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Abstract. We show that the deformation of the canonical spectral triples over the n-dimensional torus
which is characterized by a conjectured elliptic operator Dβ = ̸ D(1+ |̸ D|2)−β = 1

Γ(β)

∫ ∞
0
τβ−1e−τ(1+ ̸D2) ̸ Ddτwith

β ≥ 0 and by a discrete dimension spectrum with fractional values less than n may be obtained if the elliptic
operator is defined by means of the fractional Glaeske-Kilbas-Saigo-Mellin transform.

Fractional field theory is a new successful branch of theoretical physics used to treat many important
problems in particle physics [3,6,7,10-15,25,26]. This new field is in fact characterized by fractional di-
mensions and fractional differential operators. In reality, the appealing and attractive concept of fractional
dimensions plays a crucial and leading role in almost all branches of sciences since it was first introduced
by Mandelbrot about three decades ago [19]. Actually, fractional operators are considered to be an effec-
tive tool for describing dynamical systems displaying algebraic scale-invariant properties with non-integer
exponent that is relevant in data analysis, dissipation and long-range interactions in space and/or time
(memory) that cannot be illustrated using traditional analytic functions and ordinary differential operators.
Due to their obvious scale-invariant features, fractional operators provide, in addition, a practical tool for
dealing more precisely with complex dynamics having multiple scales, generated in the deep ultraviolet
(UV) regime of quantum field theory [13,14].

Fractional elliptic operators were introduced in literature through different contexts [20-23 and references
therein] yet most of them were done by hand with no mathematical background. These operators are
useful to define non-integer dimensional deformations of the canonical spectral triples (A,H, ̸ D). Ais
the commutative C∗algebra of smooth functions over the n-dimensional torus Tn,n ∈ N, H is the Hilbert
space of square integrable sections of a spinor bundle over Tn and ̸ D is an unbounded elliptic operator
acting on H=L2(M, S) of square-integrable spinors with positive-definite signature specifying the metric
and C∞(M)acts on ′H′ by multiplication operators with ∥[ ̸ D, π(x)]∥ =

∥∥∥1radπ(x)
∥∥∥∞ , π ∈ C(M). Besides, an

algebra of functions defined on a manifold is replaced by an abstract associative pre-C∗algebra A=C∞(M) of
smooth functions on an orientable, connected, compact, N-dimensional differentiable unbounded manifold
M with respect to the C0-norm acting in H by multiplication operators as follows: ( f1)(x) = f (x)1(x),∀x ∈M
[9]. It is notable that fractional dimensions arise in quantum gravity [6] and within the framework of
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dimensional regularization technique [8]. One can therefore correlate spectral triples to certain fractional
sets and estimate their spectra.

In the work done in [24], in order to obtain a dimension spectrum with non-integer real values, defor-
mations of the canonical spectral triples over the n-dimensional torus are considered where (A,H, ̸ D)is
replaced by (A,H,Dβ)where Dα : H → His a self-adjoint linear operator with compact resolvent defined
by means of the Mellin transform Dβ = ̸ D(1 + |̸ D|2)−β = 1

Γ(β)

∫ ∞
0 τ

β−1e−τ(1+̸D2) ̸ Ddτ with β ≥ 0 and its
differential is bounder ∀a ∈ A. ̸ D = iγµ∂µ, γµ = γ+µ , γµγν + γνγµ = 2δµν, µ, ν = 1, ..., nis the usual Dirac
operator where γµare Dirac matrices. It is noteworthy that the form Dβ ≠ D(1 + |̸ D|2)−βwas introduced by
hand in [24] without any mathematical derivation. However, it is well-known from the discrete dimension
spectrum definition that a spectral triple has discrete dimension spectrum Sd if Sd ⊂ Cand for any element
b ∈ algebraB[9,24] the zeta function ζ̸D

b (z) = Tr[π(b) |̸ D|−z ]extends holomorphically toC/Sdand each of these
poles gives the dimension of a certain region of the whole space. In this work, we will show that the form
Dβ = ̸ D(1 + |̸ D|2)−βmay be obtained by means of the generalized Glaeske-Kilbas-Saigo-Mellin fractional
integral transform [5,18] and we will prove that fractional elliptic operators be obtained accordingly for
some specific values of the free parameters introduced in the theory.

Construction of the fractional elliptic operator:
Definition 1: The generalized Glaeske-Kilbas-Saigo-Mellin fractional integral is defined by:

(αI
b, f
β,γ,σ)(λ) =

βλα

Γ
(
1 + γ − 1

β

)
Γ
(
σ
β +

1
β

) ∫ ∞

1
(tβ − 1)γ−1/βtσe−(tβ−1)2 f (λ2+b2)dt. (1)

Hereα, β, f ∈ R+, (b, γ, σ) ∈ R,λmay be real or complex and if λ ∈ C, thenℜ(λ) > 0.
Remark 1: For integral corresponds to f = 1/2, b = ±1, λ ∈ C, β = 1 , equation (1) is reduced to the
Glaeske-Kilbas-Saigo fractional integral [5,18]:

(αI
±1,1/2
1,γ,σ )(λ) =

λα

Γ(γ)Γ(σ + 1)

∫ ∞

1
(t − 1)γ−1tσe−(t−1)(λ2+1)dt.

Lemma 1: The following property holds:

(αI
0,1/2
1,γ,σ)(λ) =

λα

(γ − 1)Γ(σ + 1)
U(γ, σ + γ + 1;λ2), (2)

where U(γ, σ + γ + 1;λ2)is the Tricomi’s confluent hypergeometric function defined by [1,2]:

U(γ, σ + γ + 1;λ2) =
1

Γ(γ − 1)

∫ ∞

1
(t − 1)γ−1tσe−λ

2(t−1)dt. (3)

Proof: By performing the change of variable Tβ = tβ − 1, equation (1) is reduced to:

(αI
b, f
β,γ,σ)(λ) =

βλα

Γ
(
γ + 1 − 1

β

)
Γ
(
σ
β +

1
β

) ∫ ∞

0
Tβ(γ−1/β)+β−1(Tβ + 1)σ/β−1+1/βe−T2 fβ(λ2+b2)dT.

Obviously forβ = 1, f = 1/2 and b = 0, we get straightforwardly:

(αI
0,1/2
1,γ,σ)(λ) =

λα

Γ(γ)Γ(σ + 1)

∫ ∞

0
Tγ−1(T + 1)σe−λ

2TdT,

=
λα

Γ(γ)Γ(σ + 1)

∫ ∞

1
(t − 1)γ−1tσe−λ

2(t−1)dt =
λα

(γ − 1)Γ(σ + 1)
U(γ, σ + γ + 1;λ2).�

Motivated by the previous definition, we can now generalize the work of [24] by introducing first the
following definition:
Definition 2: Let M be an oriented compact Riemannian manifold of dimension nwhere we associate for αD

b, f
β,γ,σ the

eigenvalue ̸ D. We define the generalized fractional elliptic operator D : C∞(M, S) → C∞(M, S) by means of the
Glaeske-Kilbas-Saigo-Mellin fractional integral transform:
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β,γ,σ

∣∣∣∣ε = βλα

Γ
(
γ + 1 − 1

β

)
Γ
(
σ
β +

1
β

) ∫ ∞

1
(tβ − 1)γ−1/βtσ |̸ D|ε e−(tβ−1)2 f (|̸D|2+b2)dt. (4)

Lemma 2: For very large values of the eigenvalues of the elliptic operator, the following property holds:∣∣∣∣αD1,1/2
1,γ,σ

∣∣∣∣ε = λα

Γ(γ)Γ(σ + 1)
|̸ D|ε

(
|̸ D|2 + 1

)−γ
. (5)

Proof: By performing the change of variable Tβ = tβ−1, the generalized fractional elliptic operator is written
as: ∣∣∣∣αDb, f

β,γ,σ

∣∣∣∣ε = βλα

Γ
(
γ + 1 − 1

β

)
Γ
(
σ
β +

1
β

) ∫ ∞

0
Tβ(γ−1/β)+β−1(Tβ + 1)σ/β−1+1/β |̸ D|ε e−T2 fβ(|̸D|2+b2)dT.

We can now find:∣∣∣∣αD1,1/2
1,γ,σ

∣∣∣∣ε = λα

Γ(γ)Γ(σ + 1)

∫ ∞

0
Tγ−1(T + 1)σ |̸ D|ε e−T(|̸D|2+1)dT,

=
λα

Γ(γ)Γ(σ + 1)

∫ ∞

1
(t − 1)γ−1tσ |̸ D|ε e−(t−1)(|̸D|2+1)dt =

λα |̸ D|ε
Γ(γ)Γ(σ + 1)

U
(
γ, σ + γ + 1; |̸ D|2 + 1

)
.

However, when the eigenvalues of the elliptic operator tends to infinity [4], we can approximate the
Tricomi’s function by [2]:

U
(
γ, σ + γ + 1; |̸ D|2 + 1

)
≈∣∣∣arg |D|2 + 1

∣∣∣ ≤ 3
2 − δ

δ ∈ R/ 0 < δ≪ 1

(
|̸ D|2 + 1

)−γ
,

and then∣∣∣∣αD1,1/2
1,γ,σ

∣∣∣∣ε = λα

Γ(γ)Γ(σ + 1)
|̸ D|ε

(
|̸ D|2 + 1

)−γ
.�

Remark 2: As σ, λ, αare free parameters in the theory, we set them all equal to unity for convenience and
then: ∣∣∣∣1D1,1/2

1,γ,1

∣∣∣∣ = 1
Γ1/ε(γ)

|̸ D|
(
|̸ D|2 + 1

)−γ/ε
,

with γ
/
ε > 0. This operator leads to a dimension spectrum performing correctly in the ultraviolet and

infrared regions. For γ = 1and β = 1/εwe find surprisingly
∣∣∣∣1D1,1/2

1,1,1

∣∣∣∣ = |̸ D| (|̸ D|2 + 1)−βwhich is the same
obtained in [24]. However, for β = 1, the elliptic operator is not fractional and fractionality occurs merely
for fractional values of the parameter β whereas in our approach the elliptic operator depends on two
independent parameters and hence for γ = 1and ε ∈ R/{1}, fractional elliptic operators are obtained
straightforwardly.

Application: The operator
∣∣∣∣1D1,1/2

1,γ,1

∣∣∣∣ is self-adjoint linear operator in H with compact resolvent. In order

to apply the discrete dimension spectrum definition to the spectral triples (A,H, αD
b, f
β,γ,σ) for any element

b ∈ algebraB, we follow the arguments of [24] and we use the generalized zeta function:

ζ
1D1,1/2

1,γ,1

b (z) = Tr
[
π(b)

∣∣∣∣1D1,1/2
1,γ,1

∣∣∣∣−z]
. (6)

However, using the binomial rule, we can write:∣∣∣∣1D1,1/2
1,γ,1

∣∣∣∣−z
=

1
Γ−z/ε(γ)

|̸ D|−z
(
|̸ D|2 + 1

)zγ/ε
=

1
Γ−z/ε(γ)

∞∑
k=0

(
zγ

/
ε

k

)
|̸ D|(

2γ
ε −1)z−2k . (7)

Then



Rami Ahmad El-Nabulsi / FAAC 7 (2) (2015), 29–33 32

ζ
1D1,1/2

1,γ,1

b (z) = Tr
[
π(b)

∣∣∣∣1D1,1/2
1,γ,1

∣∣∣∣−z]
=

1
Γ−z/ε(γ)

∞∑
k=0

(
zγ

/
ε

k

)
ζ̸D

b

(
2k −

( 2γ
ε − 1

)
z
)
, (8)

and therefore, since according to the discrete spectrum dimension theorem, the zeta functions for (A,H,D)
have a single simple pole at its argument equal to n. It is effortless to check that the zeta function for the
fractional triples (A,H, 1D1,1/2

1,γ,1) has simple poles at

z =
n − 2k

1 − 2γ
ε

, k = 0, 1, 2, .... (9)

For ε = 2/3which corresponds for:∣∣∣∣1D1,1/2
1,γ,1

∣∣∣∣2/3 = 1
Γ3/2(γ)

|̸ D|2/3
(
|̸ D|2 + 1

)−3γ/2
, (10)

we find for the case of a 4-dimensional torus z = 2(2 − k)
/
(1 − 3γ). For the highest pole k = 0and γ = 1, we

obtain z = −2 whereas for γ ≈ 0.675 we find z ≈ −3.9closely to the result obtained in [25]. In [24], we find for∣∣∣∣1D1,1/2
1,1,1

∣∣∣∣ = |̸ D| (|̸ D|2 + 1)−1/ε, z = (n − 2k)/(1 − 2/ε)and hence for the highest pole k = 0, we get z = 4/(1 − 2/ε)
and for specific values of εwe find a fractional dimension spectrum yet a fractional elliptic operator can not
be obtained as there is merely one parameter εand not two independent parameters.
Remark 3: Equation (7) is closely similar to the fractional Riesz derivative discussed in [17] and accordingly
we argue that the Glaeske-Kilbas-Saigo-Mellin fractional integral may be correlated to fractional Riesz
derivatives. Some interesting properties of fractional operators were discussed in [16]. The following table
summarize our results by comparing our result with the [24]:

(A,H,Dβ) (A,H, αD
b, f
β,γ,σ)∣∣∣∣αD1,1/2

1,γ,σ

∣∣∣∣ε = λα

Γ(γ)Γ(σ+1)

∫ ∞
0 Tγ−1(T + 1)σ |̸ D|ε e−T(|̸D|2+1)dT∣∣∣Dβ∣∣∣ = |̸ D| (1 + |̸ D|2)−β = 1

Γ(β)

∫ ∞
0 τ

β−1e−τ(1+̸D2) ̸ Ddτ

= 1
Γ(β)

∫ ∞
0 τ

β−1e−τ(1+̸D2) ̸ Ddτ = λα |̸D|ε
Γ(γ)Γ(σ+1) U

(
γ, σ + γ + 1; |̸ D|2 + 1

)
with

U
(
γ, σ + γ + 1; |̸ D|2 + 1

)
≈∣∣∣arg |D|2 + 1

∣∣∣ ≤ 3
2 − δ

δ ∈ R/ 0 < δ≪ 1

(
|̸ D|2 + 1

)−γ
then∣∣∣∣αD1,1/2

1,γ,σ

∣∣∣∣ε = λα

Γ(γ)Γ(σ+1) |̸ D|
ε
(
|̸ D|2 + 1

)−γ
∣∣∣Dβ∣∣∣−z

=
∑∞

k=0

(
βz
k

)
|̸ D|2(α−1/2)z−k)

∣∣∣∣1D1,1/2
1,γ,1

∣∣∣∣−z
= 1
Γ−z/ε(γ)

∑∞
k=0

(
zγ

/
ε

k

)
|̸ D|(

2γ
ε −1)z−2k

ζ
Dβ
b (z) = Tr[π(b)

∣∣∣Dβ∣∣∣−z
] ζ

1D1,1/2
1,γ,1

b (z) = Tr
[
π(b)

∣∣∣∣1D1,1/2
1,γ,1

∣∣∣∣−z]
=

∑∞
k=0

(
βz
k

)
ζ̸D

b

(
2k − 2

(
α − 1

2

)
z
)

= 1
Γ−z/ε(γ)

∑∞
k=0

(
zγ

/
ε

k

)
ζ ̸Db

(
2k −

( 2γ
ε − 1

)
z
)

z = n−2k
1−2β , k − 0, 1, 2, ... z = n−2k

1−
2γ
ε

, k = 0, 1, 2, ...

Table 1: Comparing the approach of [24] and our approach
In summary, we showed that the elliptic operator Dβ = ̸ D(1 + |̸ D|2)−βintroduced by hand in [24] may
be obtained if the elliptic operator is defined by means of the Glaeske-Kilbas-Saigo-Mellin fractional in-
tegral transform which deforms the canonical spectral triples from (A,H, ̸ D) → (A,H, αDb,f

β,γ,σ)over the
n-dimensional torus. Fractional elliptic operators and a discrete dimension spectrum with fractional values
less than n are obtained accordingly. At the end, still more general question: is it possible to build, on the
base of the discussed fractional elliptic operator, a meaningful fractional quantum field theory? We hope
that proper interpretations will go behind.
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