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Abstract. We show that the deformation of the canonical spectral triples over the n-dimensional torus
which is characterized by a conjectured elliptic operator Dy = D(1 +| D) = %ﬁ) fom 617 0+P) Ddr with
B = 0 and by a discrete dimension spectrum with fractional values less than 7 may be obtained if the elliptic
operator is defined by means of the fractional Glaeske-Kilbas-Saigo-Mellin transform.

Fractional field theory is a new successful branch of theoretical physics used to treat many important
problems in particle physics [3,6,7,10-15,25,26]. This new field is in fact characterized by fractional di-
mensions and fractional differential operators. In reality, the appealing and attractive concept of fractional
dimensions plays a crucial and leading role in almost all branches of sciences since it was first introduced
by Mandelbrot about three decades ago [19]. Actually, fractional operators are considered to be an effec-
tive tool for describing dynamical systems displaying algebraic scale-invariant properties with non-integer
exponent that is relevant in data analysis, dissipation and long-range interactions in space and/or time
(memory) that cannot be illustrated using traditional analytic functions and ordinary differential operators.
Due to their obvious scale-invariant features, fractional operators provide, in addition, a practical tool for
dealing more precisely with complex dynamics having multiple scales, generated in the deep ultraviolet
(UV) regime of quantum field theory [13,14].

Fractional elliptic operators were introduced in literature through different contexts [20-23 and references
therein] yet most of them were done by hand with no mathematical background. These operators are
useful to define non-integer dimensional deformations of the canonical spectral triples (A, H, /D). Ais
the commutative C*algebra of smooth functions over the n-dimensional torus T",n € IN, H is the Hilbert
space of square integrable sections of a spinor bundle over T" and /D is an unbounded elliptic operator
acting on H=L?(M, S) of square-integrable spinors with positive-definite signature specifying the metric
and C*(M)acts on "H’ by multiplication operators with ||[ D, n(x)]|| = ”gradrc(x)”oo , 71 € C(M). Besides, an
algebra of functions defined on a manifold is replaced by an abstract associative pre-C*algebra A=C*(M) of
smooth functions on an orientable, connected, compact, N-dimensional differentiable unbounded manifold
M with respect to the C’-norm acting in H by multiplication operators as follows: (fg)(x) = f(x)g(x), Vx € M
[9]. It is notable that fractional dimensions arise in quantum gravity [6] and within the framework of
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dimensional regularization technique [8]. One can therefore correlate spectral triples to certain fractional
sets and estimate their spectra.

In the work done in [24], in order to obtain a dimension spectrum with non-integer real values, defor-
mations of the canonical spectral triples over the n-dimensional torus are considered where (A, H, /D)is
replaced by (A, H, Dﬁ)where D, : H — His a self-adjoint linear operator with compact resolvent defined
by means of the Mellin transform Dg =/D(1 + |DP)F = r(l,g) fooo w1e7 0+ /Dt with B > 0 and its
differential is bounder Ya € A. /D = iy, dy, . = )/y,yy)/l, + 7Yy = 20,4, v = 1,..., nis the usual Dirac
operator where y,are Dirac matrices. It is noteworthy that the form Dy =/D(1 + | DI ) Pwas introduced by
hand in [24] without any mathematical derivation. However, it is well-known from the discrete dimension
spectrum definition that a spectral triple has discrete dimension spectrum 54 if Sd C Cand for any element
b € algebraB[9,24] the zeta function Cle (z) = Tr[n(b) | DI™* ]extends holomorphically to C/Sdand each of these
poles gives the dimension of a certain region of the whole space. In this work, we will show that the form
Dg =/D(1 + | DP)fmay be obtained by means of the generalized Glaeske-Kilbas-Saigo-Mellin fractional
integral transform [5,18] and we will prove that fractional elliptic operators be obtained accordingly for
some specific values of the free parameters introduced in the theory.

Construction of the fractional elliptic operator:

Definition 1: The generalized Glaeske-Kilbas-Saigo-Mellin fractional integral is defined by:

AU( 2 2,412

(x ;ﬁg)( )= p - f (tﬁ -1y 1/ﬁta —(tP -1 (A0 gy (1)
Ly -3)r(5+3)

Herea, B, f € R*, (b, ), 0) € R,Amay be real or complex and if A € C, then R(A) > 0.

Remark 1: For integral corresponds to f = 1/2,b = +1,A € C, = 1, equation (1) is reduced to the
Glaeske-Kilbas-Saigo fractional 1ntegra1 [5,18]:
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Lemma 1: The following property holds:

mU(')/,O‘ +y+ 1; Az), (2)

(aI)y2)(A) =
where U(y, 0 +y + 1; A?)is the Tricomi’s confluent hypergeometric function defined by [1,2]:
U(y,c+y+1;A%) = f (t = 1) 1oV tDgy, (3)
1

Proof: By performing the change of variable TF = #f — 1, equation (1) is reduced to:
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Obviously forf =1,f =1/2and b = 0 we get straightforwardly:
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Motivated by the previous definition, we can now generalize the work of [24] by introducing first the
following definition:
Definition 2: Let M be an oriented compact Riemannian manifold of dimension nwhere we associate for “D% , the
eigenvalue /D. We define the generalized fractional elliptic operator D : C*(M,S) — C*(M, S) by means of the
Glaeske-Kilbas-Saigo-Mellin fractional integral transform:
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Lemma 2: For very large values of the eigenvalues of the elliptic operator, the following property holds:
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Proof: By performing the change of variable T? = t# —1, the generalized fractional elliptic operator is written
as:
b.f

By
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We can now find:

1,12|¢ y-1 o e —T(PP+1)
D —T()/)T(a+1)f YT +1) | Df e T,
- - AN
N~ Y140 | oy p-(t=DAPP+D) 3y _ PR
- e J, ¢ = e+ 0 0oy HIOE ).

However, when the eigenvalues of the elliptic operator tends to infinity [4], we can approximate the
Tricomi’s function by [2]:
2 2 wr
U(y,o+y+1;1DP+1) ~ (1DP+1)",
|argIDP +1| < & -
0eR/0<dox1

and then
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Remark 2: As o, A, aare free parameters in the theory, we set them all equal to unity for convenience and

then:
1,1/2
1y1

DI(1oR+1)7",

e
with y/e > 0. This operator leads to a dimension spectrum performing correctly in the ultraviolet and

infrared regions. For y = land = 1/ewe find surprisingly ‘1D1 }/ﬂ [ DI DP + 1)~Pwhich is the same

obtained in [24]. However, for § = 1, the elliptic operator is not fractional and fractionality occurs merely
for fractional values of the parameter f whereas in our approach the elliptic operator depends on two
independent parameters and hence for y = land ¢ € R/{1}, fractional elliptic operators are obtained
straightforwardly.

Application: The operator |1D A 2| is self-adjoint linear operator in H with compact resolvent. In order

to apply the discrete dimension spectrum definition to the spectral triples (A, H, DY ) for any element

Byo
b € algebraB, we follow the arguments of [24] and we use the generalized zeta function:
D2 -
6, @ = Te x| oA - ©)
However, using the b1nom1a1 rule, we can write:
1,12|7% _ -z zyfe . zy/e —1)z 2%
el = oy P (108 + 1) = Z/s P ( ) DI )

Then
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and therefore, since according to the discrete spectrum dimension theorem, the zeta functions for (A, H, D)
have a single simple pole at its argument equal to n. It is effortless to check that the zeta function for the

fractional triples (A, H, 1Di’;/ ?) has simple poles at

SR 012, ©)
1o
For e = 2/3which Corresponds for:
2/3 3y/2
1,12 23 )
o™ = W( S LOPe (10F + 1), 10)

we find for the case of a 4-dimensional torus z = 2(2 — k)/(1 — 3y). For the highest pole k = 0and y = 1, we
obtain z = —2 whereas for y = 0.675 we find z = —3.9closely to the result obtained in [25]. In [24], we find for

‘ D} i/ﬂ | DI (| D +1)7Y¢, z = (n — 2k)/(1 — 2/e)and hence for the highest pole k = 0, we get z = 4/(1 — 2/¢)
and for specific values of ewe find a fractional dimension spectrum yet a fractional elliptic operator can not
be obtained as there is merely one parameter eand not two independent parameters.

Remark 3: Equation (7) is closely similar to the fractional Riesz derivative discussed in [17] and accordingly
we argue that the Glaeske-Kilbas-Saigo-Mellin fractional integral may be correlated to fractional Riesz
derivatives. Some interesting properties of fractional operators were discussed in [16]. The following table
summarize our results by comparing our result with the [24]:
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Table 1: Comparing the approach of [24] and our approach

In summary, we showed that the elliptic operator Dg =/D(1 + | D) Pintroduced by hand in [24] may
be obtained if the elliptic operator is defined by means of the Glaeske-Kilbas-Saigo-Mellin fractional in-
tegral transform which deforms the canonical spectral triples from (A, H, /D) — (A, H,aDE )f,o)over the
n-dimensional torus. Fractional elliptic operators and a discrete dimension spectrum with fractional values
less than 7 are obtained accordingly. At the end, still more general question: is it possible to build, on the
base of the discussed fractional elliptic operator, a meaningful fractional quantum field theory? We hope
that proper interpretations will go behind.
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