Functional Analysis, Approximation and Computation 6 (2) (2014), 23–28



Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/faac

# Weighted Drazin inverse of a modified matrix

## Tanja Totić<sup>a</sup>

<sup>a</sup>Hemijsko - tehnološka škola, Ćirila i Metodija bb, 37000 Kruševac, Serbia

**Abstract.** We present conditions under which the weighted Drazin inverse of a modified matrix  $A - CWD_{d,W}WB$  can be expressed in terms of the weighted Drazin inverse of A and the generalized Schur complement  $D - BWA_{d,W}WC$ . The results extend the earlier works about the Drazin inverse.

## 1. Introduction

The Drazin inverse and the weighted Drazin inverse are very useful because of their various applications which can be found in [1,2,4,9].

Let  $\mathbb{C}^{n \times n}$  denote the set of  $n \times n$  complex matrices. For  $A \in \mathbb{C}^{m \times m}$ , the smallest nonnegative integer k such that  $rank(A^{k+1}) = rank(A^k)$  is called the index of A, and is denoted by k = ind(A).

Let  $A \in \mathbb{C}^{m \times m}$  with ind(A) = k, and  $X \in \mathbb{C}^{m \times m}$  be a matrix such that

$$A^{k+1}X = A^k, \quad XAX = X, \quad AX = XA, \quad (1)$$

then *X* is called the Drazin inverse of *A*, and is denoted  $X = A^d$ . In particular, when *ind*(*A*) = 1, the matrix *X* which is satisfying (1) is called the group inverse of *A*, and is denoted by  $X = A^{\#}$ .

Let  $A \in \mathbb{C}^{m \times n}$ ,  $W \in \mathbb{C}^{n \times m}$  with ind(AW) = k, and  $X \in \mathbb{C}^{m \times n}$  be a matrix such that

$$(AW)^{k+1}XW = (AW)^k$$
,  $XWAWX = X$ ,  $AWX = XWA$ , (2)

then X is called the *W*-weighted Drazin inverse of *A*, and is denoted by  $X = A_{d,W}$ . In particular when *A* is an square matrix and W = I, where *I* is the identity matrix with proper size, (2) coincides with (1), and  $A_{d,W} = A^d$ .

Wei [11] studied the expressions of the Drazin inverse of a modified square matrix A - CB. Chen and Xu [3] discussed some representations for the weighted Drazin inverse of a modified rectangular matrix A - CB under some conditions. These results can be applied to update finite Markov chains.

In [5] Cvetković-Ilić, Ljubisavljević present expressions for the Drazin inverse of generalized Schur complement  $A - CD^{d}B$  in terms of Drazin inverse of A and the generalized Schur complement  $D - BA^{d}C$ .

<sup>2010</sup> Mathematics Subject Classification. 15A09

Keywords. Weighted Drazin inverse; Modified matrix.

Received: 12 February 2014; Accepted: 8 June 2014

Communicated by Dragan S. Djordjević

Email address: tanja.rakocevic.totic@gmail.com (Tanja Totić)

Dopazo, Martínez-Serrano [6], Mosić [8] and Shakoor, Yang, Ali [10] give representations for the Drazin inverses of a modified matrix  $A - CD^{d}B$  under new conditions to generalize some results in the literature. Recently Zhang and Du give representations for the Drazin inverse of the generalized Schur comple-

ment  $A - CD^{d}B$  in terms of the Drazin inverses of A and the generalized Schur complement  $D - BA^{d}C$  under less and weaker conditions, which generalized results of [5,6,8,10,11]. These results extends the formula of Sherman-Morrison-Woodbury type

$$(A - CD^{-1}B)^{-1} = A^{-1} + A^{-1}C(D - BA^{-1}C)^{-1}BA^{-1}$$

where the matrices *A*, *D* and the Schur complement  $D - BA^{-1}C$  are invertible.

Throughout this papper, let  $A, B, C, D \in \mathbb{C}^{m \times n}$  and  $W \in \mathbb{C}^{n \times m}$ , and  $(AW)^{\pi} = I - AWA_{d,W}W$ . The generalized Schur complements will be denoted by  $S = A - CWD_{d,W}WB$  and  $Z = D - BWA_{d,W}WC$ .

In this paper we present conditions under which the weighted Drazin inverse of a modified matrix  $A - CWD_{d,W}WB$  can be expressed in terms of the weighted Drazin inverse of A and the generalized Schur complement  $D - BWA_{d,W}WC$ . The results extend the earlier works about the Drazin inverse.

#### 2. Weighted Drazin inverse of a modified matrix

Some conclusions in [12] are obtained directly from the results.

Let  $A, B, C, D \in \mathbb{C}^{m \times n}$  and  $W \in \mathbb{C}^{n \times m}$ . Throughout this section we use the following notations:

$$S = A - CWD_{d,W}WB, \qquad Z = D - BWA_{d,W}WC, \qquad (3)$$
  

$$K = A_{d,W}WC, \qquad H = BWA_{d,W} \qquad (4)$$
  
and  

$$(AW)^{\pi} = I - AWA_{d,W}W, \qquad (DW)^{\pi} = I - DWD_{d,W}W. \qquad (5)$$

**Lemma 2.1.** If  $(AW)^{\pi}CWD_{d,W}WB = 0$ , then

$$(SW)^{d} = (S_{A}W)^{d} + \sum_{i=0}^{k-1} ((S_{A}W)^{d})^{i+2} SW(AW)^{i} (AW)^{\pi}$$
(6)

where  $S_A = SWAWA_{d,W}$  and k = ind(AW).

*Proof.* Since  $(AW)^{\pi}CWD_{d,W}WB = 0$ , we have  $(AW)^{\pi}(A - S) = 0$  or alternatively  $(AW)^{\pi}A = (AW)^{\pi}S$ . Now we can obtain that

$$(AW)^{\pi}S_{A} = (AW)^{\pi}SWAWA_{d,W}$$
  
=  $(AW)^{\pi}AWAWA_{d,W}$   
=  $(I - AWA_{d,W}W)AWAWA_{d,W}$   
=  $AWAWA_{d,W} - AWA_{d,W}WAWAWA_{d,W}$   
=  $AWAWA_{d,W} - AWAWA_{d,W}WAWA_{d,W}$   
=  $AWAWA_{d,W} - AWAWA_{d,W}$   
=  $0.$ 

Since  $((AW)^{\pi})^2 = (AW)^{\pi}$  and  $(AW)^{\pi}AW = AW(AW)^{\pi}$ , then

$$(SW(AW)^{\pi})^{i} = SW(AW)^{\pi}SW(AW)^{\pi}...SW(AW)^{\pi}$$
  
= SW(AW)^{\pi}AW(AW)^{\pi}...AW(AW)^{\pi}  
= SWAW(AW)^{\pi}...AW(AW)^{\pi}  
= ...  
= SW(AW)^{i-1}(AW)^{\pi},

for any positive integer *i*. Since

$$(AW)^{k}(AW)^{\pi} = (AW)^{k}(I - AWA_{d,W}W) = (AW)^{k} - (AW)^{k+1}A_{d,W}W = (AW)^{k} - (AW)^{k} = 0,$$

we have  $SW(AW)^{\pi}$  is nilpotent,  $k \leq ind(SW(AW)^{\pi}) \leq k + 1$  and so

$$(SW(AW)^{\pi})^{d} = 0 \text{ and } (SW(AW)^{\pi})^{\pi} = I.$$

Let  $ind(SW(AW)^{\pi}) = s$ . By [7, Theorem 2.1] for  $P = SW(AW)^{\pi}$  and  $Q = S_AW$  we have

$$\begin{split} PQ &= SW(AW)^{\pi}S_{A}W = 0, \\ P+Q &= SW(AW)^{\pi} + S_{A}W = SW(I - AWA_{d,W}W) + SWAWA_{d,W}W = SW, \\ (SW)^{d} &= (SW(AW)^{\pi} + S_{A}W)^{d} \\ &= \sum_{i=0}^{s-1} ((S_{A}W)^{d})^{i+1} (SW(AW)^{\pi})^{i} (SW(AW)^{\pi})^{\pi} \\ &= (S_{A}W)^{d} + \sum_{i=1}^{s} ((S_{A}W)^{d})^{i+1} SW(AW)^{i-1} (AW)^{\pi} \\ &= (S_{A}W)^{d} + \sum_{i=0}^{s-1} ((S_{A}W)^{d})^{i+2} SW(AW)^{i} (AW)^{\pi}. \end{split}$$

Since  $s - 1 \le k \le s$  and  $(AW)^i (AW)^{\pi} = 0$  for any  $i \ge k$ , we get

$$(SW)^{d} = (S_{A}W)^{d} + \sum_{i=0}^{k-1} ((S_{A}W)^{d})^{i+2} SW(AW)^{i} (AW)^{\pi}.$$

Let  $(AW)^e = AWA_{d,W}W$  and  $M = A_{d,W} + KWZ_{d,W}WH$ . It is not difficult to prove

$$MW = (AW)^e MW = MW(AW)^e$$

and

 $S_A W = S_A W (AW)^e$ , where  $S_A = SWAWA_{d,W}$ .

If  $(AW)^{\pi}CWD_{d,W}WB = 0$  from Lemma 2.1 is satisfied then we have

 $(AW)^{\pi}S_{A} = 0,$ (I - AWA<sub>d,W</sub>W)SWAWA<sub>d,W</sub> = 0, SWAWA<sub>d,W</sub> = AWA<sub>d,W</sub>WSWAWA<sub>d,W</sub>,

or

$$S_A W = (AW)^e S_A W.$$

Now we give the following result.

**Lemma 2.2.** Let  $S_A = SWAWA_{d,W}$  and  $M = A_{d,W} + KWZ_{d,W}WH$ , then the following statements are equivalent:

| $KW(DW)^{\pi}Z_{d,W}WHW = KWD_{d,W}W(ZW)^{\pi}HW;$ | (7)  |
|----------------------------------------------------|------|
| $AWA_{d,W}WS_AWMW = AWA_{d,W}W;$                   | (8)  |
| $MWAWA_{d,W}WS_AW = AWA_{d,W}W;$                   | (9)  |
| $KW(ZW)^{\pi}D_{d,W}WHW = KWZ_{d,W}W(DW)^{\pi}HW.$ | (10) |

Furthermore,  $(AWA_{d,W}WS_AW)^{\#} = MW$ .

*Proof.* Firstly, we have

$$AWA_{d,W}WS_AW = AWA_{d,W}WSWAWA_{d,W}W$$
  
=  $AWA_{d,W}W(A - CWD_{d,W}WB)WAWA_{d,W}W$   
=  $AWA_{d,W}WAWAWA_{d,W}W - AWA_{d,W}WCWD_{d,W}WBWAWA_{d,W}W$   
=  $AWAWA_{d,W}WAWA_{d,W}W - AWKWD_{d,W}WBWA_{d,W}WAW$   
=  $AWAWA_{d,W}W - AWKWD_{d,W}WBWA_{d,W}WAW$   
=  $AWA_{d,W}WAW - AWKWD_{d,W}WBWA_{d,W}WAW$ 

and

$$\begin{aligned} AWA_{d,W}WS_AWMW &= (AWA_{d,W}WAW - AWKWD_{d,W}WBWA_{d,W}WAW)(A_{d,W}W + KWZ_{d,W}WHW) \\ &= AWA_{d,W}WAWA_{d,W}W + AWA_{d,W}WAWKWZ_{d,W}WHW \\ -AWKWD_{d,W}WBWA_{d,W}WAWA_{d,W}W \\ -AWKWD_{d,W}WBWA_{d,W}WAWKWZ_{d,W}WHW \\ &= AWA_{d,W}W + AWKWZ_{d,W}WHW - AWKWD_{d,W}WBWA_{d,W}W \\ -AWKWD_{d,W}WBWKWZ_{d,W}WHW - AWKWD_{d,W}WBWA_{d,W}W \\ -AWKWD_{d,W}WBWKWZ_{d,W}WHW \\ &= AWA_{d,W}W + AWKWZ_{d,W}WHW - AWKWD_{d,W}WHW \\ -AWKWD_{d,W}WBWKWZ_{d,W}WHW \\ &= AWA_{d,W}W + AWKWZ_{d,W}WHW - AWKWD_{d,W}WHW \\ -AWKWD_{d,W}W(D - Z)WZ_{d,W}WHW \\ &= AWA_{d,W}W + AWKW[Z_{d,W}W - D_{d,W}W(D - Z)WZ_{d,W}W]HW \\ &= AWA_{d,W}W + AWKW[(DW)^{\pi}Z_{d,W}W - D_{d,W}W(ZW)^{\pi}]HW. \end{aligned}$$

From this it follows (7) is equivalent to (8). Similarly, (9) is equivalent to (10). Let us prove that (8) implies (9). Let  $(AW)^e = AWA_{d,W}W$ . Now  $(AW)^e S_A WMW = (AW)^e$  i.e.,  $(AW)^e S_A W(AW)^e MW = (AW)^e$ , by [12, Lemma 2.3] we have

 $(AW)^e MW(AW)^e (AW)^e S_A W(AW)^e = (AW)^e$  or  $MW(AW)^e S_A W = (AW)^e$ .

Similarly (9) implies (8). Thus, the statements (8) and (9) are equivalent.

If any of the four conditions is satisfied, then

$$\begin{split} MW(AW)^e S_A W &= (AW)^e S_A WMW, \\ MW(AW)^e S_A WMW &= MW(AW)^e = MW \end{split}$$

and

 $\begin{aligned} ((AW)^e S_A W)^2 MW &= (AW)^e S_A W (AW)^e S_A W MW \\ &= (AW)^e S_A W (AW)^e \\ &= (AW)^e S_A W. \end{aligned}$ 

Hence,  $((AW)^{e}S_{A}W)^{\#} = MW.$ 

**Theorem 2.1.** If  $(AW)^{\pi}CWD_{d,W}WB = 0$  and  $KW(DW)^{\pi}Z_{d,W}WHW = KWD_{d,W}W(ZW)^{\pi}HW$ , then

$$(SW)^{d} = (A_{d,W} + KWZ_{d,W}WH)W + \sum_{i=0}^{k-1} ((A_{d,W} + KWZ_{d,W}WH)W)^{i+2}SW(AW)^{i}(AW)^{\pi}$$
(11)

and

$$S_{d,W} = ((SW)^d)^2 S;$$

or alternatively

$$(SW)^{d} = (A_{d,W} + A_{d,W}WCWZ_{d,W}WBWA_{d,W})W - \sum_{i=0}^{k-1} ((A_{d,W} + A_{d,W}WCWZ_{d,W}WBWA_{d,W})W)^{i+1}A_{d,W}WCWZ_{d,W}WBW(AW)^{i}(AW)^{\pi} + \sum_{i=0}^{k-1} ((A_{d,W} + A_{d,W}WCWZ_{d,W}WBWA_{d,W})W)^{i+1}A_{d,W}WCW(Z_{d,W}W(DW)^{\pi} - (ZW)^{\pi}D_{d,W}W)BW(AW)^{i},$$
(12)

where k = ind(AW).

*Proof.* Since  $(AW)^{\pi}CWD_{d,W}WB = 0$ , then  $S_AW = (AW)^e S_AW$ . Using Lemma 2.1 and Lemma 2.2 we have

$$\begin{split} S_{A;d,W} &= M = A_{d,W} + KWZ_{d,W}WH, \\ (SW)^d &= MW + \sum_{i=0}^{k-1} (MW)^{i+2} SW(AW)^i (AW)^{\pi}. \end{split}$$

Substituting M we get (11).

Since

$$\begin{aligned} (A_{d,W} + KWZ_{d,W}WH)WSW(AW)^{\pi} &= (A_{d,W}W + KWZ_{d,W}WHW)(AW - CWD_{d,W}WBW)(AW)^{\pi} \\ &= ((AW)^{e} - KWD_{d,W}WBW + KWZ_{d,W}WBW(AW)^{e} \\ - KWZ_{d,W}W(D - Z)WD_{d,W}WBW)(AW)^{\pi} \\ &= -KWD_{d,W}WBW(AW)^{\pi} - KWZ_{d,W}W(D - Z)WD_{d,W}WBW(AW)^{\pi} \\ &= KW(Z_{d,W}W(DW)^{\pi} - (ZW)^{\pi}D_{d,W}W)BW(AW)^{\pi} - KWZ_{d,W}WBW(AW)^{\pi} \\ &= KW(Z_{d,W}W(DW)^{\pi} - (ZW)^{\pi}D_{d,W}W)BW - KWZ_{d,W}WBW(AW)^{\pi}, \end{aligned}$$

we have (12).

By Theorem 2.1, when *A*, *B*, *C* and *D* are square and *W* = *I*, we can get directly some results in [12].

**Corollary 2.1.** Let  $A, B, C, D \in \mathbb{C}^{m \times m}$  and W = I in (3),(4),(5). Suppose  $A^{\pi}CD^{d}B = 0$  and  $KD^{\pi}Z^{d}H = KD^{d}Z^{\pi}H$  then

$$S^{d} = A^{d} + KZ^{d}H + \sum_{i=0}^{k-1} (A^{d} + KZ^{d}H)^{i+2}SA^{i}A^{\pi}.$$

**Corollary 2.2.** If  $(AW)^{\pi}CWD_{d,W}WB = 0$ ,  $CW(DW)^{\pi}Z_{d,W}WB = 0$  and  $CWD_{d,W}W(ZW)^{\pi}B = 0$ , then

$$(SW)^{d} = (A_{d,W} + A_{d,W}WCWZ_{d,W}WBWA_{d,W})W - \sum_{i=0}^{k-1} ((A_{d,W} + A_{d,W}WCWZ_{d,W}WBWA_{d,W})W)^{i+1}A_{d,W}WCWZ_{d,W}WBW(AW)^{i}(AW)^{\pi} + \sum_{i=0}^{k-1} ((A_{d,W} + A_{d,W}WCWZ_{d,W}WBWA_{d,W})W)^{i+1}A_{d,W}WCW(Z_{d,W}W(DW)^{\pi} - (ZW)^{\pi}D_{d,W}W)BW(AW)^{i},$$

where k = ind(AW).

**Corollary 2.3.** If  $(AW)^{\pi}CWD_{d,W}WB = 0$  and  $(DW)^{\pi} = (ZW)^{\pi}$ , then

$$(SW)^{d} = (A_{d,W} + A_{d,W}WCWZ_{d,W}WBWA_{d,W})W$$
  
- 
$$\sum_{i=0}^{k-1} ((A_{d,W} + A_{d,W}WCWZ_{d,W}WBWA_{d,W})W)^{i+1}A_{d,W}WCWZ_{d,W}WBW(AW)^{i}(AW)^{\pi},$$

where k = ind(AW).

The following theorem can be proved similary to Theorem 2.1.

**Theorem 2.2.** If  $CWD_{d,W}WBW(AW)^{\pi} = 0$  and  $KW(ZW)^{\pi}D_{d,W}WHW = KWZ_{d,W}W(DW)^{\pi}HW$  then

$$(SW)^{d} = (A_{d,W} + KWZ_{d,W}WH)W + \sum_{i=0}^{k-1} (AW)^{i} (AW)^{\pi} SW((A_{d,W} + KWZ_{d,W}WH)W)^{i+2}.$$

### References

- [1] A. Ben-Israel, T.N.E. Greville, Generalized Inverses: Theory and Applications, 2ed., Springer, New York, 2003.
- [2] S.L. Campbell, C.D. Meyer, Generalized Inverse of Linear Transformations, Dover, New York, 1991.
- [3] J. Chen, Z. Xu, Representations for the weighted Drazin inverse of a modified matrix, Appl. Math. Comput. 203 (2008) 202-209.
- [4] R.E. Cline, T.N.E. Greville, A.Drazin inverse for rectangular matrices. Linear Algebra Appl.29, 53-62 (1980)
- [5] D.S. Cvetković-Ilić, J. Ljubisavljević, A note on the Drazin inverse of a modified matrix. Acta Math. Sci. Ser. B 32 (2012) 483-487
- [6] E. Dopazo, M.F. Martinez-Serrano, On deriving the Drazin inverse of a modified matrix, Linear Algebra Appl. 438 (2013) 1678-1687
- [7] R.E. Hartwig, G. Wang, Y.Wei, Some additive results on Drazin inverse, Linear Algebra Appl 322 (2001) 207-217
- [8] D.Mosić, Some results on the Drazin inverse of a modified matrix, Calcolo 50 (2013) 305-311.
- [9] V.Rakočević, Y.Wei, A weighted Drazin inverse and applications. Linear Algebra Appl. 350 (2002) 25-39
- [10] A.Shakoor, H.Yang, I.Ali, Some representations for the Drazin inverse of a modified matrix, Calcolo, Published online: 8 October 2013 [DOI 10.1007/s10092-013-0098-0].
- [11] Y. Wei, The Drazin inverse of a modified matrix, Appl. Math. Comput. 125 (2002) 295-301.
- [12] D.Zhang, X.Du, Representations for the Drazin inverse of the generalized Schur complement, http://arxiv.org/pdf/1312.1239.pdf.