On Finite Rank Perturbation of Diagonalizable Operators

R. Eskandari ${ }^{\text {a }}$, F. Mirzapour ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, University of Zanjan, P. O. Box 45195-313, Zanjan, Iran

Abstract

Let H be a Hilbert space. In this paper we give a necessary and sufficient condition for a $\lambda \in \mathbb{C}$ to be an eigenvalue of the linear operator $T=D+\sum_{i=1}^{n} u_{i} \otimes v_{i}$, where D is a diagonalizable operator and $u_{i}, v_{i} \in H, i=1, \ldots, n$.

1. Introduction and Preliminaries

Throughout this paper, let H denote a separable (complex) Hilbert space, and $B(H)$ the C^{*}-algebra of all bounded linear operators on H. We say that an operator $D \in B(H)$ is diagonalizable if there exists an orthonormal basis $\left\{e_{n}\right\}$ for H and a bounded sequence $\left\{\lambda_{n}\right\}$ such that $D\left(e_{n}\right)=\lambda_{n} e_{n}$ for all $n \in \mathbb{N}$. For $W \subset B(H)$ we denote by W^{\prime} the set of all operators which commute with elements of W and set $W^{\prime \prime}=\left(W^{\prime}\right)^{\prime}$. For any $u, v \in H$ the rank one operator $u \otimes v$ is defined by $(u \otimes v)(x)=\langle x, v\rangle u$. Let us recall that a norm-closed subspace M of H is called a nontrivial hyperinvariant subspace for T if $\{0\} \neq M \neq H$ and it is an invariant subspace for every operator $S \in\{T\}^{\prime}$. We use the matrix representation for bounded linear operators on a separable Hilbert space; i.e., if $T \in B(H)$ and $\left\{e_{n}\right\}$ is an orthonormal basis for a separable Hilbert space H, then an infinite matrix $\left(a_{i j}\right)$ represents T when $T x=\sum_{i}\left(\sum_{j} a_{i j} x_{j}\right) e_{j}$ for all $x=\sum_{i=1}^{\infty} x_{i} e_{i} \in H$. In this case, we have $\sum_{i}\left|a_{i j}\right|^{2} \leq c$ and $\sum_{j}\left|a_{i j}\right|^{2} \leq c$ for some $c>0$, in this case the matrix operator $T=\left(a_{i j}\right)$ is Hilbert-Schmidt operator if $\sum_{i, j}\left|a_{i j}\right|^{2}<\infty$. For more details see [6, Theorem 6.21, Theorem 5.6]. Our study motivated by the following problem;

Does every finite rank perturbation of a diagonalizable operator have a nontrivial hyperinvariant subspace?

This problem has been considered in several papers and solved in some special cases [1-5]. In [2] it was shown that if an operator $T \notin \mathbb{C} 1$ has the form $T=D+u \otimes v$, where D is a diagonalizable operator and the Fourier coefficients $\left\{\alpha_{k}\right\}$ and $\left\{\beta_{k}\right\}$ of u and v with respect to the orthonormal basis which diagonalizes D satisfy $\sum_{k=1}^{\infty}\left(\left|\alpha_{k}\right|^{\frac{2}{3}}+\left|\beta_{k}\right|^{\frac{2}{3}}\right)<\infty$, then T has a nontrivial hyperinvariant subspace. In [1], it was shown that if $T=D+\sum_{i=1}^{n} u_{i} \otimes v_{i}$, where D is a diagonalizable operator with respect to the orthonormal basis $\left\{e_{n}\right\}$ and, moreover, the Fourier coefficients of u_{i}, v_{i} belong to the space l^{1}, then T has a nontrivial hyperinvariant subspace. It is clear that, if λ is an eigenvalue of T, then $\mathcal{N}(T-\lambda)$ is a nontrivial hyperinvariant subspace.

[^0]In [5] it was shown that if the operator $T=D+u \otimes v$ is not a normal operator and for some $n_{0} \in \mathbb{N}$, $\alpha_{n_{0}}=0$ or $\beta_{n_{0}}=0\left(\alpha_{n}\right.$ and β_{n} are the Fourier coefficients of u, v, respectively), then T^{*}, the adjoint of T, has an eigenvalue. Also it is shown that, if all Fourier coefficient of u and v are non-zero and at least one eigenvalue of D has multiplicity larger than 1 , then T has an eigenvalue. The following theorem was proved in the same paper:

Theorem 1.1. Let $u, v \in H$ and D be a diagonalizable operator. Suppose that $T=D+u \otimes v$ and $\mu \in \sigma(D)$. Then $\mu \in \rho(T)$ if and only if the following conditions are satisfied:
(i) μ is an isolated eigenvalue of $D, \lambda_{n_{0}}$, of multiplicity one,
(ii) $\beta_{n_{0}}=\left\langle v, e_{n_{0}}\right\rangle \neq 0$ and $\alpha_{n_{0}}=\left\langle u, e_{n_{0}}\right\rangle \neq 0$.

Our aim in this paper is to generalize this theorem to the operator $T=D+\sum_{k=1}^{n} u_{i} \otimes v_{i}$ where D is diagonalizable operator and $u_{i}, v_{i} \in H$ for all $i=1, \ldots, n$.

2. Main Results

Throughout this work, let H be a separable Hilbert space and D be a diagonalizable operator with $D e_{n}=\lambda_{n} e_{n}$ for all $n=1, \ldots, n$. In this case the set of eigenvalues of D is $\left\{\lambda_{n} ; n \in \mathbb{N}\right\}$. First note that if $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ or $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is linearly dependent then $T=D+\sum_{i=1}^{n} u_{i} \otimes v_{i}=D+\sum_{i=1}^{k} u_{i}^{\prime} \otimes v_{i}^{\prime}$ for some $u_{i}^{\prime}, v_{i}^{\prime}$ in H and $k<n$, so without loss of generality, we assume that $\left\{u_{1}, \ldots, u_{n}\right\}$ and $\left\{v_{1}, \ldots, v_{n}\right\}$ are linearly independent.

Theorem 2.1. Let $T=D+\sum_{i=1}^{n} u_{i} \otimes v_{i}, \lambda \in \sigma(D)$ and $u_{i}=\sum_{k=1}^{\infty} \alpha_{i k} e_{k}, v_{i}=\sum_{k=1}^{\infty} \beta_{i k} e_{k}$. Then $\lambda \in \rho(T)$ or $\lambda \in \rho\left(T^{*}\right)$ if and only if λ is an isolated eigenvalue of D with multiplicity m with respect to eigenvectors $e_{n_{1}}, e_{n_{2}}, \ldots, e_{n_{m}}$, such that

$$
\left\{\left(\begin{array}{c}
\alpha_{1 n_{1}} \tag{1}\\
\alpha_{1 n_{2}} \\
\vdots \\
\alpha_{1 n_{m}}
\end{array}\right),\left(\begin{array}{c}
\alpha_{2 n_{1}} \\
\alpha_{2 n_{2}} \\
\vdots \\
\alpha_{2 n_{m}}
\end{array}\right), \ldots,\left(\begin{array}{c}
\alpha_{n n_{1}} \\
\alpha_{n n_{2}} \\
\vdots \\
\alpha_{n n_{m}}
\end{array}\right)\right\}
$$

and

$$
\left\{\left(\begin{array}{c}
\beta_{1 n_{1}} \tag{2}\\
\beta_{2 n_{1}} \\
\vdots \\
\beta_{n n_{1}}
\end{array}\right),\left(\begin{array}{c}
\beta_{1 n_{2}} \\
\beta_{2 n_{2}} \\
\vdots \\
\beta_{n n_{2}}
\end{array}\right), \ldots,\left(\begin{array}{c}
\beta_{1 n_{m}} \\
\beta_{2 n_{m}} \\
\vdots \\
\beta_{n n_{m}}
\end{array}\right)\right\}
$$

are linearly independent.
Proof. Suppose that λ is an isolated eigenvalue of D with multiplicity m and $\lambda=\lambda_{n_{1}}=\cdots=\lambda_{n_{m}}$, such that (1) and (2) are linearly independent. We show that $\lambda \notin \sigma(T)$. Since $D-\lambda$ and so $T-\lambda$ are Fredholm operators of index zero, it suffices to prove that $\lambda \notin \sigma_{p}(T)$. Suppose that $(T-\lambda) x=0$. It follows that

$$
\begin{equation*}
(D-\lambda) x+\sum_{i=1}^{n}\left\langle x, v_{i}\right\rangle u_{i}=0 \tag{3}
\end{equation*}
$$

Considering n_{k}-th component of the matrix representation in (3), we get

$$
\sum_{i=1}^{n}\left\langle x, v_{i}\right\rangle \alpha_{i n_{k}}=0, \quad k=1, \ldots, n
$$

and thus

$$
\left\langle x, v_{1}\right\rangle\left(\begin{array}{c}
\alpha_{1 n_{1}} \tag{4}\\
\vdots \\
\alpha_{1 n_{m}}
\end{array}\right)+\cdots+\left\langle x, v_{n}\right\rangle\left(\begin{array}{c}
\alpha_{n n_{1}} \\
\vdots \\
\alpha_{n n_{m}}
\end{array}\right)=0
$$

By hypothesis, for every $i=1, \ldots, n$, we have $\left\langle x, v_{i}\right\rangle=0$. Now, (3) implies that $(D-\lambda) x=0$, so $x=\sum_{k=1}^{m} c_{k} e_{n_{k}}$ for some scalars c_{k}. Therefore, by (3), we have

$$
\sum_{i} \sum_{k} c_{k} \bar{\beta}_{i n_{k}} u_{i}=0
$$

Since $\left\{u_{1}, \ldots, u_{n}\right\}$ is a linearly independent set, hence, taking complex conjugates

$$
c_{1} \overline{\left(\begin{array}{c}
\beta_{1 n_{1}} \\
\beta_{2 n_{1}} \\
\vdots \\
\beta_{n n_{1}}
\end{array}\right)}+\cdots+c_{m} \overline{\left(\begin{array}{c}
\beta_{1 n_{m}} \\
\beta_{2 n_{m}} \\
\vdots \\
\beta_{n n_{m}}
\end{array}\right)}=0 .
$$

This yields that $c_{k}=0$, for $k=1, \ldots, n$, and therefore $x=0$.
Conversely, assume that the second statement of theorem does not hold. Thus we have three cases: (1) λ is not eigenvalue of D; (2) λ is an eigenvalue of D, but it is not isolated; (3) λ is an eigenvalue of D with multiplicity m and at least one of (1) and (2) are linearly dependent.
If the cases (1) and (2) hold, then there exists a sequence $\left(\lambda_{j_{k}}\right)$ of eigenvalues of D such that converges to λ. Since

$$
(T-\lambda) e_{j_{k}}=\left(\lambda_{j_{k}}-\lambda\right) e_{j_{k}}+\sum_{i=1}^{n}\left\langle e_{j_{k}}, v_{i}\right\rangle u_{i}
$$

we have

$$
\left\|(T-\lambda) e_{j_{k}}\right\| \leq\left|\lambda_{j_{k}}-\lambda\right|+\sum_{i=1}^{n} \mid\left\langle e_{j_{k}}, v_{i}\right\rangle\left\|u_{i}\right\|
$$

which converges to zero and shows that $\lambda \in \sigma(T)$. If the case (3) is valid, and we assume that (2) is linearly dependent and $\lambda=\lambda_{n_{1}}=\lambda_{n_{2}}=\cdots=\lambda_{n_{m}}$, then

$$
\begin{equation*}
(T-\lambda) e_{n_{k}}=\sum_{i}\left\langle e_{n_{k}}, v_{i}\right\rangle u_{i}=\sum_{i} \bar{\beta}_{i n_{k}} u_{i} \tag{5}
\end{equation*}
$$

On the other hand, by using the fact that (2) is linearly dependent, there exist scalars c_{k} not simultaneously zero such that

$$
\sum_{k} c_{k} \bar{\beta}_{i n_{k}}=0, i=1, \ldots, m
$$

Therefore $(T-\lambda)\left(c_{1} e_{n_{1}}+\cdots+c_{m} e_{n_{m}}\right)=0$. Hence λ is an eigenvalues of T.
Similarly we can show that λ is an eigenvalue of T^{*} whenever (1) is linearly dependent.
Remark 2.2. If λ satisfies in the hypothesis of the above theorem, then $\mathcal{N}(T-\lambda)$ is a nontrivial hyperinvariant subspace of T. The above theorem is a generalization of Propositions 2.1, 2.2 and 2.3 in [5], for the finite rank perturbation of diagonalzable operators.

Let W be the set of scalars λ, such that u_{i} and v_{i} belong to $\operatorname{Im}(D-\lambda) \cap \operatorname{Im}\left(D^{*}-\bar{\lambda}\right)$, for every $i=1, \cdots, n$. Assume that $u \in H$ and $u=\sum_{k=1}^{\infty} \alpha_{k} e_{k}$ and $\lambda \in W$. Then $(D-\lambda)^{-1}: \operatorname{Im}(D-\lambda) \longrightarrow H$ is well-defined and $u \in \operatorname{Im}(D-\lambda)$ if and only if $\sum_{k=1}^{\infty} \frac{\left|\alpha_{k}\right|^{2}}{\left|\lambda_{k}-\lambda\right|^{2}}<\infty$.

Now we have the following theorem.

Theorem 2.3. Suppose that $\lambda \in W$. Then $\lambda \notin \sigma_{p}(T)$ if and only if

$$
A(\lambda)=\left(\begin{array}{ccc}
1+\left\langle(D-\lambda)^{-1} u_{1}, v_{1}\right\rangle & \ldots & \left\langle(D-\lambda)^{-1} u_{n}, v_{1}\right\rangle \tag{6}\\
\vdots & \ddots & \vdots \\
\left\langle(D-\lambda)^{-1} u_{1}, v_{n}\right\rangle & \ldots & 1+\left\langle(D-\lambda)^{-1} u_{n}, v_{n}\right\rangle
\end{array}\right)
$$

is invertible.
Proof. First, assume $A(\lambda)$ is invertible and there exists $x \neq 0$ such that $(T-\lambda) x=0$. Thus we have

$$
(D-\lambda)\left(x+\left\langle x, v_{1}\right\rangle(D-\lambda)^{-1} u_{1}+\cdots+\left\langle x, v_{n}\right\rangle(D-\lambda)^{-1} u_{n}\right)=0 .
$$

This implies that

$$
x+\left\langle x, v_{1}\right\rangle(D-\lambda)^{-1} u_{1}+\cdots+\left\langle x, v_{n}\right\rangle(D-\lambda)^{-1} u_{n}=0
$$

which at least one of the $\left\langle x, v_{i}\right\rangle$ is not zero. By the inner product with $v_{i}(i=1, \ldots, n)$, we get

$$
\left\{\begin{array}{c}
\left(1+\left\langle(D-\lambda)^{-1} u_{1}, v_{1}\right\rangle\right)\left\langle x, v_{1}\right\rangle+\cdots+\left\langle(D-\lambda)^{-1} u_{n}, v_{1}\right\rangle\left\langle x, v_{n}\right\rangle=0 \tag{7}\\
\vdots \\
\left\langle(D-\lambda)^{-1} u_{1}, v_{n}\right\rangle\left\langle x, v_{1}\right\rangle+\cdots+\left(1+\left\langle(D-\lambda)^{-1} u_{n}, v_{n}\right)\left\langle x, v_{n}\right\rangle=0\right.
\end{array}\right.
$$

This is a contradiction to the invertiblity of matrix (6). Hence $\mathcal{N}(T-\lambda)=0$.
Now suppose that the matrix (6) is not invertible. Then there is a nonzero vector x such that
$\left\langle x, v_{1}\right\rangle,\left\langle x, v_{2}\right\rangle, \ldots,\left\langle x, v_{n}\right\rangle$ is a solution of the homogeneous systems of equations (7). Hence $y=-\sum_{i=1}^{n}\left\langle x, v_{i}\right\rangle(D-$ $\lambda)^{-1} u_{i}$ is nonzero and $\left(I+\sum_{i=1}^{n}(D-\lambda)^{-1} u_{i} \otimes v_{i}\right) y=0$, whence $(T-\lambda) y=0$.

We define the linear operator $\phi: M_{n}(B(H)) \rightarrow H$ by $\phi\left(a_{i j}\right)=\sum_{i, j} a_{i j}$, we also set $B(\lambda)=\left((D-\lambda)^{-1} u_{i} \otimes\right.$ $\left.\left(D^{*}-\bar{\lambda}\right)^{-1} v_{j}\right)$ and $K(\lambda)=\phi\left(A^{-1}(\lambda) B(\lambda)\right)$, where $A(\lambda)$ was introduced in Theorem 2.3, for every $\lambda \in W$.

Corollary 2.4. For any f in $\operatorname{Im}(D-\lambda)$ and $\lambda \in W$ we have

$$
(T-\lambda)\left[(D-\lambda)^{-1}-K(\lambda)\right] f=f
$$

Proof. Let $f \in \operatorname{Im}(D-\lambda)$ and $A^{-1}(\lambda)=\left(a_{i j}\right)$, then

$$
\begin{aligned}
(T-\lambda) & {\left[(D-\lambda)^{-1}-K(\lambda)\right] f } \\
= & f-\sum_{i, j} a_{i j}\left\langle f,\left(D^{*}-\bar{\lambda}\right)^{-1} v_{j}\right\rangle u_{i}+\sum_{l=1}^{n}\left\langle f_{,}\left(D^{*}-\bar{\lambda}\right)^{-1} v_{l}\right\rangle u_{l}-\sum_{l=1}^{n}\left\langle K(\lambda) f_{,} v_{l}\right\rangle u_{l} \\
= & f-\sum_{i, j} a_{i j}\left\langle f,\left(D^{*}-\bar{\lambda}\right)^{-1} v_{j}\right\rangle u_{i}+\sum_{l=1}^{n}\left\langle f,\left(D^{*}-\bar{\lambda}\right)^{-1} v_{l}\right\rangle u_{l} \\
& -\sum_{l=1}^{n} \sum_{j=1}^{n}\left\langle\sum_{i=1}^{n} a_{i j}\left\langle(D-\lambda)^{-1} u_{i}, v_{l}\right\rangle f_{,}\left(D^{*}-\bar{\lambda}\right)^{-1} v_{j}\right\rangle u_{l} \\
= & f-\sum_{i, j} a_{i j}\left\langle f,\left(D^{*}-\bar{\lambda}\right)^{-1} v_{j}\right\rangle u_{i}+\sum_{l=1}^{n}\left\langle f,\left(D^{*}-\bar{\lambda}\right)^{-1} v_{l}\right\rangle u_{l} \\
& -\sum_{l=1}^{n} \sum_{j=1}^{n}\left\langle\left(\delta_{l j}-a_{l j}\right) f,\left(D^{*}-\bar{\lambda}\right)^{-1} v_{j}\right\rangle u_{l} \\
= & f
\end{aligned}
$$

Acknowledgments

The authors would like to sincerely thank from the referee for several useful comments.

References

[1] Q. Fang and J. Xia Invariant subspaces for certain finite-rank perturbations of diagonal operator , J. Funct. Anal., 263 (2012), 1356-1377.
[2] C. Foias, I.B. Jung, E. Ko, C. Pearcy Spectral decomposablity of rank-one perturbations of normal operators , J. Math. Anal. Appl., 375 (2011), 602-609.
[3] C. Foias, I.B. Jung, E. Ko, C. Pearcy On rank-one perturbations of normal operaors , J. Funct. Anal., 253 (2007), 628-646.
[4] S. Hamid, C. Onica and C. Pearcy On the Hyperinvariant Subspace Problem. II , Indian. Univ. Math. J., Vol. 54(3) (2005), 743-754.
[5] E.J. Ionascu, Rank-one perturbations of diagonal operators, Integr. equ. oper. theory., 39 (2001), 421-440.
[6] J. Wiedmann, Linear Operators in Hilbert Spaces, Springer-Verlag, New York, 1980.

[^0]: 2010 Mathematics Subject Classification. Primary 47A15; Secondary 47B07.
 Keywords. Hyperinvariant subspace; Matrix operator; Finite rank perturbation.
 Received: 7 January 2014; Accepted: 21 February 2014
 Communicated by Dragan S. Djordjević
 Email addresses: r_eskandari@znu.ac.ir (R. Eskandari), f.mirza@znu.ac.ir (F. Mirzapour)

