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Weighted Drazin inverse of a modified matrix
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Abstract. We present conditions under which the weighted Drazin inverse of a modified matrix A −
CWDd,WWB can be expressed in terms of the weighted Drazin inverse of A and the generalized Schur
complement D − BWAd,WWC. The results extend the earlier works about the Drazin inverse.

1. Introduction

The Drazin inverse and the weighted Drazin inverse are very useful because of their various applications
which can be found in [1,2,4,9].

LetCn×n denote the set of n×n complex matrices. For A ∈ Cm×m, the smallest nonnegative integer k such
that rank(Ak+1) = rank(Ak) is called the index of A, and is denoted by k = ind(A).

Let A ∈ Cm×m with ind(A) = k, and X ∈ Cm×m be a matrix such that

Ak+1X = Ak, XAX = X, AX = XA, (1)

then X is called the Drazin inverse of A, and is denoted X = Ad. In particular, when ind(A) = 1, the matrix
X which is satisfying (1) is called the group inverse of A, and is denoted by X = A#.

Let A ∈ Cm×n, W ∈ Cn×m with ind(AW) = k, and X ∈ Cm×n be a matrix such that

(AW)k+1XW = (AW)k, XWAWX = X, AWX = XWA, (2)

then X is called the W-weighted Drazin inverse of A, and is denoted by X = Ad,W. In particular when A
is an square matrix and W = I, where I is the identity matrix with proper size, (2) coincides with (1), and
Ad,W = Ad.

Wei [11] studied the expressions of the Drazin inverse of a modified square matrix A − CB. Chen and
Xu [3] discussed some representations for the weighted Drazin inverse of a modified rectangular matrix
A − CB under some conditions. These results can be applied to update finite Markov chains.

In [5] Cvetković-Ilić, Ljubisavljević present expressions for the Drazin inverse of generalized Schur
complement A − CDdB in terms of Drazin inverse of A and the generalized Schur complement D − BAdC.
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Dopazo, Martı́nez-Serrano [6], Mosić [8] and Shakoor, Yang, Ali [10] give representations for the Drazin
inverses of a modified matrix A − CDdB under new conditions to generalize some results in the literature.

Recently Zhang and Du give representations for the Drazin inverse of the generalized Schur comple-
ment A−CDdB in terms of the Drazin inverses of A and the generalized Schur complement D−BAdC under
less and weaker conditions, which generalized results of [5,6,8,10,11]. These results extends the formula of
Sherman-Morrison-Woodbury type

(A − CD−1B)−1 = A−1 + A−1C(D − BA−1C)−1BA−1

where the matrices A,D and the Schur complement D − BA−1C are invertible.

Throughout this papper, let A,B,C,D ∈ Cm×n and W ∈ Cn×m, and (AW)π = I − AWAd,WW. The general-
ized Schur complements will be denoted by S = A − CWDd,WWB and Z = D − BWAd,WWC.

In this paper we present conditions under which the weighted Drazin inverse of a modified matrix
A − CWDd,WWB can be expressed in terms of the weighted Drazin inverse of A and the generalized Schur
complement D − BWAd,WWC. The results extend the earlier works about the Drazin inverse.

2. Weighted Drazin inverse of a modified matrix

Some conclusions in [12] are obtained directly from the results.

Let A,B,C,D ∈ Cm×n and W ∈ Cn×m. Throughout this section we use the following notations:

S = A − CWDd,WWB, Z = D − BWAd,WWC, (3)
K = Ad,WWC, H = BWAd,W (4)
and
(AW)π = I − AWAd,WW, (DW)π = I −DWDd,WW. (5)

Lemma 2.1. If (AW)πCWDd,WWB = 0, then

(SW)d = (SAW)d +
k−1∑
i=0

((SAW)d)i+2SW(AW)i(AW)π (6)

where SA = SWAWAd,W and k = ind(AW).

Proof. Since (AW)πCWDd,WWB = 0, we have (AW)π(A − S) = 0 or alternatively (AW)πA = (AW)πS. Now
we can obtain that

(AW)πSA = (AW)πSWAWAd,W
= (AW)πAWAWAd,W
= (I − AWAd,WW)AWAWAd,W
= AWAWAd,W − AWAd,WWAWAWAd,W
= AWAWAd,W − AWAWAd,WWAWAd,W
= AWAWAd,W − AWAWAd,W
= 0.

Since ((AW)π)2 = (AW)π and (AW)πAW = AW(AW)π, then

(SW(AW)π)i = SW(AW)πSW(AW)π...SW(AW)π

= SW(AW)πAW(AW)π...AW(AW)π

= SWAW(AW)π...AW(AW)π

= ...
= SW(AW)i−1(AW)π,
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for any positive integer i.
Since

(AW)k(AW)π = (AW)k(I − AWAd,WW)
= (AW)k − (AW)k+1Ad,WW
= (AW)k − (AW)k

= 0,

we have SW(AW)π is nilpotent, k ≤ ind(SW(AW)π) ≤ k + 1 and so

(SW(AW)π)d = 0 and (SW(AW)π)π = I.

Let ind(SW(AW)π) = s. By [7, Theorem 2.1] for P = SW(AW)π and Q = SAW we have

PQ = SW(AW)πSAW = 0,
P +Q = SW(AW)π + SAW = SW(I − AWAd,WW) + SWAWAd,WW = SW,
(SW)d = (SW(AW)π + SAW)d

=
s−1∑
i=0

((SAW)d)i+1(SW(AW)π)i(SW(AW)π)π

= (SAW)d +
s∑

i=1
((SAW)d)i+1SW(AW)i−1(AW)π

= (SAW)d +
s−1∑
i=0

((SAW)d)i+2SW(AW)i(AW)π.

Since s − 1 ≤ k ≤ s and (AW)i(AW)π = 0 for any i ≥ k, we get

(SW)d = (SAW)d +
k−1∑
i=0

((SAW)d)i+2SW(AW)i(AW)π.

�
Let (AW)e = AWAd,WW and M = Ad,W + KWZd,WWH. It is not difficult to prove

MW = (AW)eMW =MW(AW)e

and

SAW = SAW(AW)e, where SA = SWAWAd,W.

If (AW)πCWDd,WWB = 0 from Lemma 2.1 is satisfied then we have

(AW)πSA = 0,
(I − AWAd,WW)SWAWAd,W = 0,
SWAWAd,W = AWAd,WWSWAWAd,W,

or

SAW = (AW)eSAW.

Now we give the following result.

Lemma 2.2. Let SA = SWAWAd,W and M = Ad,W+KWZd,WWH, then the following statements are equivalent:

KW(DW)πZd,WWHW = KWDd,WW(ZW)πHW; (7)
AWAd,WWSAWMW = AWAd,WW; (8)
MWAWAd,WWSAW = AWAd,WW; (9)
KW(ZW)πDd,WWHW = KWZd,WW(DW)πHW. (10)
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Furthermore, (AWAd,WWSAW)# =MW.

Proof. Firstly, we have

AWAd,WWSAW = AWAd,WWSWAWAd,WW
= AWAd,WW(A − CWDd,WWB)WAWAd,WW
= AWAd,WWAWAWAd,WW − AWAd,WWCWDd,WWBWAWAd,WW
= AWAWAd,WWAWAd,WW − AWKWDd,WWBWAd,WWAW
= AWAWAd,WW − AWKWDd,WWBWAd,WWAW
= AWAd,WWAW − AWKWDd,WWBWAd,WWAW

and

AWAd,WWSAWMW = (AWAd,WWAW − AWKWDd,WWBWAd,WWAW)(Ad,WW + KWZd,WWHW)
= AWAd,WWAWAd,WW + AWAd,WWAWKWZd,WWHW
−AWKWDd,WWBWAd,WWAWAd,WW
−AWKWDd,WWBWAd,WWAWKWZd,WWHW

= AWAd,WW + AWKWZd,WWHW − AWKWDd,WWBWAd,WW
−AWKWDd,WWBWKWZd,WWHW

= AWAd,WW + AWKWZd,WWHW − AWKWDd,WWHW
−AWKWDd,WW(D − Z)WZd,WWHW

= AWAd,WW + AWKW[Zd,WW −Dd,WW −Dd,WW(D − Z)WZd,WW]HW
= AWAd,WW + AWKW[(DW)πZd,WW −Dd,WW(ZW)π]HW.

From this it follows (7) is equivalent to (8). Similarly, (9) is equivalent to (10). Let us prove that (8) implies
(9). Let (AW)e = AWAd,WW. Now (AW)eSAWMW = (AW)e i.e., (AW)eSAW(AW)eMW = (AW)e, by [12,
Lemma 2.3] we have

(AW)eMW(AW)e(AW)eSAW(AW)e = (AW)e or
MW(AW)eSAW = (AW)e.

Similarly (9) implies (8). Thus, the statements (8) and (9) are equivalent.

If any of the four conditions is satisfied, then

MW(AW)eSAW = (AW)eSAWMW,
MW(AW)eSAWMW =MW(AW)e =MW

and

((AW)eSAW)2MW = (AW)eSAW(AW)eSAWMW
= (AW)eSAW(AW)e

= (AW)eSAW.

Hence, ((AW)eSAW)# =MW.

�
Theorem 2.1. If (AW)πCWDd,WWB = 0 and KW(DW)πZd,WWHW = KWDd,WW(ZW)πHW, then

(SW)d = (Ad,W + KWZd,WWH)W +
k−1∑
i=0

((Ad,W + KWZd,WWH)W)i+2SW(AW)i(AW)π (11)
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and

Sd,W = ((SW)d)2S;

or alternatively

(SW)d = (Ad,W + Ad,WWCWZd,WWBWAd,W)W

−
k−1∑
i=0

((Ad,W + Ad,WWCWZd,WWBWAd,W)W)i+1Ad,WWCWZd,WWBW(AW)i(AW)π

+
k−1∑
i=0

((Ad,W + Ad,WWCWZd,WWBWAd,W)W)i+1Ad,WWCW(Zd,WW(DW)π − (ZW)πDd,WW)BW(AW)i, (12)

where k = ind(AW).

Proof. Since (AW)πCWDd,WWB = 0, then SAW = (AW)eSAW. Using Lemma 2.1 and Lemma 2.2 we have

SA;d,W =M = Ad,W + KWZd,WWH,

(SW)d =MW +
k−1∑
i=0

(MW)i+2SW(AW)i(AW)π.

Substituting M we get (11).
Since

(Ad,W + KWZd,WWH)WSW(AW)π = (Ad,WW + KWZd,WWHW)(AW − CWDd,WWBW)(AW)π

= ((AW)e − KWDd,WWBW + KWZd,WWBW(AW)e

−KWZd,WW(D − Z)WDd,WWBW)(AW)π

= −KWDd,WWBW(AW)π − KWZd,WW(D − Z)WDd,WWBW(AW)π

= KW(Zd,WW(DW)π − (ZW)πDd,WW)BW(AW)π − KWZd,WWBW(AW)π

= KW(Zd,WW(DW)π − (ZW)πDd,WW)BW − KWZd,WWBW(AW)π,

we have (12).

�
By Theorem 2.1, when A,B,C and D are square and W = I, we can get directly some results in [12].

Corollary 2.1. Let A,B,C,D ∈ Cm×m and W = I in (3),(4),(5). Suppose AπCDdB = 0 and KDπZdH = KDdZπH
then

Sd = Ad + KZdH +
k−1∑
i=0

(Ad + KZdH)i+2SAiAπ.

Corollary 2.2. If (AW)πCWDd,WWB = 0, CW(DW)πZd,WWB = 0 and CWDd,WW(ZW)πB = 0, then

(SW)d = (Ad,W + Ad,WWCWZd,WWBWAd,W)W

−
k−1∑
i=0

((Ad,W + Ad,WWCWZd,WWBWAd,W)W)i+1Ad,WWCWZd,WWBW(AW)i(AW)π

+
k−1∑
i=0

((Ad,W + Ad,WWCWZd,WWBWAd,W)W)i+1Ad,WWCW(Zd,WW(DW)π − (ZW)πDd,WW)BW(AW)i,
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where k = ind(AW).

Corollary 2.3. If (AW)πCWDd,WWB = 0 and (DW)π = (ZW)π, then

(SW)d = (Ad,W + Ad,WWCWZd,WWBWAd,W)W

−
k−1∑
i=0

((Ad,W + Ad,WWCWZd,WWBWAd,W)W)i+1Ad,WWCWZd,WWBW(AW)i(AW)π,

where k = ind(AW).

The following theorem can be proved similary to Theorem 2.1.

Theorem 2.2. If CWDd,WWBW(AW)π = 0 and KW(ZW)πDd,WWHW = KWZd,WW(DW)πHW
then

(SW)d = (Ad,W + KWZd,WWH)W +
k−1∑
i=0

(AW)i(AW)πSW((Ad,W + KWZd,WWH)W)i+2.
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