \mathcal{A}$ and all integers n.

In this section, we prove the superstability of generalized Jordan derivations on Frechet algebras. For given mappings $f, g : \mathcal{A} \longrightarrow \mathcal{A}$, we define the difference functions $D_{\mu}f, D_{\mu}g : \mathcal{A}^3 \longrightarrow [0, \infty)$ by

$$D_{\mu}f(a, b, c) := \rho(f(\frac{\mu a + \mu b}{2} + c^{2}) + f(\frac{\mu a - \mu b}{2}), \mu f(a) + f(c)c + cg(c)),$$
$$D_{\mu}g(a, b, c) := \rho(g(\mu a^{2} + \mu b + \mu c), \mu g(a)a + \mu ag(a) + \mu g(b) + \mu g(c))$$

for all $\mu \in \mathbb{T}^1 := \{\lambda \in \mathbb{C} : |\lambda| = 1\}$ and all $a, b, c \in \mathcal{A}$.

We need the following lemma in our main results.

Lemma 2.1. [12] Let X and Y be linear spaces and let $f : X \longrightarrow Y$ be an additive mapping such that $f(\mu x) = \mu f(x)$ for all $x \in X$ and $\mu \in \mathbb{T}^1$. Then the mapping f is \mathbb{C} -linear.

We now commence our work with the following superstability problem for generalized Jordan derivations in Frechet algebras.

Theorem 2.2. Let p, q < 1 or p, q > 1 and ε be nonnegative real numbers. Suppose that $f : \mathcal{A} \longrightarrow \mathcal{A}$ is a mapping for which there exists a map $g : \mathcal{A} \longrightarrow \mathcal{A}$ with g(0) = f(0) = 0 such that

$$D_{\mu}f(a,b,c) \le \varepsilon \rho(f(c),0)^{2p},\tag{3}$$

$$D_{\mu}g(a,b,c) \le \varepsilon(\rho(a,0)^{2q} + \rho(b,0)^{q} + \rho(c,0)^{q})$$
(4)

for all $a, b, c \in \mathcal{A}$ and all $\mu \in \mathbb{T}^1$. Then $f : \mathcal{A} \longrightarrow \mathcal{A}$ is a generalized Jordan derivation.

Proof. Assume that p, q < 1. By putting c = 0 and $\mu = 1$ in (3) we get

$$f(\frac{a+b}{2}) + f(\frac{a-b}{2}) = f(a)$$
(5)

for all $a, b \in \mathcal{A}$. Letting $\frac{a+b}{2} = w_1$ and $\frac{a-b}{2} = w_2$ in (5) we conclude that f is additive. Setting b = c = 0 and $\mu = 1$ in (3) we obtain

$$f(\frac{a}{2}) = \frac{1}{2}f(a)$$
(6)

for all $a \in \mathcal{A}$. Let b = c = 0 in (3) and apply (6) to deduce that $f(\mu a) = \mu f(a)$ for all $a \in \mathcal{A}$ and $\mu \in \mathbb{T}^1$. Now Lemma 2.1 implies f is \mathbb{C} -linear. Putting a = b = 0 in (3) we get

$$\rho(f(c^2), f(c)c + cg(c)) \le \varepsilon \rho(f(c), 0)^{2p}$$

$$\tag{7}$$

for all $c \in \mathcal{A}$. Replace c by $2^n c$ and multiply both sides of (7) by $\frac{1}{2^{2n}}$ to get

$$\rho(\frac{f(2^{2n}c^2)}{2^{2n}}, \frac{f(2^nc)2^nc}{2^{2n}} + \frac{2^ncg(2^nc)}{2^{2n}}) \le \frac{\varepsilon}{2^{2n}}\rho(f(2^nc), 0)^{2p}$$

for all $c \in \mathcal{A}$ and nonnegative integers *n*. Hence

$$\rho(f(c^2), f(c)c + c\frac{g(2^n c)}{2^n}) \le \varepsilon(\frac{2^p}{2})^{2n} \rho(f(c), 0)^{2p}$$
(8)

for all $c \in \mathcal{A}$ and nonnegative integers *n*. Letting *n* tend to ∞ in (8) we conclude that

$$f(c^2) = f(c)c + c \lim_{n \to \infty} \frac{g(2^n c)}{2^n}$$

for all $c \in \mathcal{A}$. By Hyers' Theorem, the sequence $\{\frac{g(2^n c)}{2^n}\}$ is convergent. Set $d(c) := \lim_{n \to \infty} \frac{g(2^n c)}{2^n}$ for all $c \in \mathcal{A}$ and so

$$f(c^2) = f(c)c + cd(c) \tag{9}$$

for all $c \in \mathcal{A}$. We now claim that $d : \mathcal{A} \longrightarrow \mathcal{A}$ is a Jordan derivation. Putting a = 0 and replacing b, c by $2^{n}b, 2^{n}c$, respectively and multiplying both sides of (4) by $\frac{1}{2^{n}}$ we get

$$\rho(\frac{g(\mu^{2^n}b + \mu^{2^n}c)}{2^n}, \mu\frac{g(2^nb)}{2^n} + \mu\frac{g(2^nc)}{2^n}) \le \frac{\varepsilon}{2^n}(\rho(2^nb, 0)^q + \rho(2^nc, 0)^q)$$
(10)

for all $b, c \in \mathcal{A}$ and $\mu \in \mathbb{T}^1$. Taking the limit as $n \to \infty$ and using Lemma 2.1 we find that *d* is \mathbb{C} -linear. Letting b = c = 0 and $\mu = 1$ in (4) we get

$$\rho(g(a^2), g(a)a + ag(a)) \le \varepsilon \rho(a, 0)^{2q} \tag{11}$$

for all $a \in \mathcal{A}$. Replace *a* by $2^n a$ and multiply both sides of (11) by $\frac{1}{2^{2n}}$ to get

$$\rho(\frac{g(2^{2n}a^2)}{2^{2n}}, \frac{g(2^na)}{2^n}a + a\frac{g(2^na)}{2^n}) \le \frac{\varepsilon}{2^{2n}}\rho(2^na, 0)^{2q}$$
(12)

for all $a \in \mathcal{A}$ and all nonnegative integers n. Hence by letting $n \to \infty$ in (12) we conclude that d is a Jordan derivation. It then follows from (9) that f is a generalized Jordan derivation. Similarly, one can replace c in (7) by $\frac{c}{2^n}$ and multiply both sides by 2^{2n} to obtain the result for the case where p, q > 1. \Box

It is clear that a Banach algebra \mathcal{A} is a Frechet algebra and its metric is induced by its norm and so by Theorem 2.2 we may solve the following superstability problem for generalized Jordan derivations on Banach algebras.

Corollary 2.3. Let \mathcal{A} be a Banach algebra and let p, q < 1 or p, q > 1 and ε be nonnegative real numbers. Suppose that $f : \mathcal{A} \longrightarrow \mathcal{A}$ is a mapping for which there exists a map $g : \mathcal{A} \longrightarrow \mathcal{A}$ with g(0) = f(0) = 0 such that

$$\|f(\frac{\mu a + \mu b}{2} + c^2) + f(\frac{\mu a - \mu b}{2}) - \mu f(a) - f(c)c - cg(c)\| \le \varepsilon \|f(c)\|^{2p},$$
(13)

$$||g(\mu a^{2} + \mu b + \mu c) - \mu g(a)a - \mu ag(a) - \mu g(b) - \mu g(c)|| \le \varepsilon (||a||^{2q} + ||b||^{q} + ||c||^{q})$$
(14)

for all $a, b, c \in \mathcal{A}$ and all $\mu \in \mathbb{T}^1$. Then $f : \mathcal{A} \longrightarrow \mathcal{A}$ is a generalized Jordan derivation.

3. Stability

In this section we prove the generalized Hyers-Ulam stability of generalized Jordan derivations.

Theorem 3.1. Suppose that $f : \mathcal{A} \longrightarrow \mathcal{A}$ is a mapping for which there exist a map $g : \mathcal{A} \longrightarrow \mathcal{A}$ with g(0) = f(0) = 0 and a function $\varphi : \mathcal{A}^3 \longrightarrow [0, \infty)$ such that

$$\tilde{\varphi}(a) := \sum_{i=1}^{\infty} \frac{1}{2^i} \varphi(2^i a, 0, 0) < \infty,$$
(15)

$$\lim_{i \to \infty} \frac{1}{2^i} \varphi(2^i a, 2^i b, 2^i c) = 0, \tag{16}$$

$$\max\{D_{\mu}f(a,b,c), D_{\mu}g(a,b,c)\} \le \varphi(a,b,c) \tag{17}$$

for all $a, b, c \in \mathcal{A}$ and all $\mu \in \mathbb{T}^1$. Then there exists a unique generalized Jordan derivation $\delta : \mathcal{A} \longrightarrow \mathcal{A}$ such that

$$\rho(\delta(a), f(a)) \le \tilde{\varphi}(a) \tag{18}$$

for all $a \in \mathcal{A}$.

Proof. It follows from (17) that

$$D_{\mu}f(a,b,c) \le \varphi(a,b,c), \tag{19}$$

$$D_{\mu}g(a,b,c) \le \varphi(a,b,c). \tag{20}$$

By putting b = c = 0 and $\mu = 1$ in (19) we get

$$\rho(2f(\frac{u}{2}), f(a)) \le \varphi(a, 0, 0) \tag{21}$$

for all $a \in \mathcal{A}$. If we replace *a* by 2*a* and multiply both sides of (21) by $\frac{1}{2}$ we get

$$\rho(\frac{f(2a)}{2}, f(a)) \le \frac{1}{2}\varphi(2a, 0, 0)$$
(22)

for all $a \in \mathcal{A}$. Now we can use induction on *n* to show that

$$\rho(\frac{f(2^n a)}{2^n}, f(a)) \le \sum_{i=1}^n \frac{1}{2^i} \varphi(2^i a, 0, 0)$$
(23)

for all $a \in \mathcal{A}$ and all nonnegative integers *n*. Hence

$$\rho(\frac{f(2^{n+m}a)}{2^{n+m}}, \frac{f(2^{m}a)}{2^{m}}) \leq \sum_{i=1}^{n} \frac{1}{2^{i+m}} \varphi(2^{i+m}a, 0, 0)$$
$$= \sum_{i=m+1}^{n+m} \frac{1}{2^{i}} \varphi(2^{i}a, 0, 0)$$

for all $a \in \mathcal{A}$ and all nonnegative integers n, m with $n \ge m$. It follows from (15) that the sequence $\{\frac{f(2^n a)}{2^n}\}$ is Cauchy. Since \mathcal{A} is complete this sequence converges. Set

$$\delta(a) := \lim_{n \to \infty} \frac{f(2^n a)}{2^n}.$$
(24)

Putting c = 0, $\mu = 1$ and replacing *a*, *b* by $2^n a$, $2^n b$, respectively and multiplying both sides of (19) by $\frac{1}{2^n}$ we get

$$\rho(\frac{f(2^n(\frac{a+b}{2}))}{2^n} + \frac{f(2^n(\frac{a-b}{2}))}{2^n}, \frac{f(2^na)}{2^n}) \le \frac{1}{2^n}\varphi(2^na, 2^nb, 0)$$
(25)

for $a, b \in \mathcal{A}$ and all nonnegative integers n. Taking the limit as $n \to \infty$ we find that δ is additive. Letting $b = c = 0, \mu = 1$ and replacing a by $2^n a$ and multiplying both sides of (19) by $\frac{1}{2^n}$ we get

$$\rho(\frac{2f(\frac{2^n a}{2})}{2^n}, \frac{f(2^n a)}{2^n}) \le \frac{1}{2^n}\varphi(2^n a, 0, 0)$$
(26)

for all $a \in \mathcal{A}$ and all nonnegative integers *n*. Taking the limit as $n \to \infty$ and using (16) we obtain

$$\delta(a) = 2\delta(\frac{a}{2}) \tag{27}$$

for all $a \in \mathcal{A}$. Letting b = c = 0 in (19) and using (27) we get $\delta(\mu a) = \mu \delta(a)$ and so Lemma 2.1 implies δ is \mathbb{C} -linear. Moreover, it follows from (23) and (24) as $n \to \infty$ that

$$\rho(\delta(a), f(a)) \le \tilde{\varphi}(a) \tag{28}$$

for all $a \in \mathcal{A}$. It is known that the additive mapping δ satisfying (18) is unique. Putting a = b = 0 and replacing *c* by $2^n c$ and multiplying both sides of (19) by $\frac{1}{2^{2n}}$ we get

$$\rho(\frac{f(2^{2n}c^2)}{2^{2n}}, \frac{f(2^nc)}{2^n}c + c\frac{g(2^nc)}{2^n}) \le \frac{1}{2^{2n}}\varphi(0, 0, 2^nc)$$
⁽²⁹⁾

for all $c \in \mathcal{A}$ and all nonnegative integers *n*. By (24) and (16) the sequence $\{\frac{g(2^n c)}{2^n}\}$ is convergent. Set $d(c) := \lim_{n \to \infty} \frac{g(2^n c)}{2^n}$ for all $c \in \mathcal{A}$ and let *n* tend to ∞ in (29) to find that

$$\delta(c^2) = \delta(c)c + cd(c). \tag{30}$$

It remains to prove that *d* is a Jordan derivation. The rest of the proof is similar to the proof of Theorem 2.2 and we omit it. \Box

Corollary 3.2. Suppose that $f : \mathcal{A} \longrightarrow \mathcal{A}$ is a mapping for which there exist a map $g : \mathcal{A} \longrightarrow \mathcal{A}$ with g(0) = f(0) = 0 and a function $\varphi : \mathcal{A}^3 \longrightarrow [0, \infty)$ such that satisfying (17) and

$$\sum_{i=1}^{\infty} \frac{1}{2^i} \varphi(2^i a, 2^i b, 2^i c) < \infty$$

$$\tag{31}$$

for all $a, b, c \in A$ and all $\mu \in \mathbb{T}^1$. Then there exist a unique generalized Jordan derivation $\delta : \mathcal{A} \longrightarrow \mathcal{A}$ and a function $\tilde{\varphi} : \mathcal{A} \longrightarrow [0, \infty)$ such that

$$\rho(\delta(a), f(a)) \le \tilde{\varphi}(a) \tag{32}$$

for all $a \in \mathcal{A}$.

Proof. Put $\tilde{\varphi}(a) := \sum_{i=1}^{\infty} \frac{1}{2^i} \varphi(2^i a, 0, 0)$. The result follows from (31) and Theorem 3.1. \Box

Corollary 3.3. Let p < 1 and ε be nonnegative real numbers. Suppose that $f : \mathcal{A} \longrightarrow \mathcal{A}$ is a mapping for which there exists a map $g : \mathcal{A} \longrightarrow \mathcal{A}$ with g(0) = f(0) = 0 such that

$$\max\{D_{\mu}f(a,b,c), D_{\mu}g(a,b,c)\} \le \varepsilon(\rho(a,0)^{p} + \rho(b,0)^{p} + \rho(c,0)^{p})$$
(33)

for all $a, b, c \in \mathcal{A}$ and $\mu \in \mathbb{T}^1$. Then there exists a unique generalized Jordan derivation $\delta : \mathcal{A} \longrightarrow \mathcal{A}$ such that

$$\rho(\delta(a), f(a)) \le \frac{2^p \varepsilon}{2 - 2^p} \rho(a, 0)^p \tag{34}$$

for all $a \in \mathcal{A}$.

Proof. Put $\varphi(a, b, c) := \varepsilon(\rho(a, 0)^p + \rho(b, 0)^p + \rho(c, 0)^p)$. Then the result follows from Corollary 3.2.

By using Theorem 3.1 we may solve the following generalized Hyers-Ulam stability problem for generalized Jordan derivations in Banach algebras.

Corollary 3.4. Let \mathcal{A} be a Banach algebra. Suppose that $f : \mathcal{A} \longrightarrow \mathcal{A}$ is a mapping for which there exist a map $g : \mathcal{A} \longrightarrow \mathcal{A}$ with g(0) = f(0) = 0 and a function $\varphi : \mathcal{A}^3 \longrightarrow [0, \infty)$ satisfying (15) and (16) such that

$$\|f(\frac{\mu a + \mu b}{2} + c^2) + f(\frac{\mu a - \mu b}{2}) - \mu f(a) - f(c)c - cg(c)\| \le \varphi(a, b, c),$$
(35)

$$\|g(\mu a^{2} + \mu b + \mu c) - \mu g(a)a - \mu ag(a) - \mu g(b) - \mu g(c)\| \le \varphi(a, b, c)$$
(36)

for all $a, b, c \in \mathcal{A}$ and all $\mu \in \mathbb{T}^1$. Then there exists a unique generalized Jordan derivation $\delta : \mathcal{A} \longrightarrow \mathcal{A}$ such that

$$\rho(\delta(a), f(a)) \le \tilde{\varphi}(a) \tag{37}$$

for all $a \in \mathcal{A}$.

Corollary 3.5. Let \mathcal{A} be a Banach algebra. Suppose that $f : \mathcal{A} \longrightarrow \mathcal{A}$ is a mapping for which there exist a map $g : \mathcal{A} \longrightarrow \mathcal{A}$ with g(0) = f(0) = 0 and a function $\varphi : \mathcal{A}^3 \longrightarrow [0, \infty)$ such that

$$\sum_{i=1}^{\infty} \frac{1}{2^{i}} \varphi(2^{i}a, 2^{i}b, 2^{i}c) < \infty,$$
(38)

$$\|f(\frac{\mu a + \mu b}{2} + c^2) + f(\frac{\mu a - \mu b}{2}) - \mu f(a) - f(c)c - cg(c)\| \le \varphi(a, b, c),$$
(39)

 $\|g(\mu a^{2} + \mu b + \mu c) - \mu g(a)a - \mu ag(a) - \mu g(b) - \mu g(c)\| \leq \varphi(a, b, c)$ for all $a, b, c \in \mathcal{A}$ and all $\mu \in \mathbb{T}^{1}$. Then there exist a unique generalized Jordan derivation $\delta : \mathcal{A} \longrightarrow \mathcal{A}$ and a function $\tilde{\varphi} : \mathcal{A} \longrightarrow [0, \infty)$ such that (40)

$$\rho(\delta(a), f(a)) \le \tilde{\varphi}(a) \tag{41}$$

for all $a \in \mathcal{A}$.

Theorem 3.6. Suppose that $f : \mathcal{A} \longrightarrow \mathcal{A}$ is a mapping for which there exist a map $g : \mathcal{A} \longrightarrow \mathcal{A}$ and a function $\varphi : \mathcal{A}^3 \longrightarrow [0, \infty)$ satisfying (17) such that

$$\tilde{\varphi}(a) := \sum_{i=1}^{\infty} 2^{i} \varphi(\frac{a}{2^{i}}, 0, 0) < \infty,$$
(42)

$$\lim_{i \to \infty} 2^{i} \varphi(\frac{a}{2^{i}}, \frac{b}{2^{i}}, \frac{c}{2^{i}}) = 0$$
(43)

for all $a, b, c \in \mathcal{A}$ and all $\mu \in \mathbb{T}^1$. Then there exists a unique generalized Jordan derivation $\delta : \mathcal{A} \longrightarrow \mathcal{A}$ such that

$$\rho(\delta(a), f(a)) \le \tilde{\varphi}(a) \tag{44}$$

for all $a \in \mathcal{A}$.

Proof. Letting a = b = c = 0 in (43) we get $\lim_{i\to\infty} 2^i \varphi(0,0,0) = 0$ and so $\varphi(0,0,0) = 0$. Now put a = b = c = 0 in (20) to find that $D_{\mu}g(0,0,0) = 0$. Thus, $(2\mu - 1)g(0) = 0$. Since $\mu \in \mathbb{T}^1$, g(0) = 0. Put a = b = c = 0 and $\mu = 1$ in (19) to get $D_{\mu}f(0,0,0) = 0$. Since g(0) = 0, we conclude that f(0) = 0. By suitable replacements in (19) it is clear that the sequence $\{2^m f(\frac{a}{2^m})\}$ converges for all $a \in \mathcal{A}$. Define $\delta(a) := \lim_{m\to\infty} 2^m f(\frac{a}{2^m})$. The rest of the proof is similar to the proof of Theorem 3.1 and we omit it. \Box

Corollary 3.7. Let p > 1 and $\varepsilon > 0$ be real numbers. Suppose that $f : \mathcal{A} \longrightarrow \mathcal{A}$ is a mapping for which there exists a map $g : \mathcal{A} \longrightarrow \mathcal{A}$ satisfying (33). Then there exists a unique generalized Jordan derivation $\delta : \mathcal{A} \longrightarrow \mathcal{A}$ such that

$$\rho(\delta(a), f(a)) \le \frac{2\varepsilon}{2^p - 2} \rho(a, 0)^p \tag{45}$$

for all $a \in \mathcal{A}$.

Proof. Putting $\varphi(a, b, c) := \varepsilon(\rho(a, 0)^p + \rho(b, 0)^p + \rho(c, 0)^p)$ in Theorem 3.6 we get the desired result.

Corollary 3.8. Let \mathcal{A} be a Banach algebra. Suppose that $p \neq 1$ and $\varepsilon > 0$ are nonnegative real numbers and $f : \mathcal{A} \longrightarrow \mathcal{A}$ is a mapping for which there exists a map $g : \mathcal{A} \longrightarrow \mathcal{A}$ with g(0) = f(0) = 0 satisfying (33) such that

$$\|f(\frac{\mu a + \mu b}{2} + c^2) + f(\frac{\mu a - \mu b}{2}) - \mu f(a) - f(c)c - cg(c)\| \le \varepsilon(\|a\|^p + \|b\|^p + \|c\|^p),$$
(46)

 $\|g(\mu a^2 + \mu b + \mu c) - \mu g(a)a - \mu ag(a) - \mu g(b) - \mu g(c)\| \le \varepsilon (\|a\|^p + \|b\|^p + \|c\|^p)$ (47) for all $a, b, c \in \mathcal{A}$ and all $\mu \in \mathbb{T}^1$. Then there exists a unique generalized Jordan derivation $\delta : \mathcal{A} \longrightarrow \mathcal{A}$ such that

$$||\delta(a) - f(a)|| \le \frac{2\varepsilon}{|2 - 2^p|} ||a||^p$$
(48)

for all $a \in \mathcal{A}$.

Proof. It follows from Corollary 3.3 and Corollary 3.7 by putting $\rho(a, b) = ||a - b||$ for all $a, b \in \mathcal{A}$.

References

- [1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan. 2 (1950), 64-66.
- [2] R. Badora, On approximate derivations, Math. Inequal. Appl. 9 (2006), 167-173.
- [3] M. Bavand Savadkouhi, M. E. Gordji, J. M. Rassias and N. Ghobadipour, Approximate ternary Jordan derivations on Banach ternary algebras, J. Math. Phys. 50 (2009), 9 pages.
- [4] S. Czerwik, Stability of functional equations of Ulam-Hyers-Rassias type, Hadronic Press, Florida, 2003.
- [5] A. Ebadian, N. Ghobadipor and M. E. Gordji, A fixed point method for perturbation of bimultipliers and Jordan bimultipliers in C*-ternary algebras, J. Math. Phys. 51, 1 (2010), 10 pages, DOI:10.1063/1.3496391.
- [6] A. Ebadian, A. Najati and M. E. Gordji, On approximate additve-quartic and quadratic-cubic functional equations in two variables on Abelian groups, Results. Math. 58, (2010), 39-53, DOI:10.1007/s00025-010-0018-4.
- [7] A. Ebadian, I. Nikoufar, and M. E. Gordji, Nearly $(\theta_1, \theta_2, \theta_3, \phi)$ -derivations on Hilbert C*-modules, Int. J. Geom. Methods. Mod. Phys., vol. 9, no. 3, 1250019, (2012), 12 pages
- [8] M. Eshaghi Gordji and N. Ghobadipor, *Stability of* (α, β, γ) -*derivation on Lie C*-algebras*, Int. J. Geom. Methods Mod. Physics, Vol. 7, No. 7 (2010), 1-10, DOI:10.1142/S0219887810004737.
- [9] M. Eshaghi Gordji and N. Ghobadipour, Nearly generalized Jordan derivations, Math. Slovaca, Vol. 61, No. 1, (2011), 55-62, DOI: 10.2478/s12175-010-0059-x.
- [10] M. Eshaghi Gordji, M. Ramezani, A. Ebadian and C. Park, Quadratic double centralizers and quadratic multipliers, Ann. Univ. Ferrara (2011), 57: 27-38, DOI:10.1007/s11565-011-0115-7
- [11] M. S. Moslehian, Hyers-Ulam-Rassias stability of generalized derivations, Int. J. Math. Sci. vol. (2006), 1-8, Article ID 93942.
- [12] C. Park, Homomorphisms between Poisson JC*-algebras, Bull. Braz. Math. Soc. 36 (2005), 79-97.
 [13] C. Park, Lie *-homomorphisms between Lie C*-algebras and Lie *-derivations on Lie C*-algebras, J. Math. Anal. Appl. 293 (2004), no. 2, 419-434
- [14] Z. Gajda, On stability of additive mappings, Int. J. Math. Sci. 14 (1991), 431-434.
- [15] P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436
- [16] P. Gavruta and L. Gavruta, A new method for the generalized Hyers-Ulam-Rassias stability, Int. J. Nonlinear. Anal. Appl. 1 (2010), no. 2, 11-18.
- [17] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.
- [18] D. H. Hyers, G. Issac and Th. M. Rassias, Stability of functional equations in several variables, Birkhauser, Basel, 1998.
- [19] H. Khodaei and Th. M. Rassias, Approximately generalized additive functions in several variables, Int. J. Nonlinear. Anal. Appl., 1 (2010), no. 1, 22-41.
- [20] T. Miura, S. E. Takahashi and G. Hirasawa, Hyers-Ulam-Rassias stability of Jordan homomorphisms on Banach algebras, J. Inequal. Appl. 1 (2004), 435-441.
- [21] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
- [22] Th. M. Rassias, Problem 16; 2, Report of the 27th International symposium on functional equations, Aequationes Math. vol. 39 (1990), 292-293: 309.
- [23] Th. M. Rassias and P. Semrl, On the behaviour of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc. 114 (1992), 989-993.
- [24] S. M. Ulam, A collection of mathematical problems, Interscience Tracts in Pure and Applied Mathematics, Interscience Publisher, New York, 1960.