Functional Analysis, Approximation and Computation 6 (1) (2014), 49–53

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/faac

On Finite Rank Perturbation of Diagonalizable Operators

R. Eskandari^a, F. Mirzapour^a

^aDepartment of Mathematics, University of Zanjan, P. O. Box 45195-313, Zanjan, Iran

Abstract. Let *H* be a Hilbert space. In this paper we give a necessary and sufficient condition for a $\lambda \in \mathbb{C}$ to be an eigenvalue of the linear operator $T = D + \sum_{i=1}^{n} u_i \otimes v_i$, where *D* is a diagonalizable operator and $u_i, v_i \in H, i = 1, ..., n$.

1. Introduction and Preliminaries

Throughout this paper, let *H* denote a separable (complex) Hilbert space, and *B*(*H*) the *C**-algebra of all bounded linear operators on *H*. We say that an operator $D \in B(H)$ is diagonalizable if there exists an orthonormal basis $\{e_n\}$ for *H* and a bounded sequence $\{\lambda_n\}$ such that $D(e_n) = \lambda_n e_n$ for all $n \in \mathbb{N}$. For $W \subset B(H)$ we denote by *W*' the set of all operators which commute with elements of *W* and set *W*'' = (*W*')'. For any $u, v \in H$ the rank one operator $u \otimes v$ is defined by $(u \otimes v)(x) = \langle x, v \rangle u$. Let us recall that a norm-closed subspace *M* of *H* is called a nontrivial hyperinvariant subspace for *T* if $\{0\} \neq M \neq H$ and it is an invariant subspace for every operator $S \in \{T\}'$. We use the matrix representation for bounded linear operators on a separable Hilbert space; i.e., if $T \in B(H)$ and $\{e_n\}$ is an orthonormal basis for a separable Hilbert space *H*, then an infinite matrix (a_{ij}) represents *T* when $Tx = \sum_i (\sum_j a_{ij} x_j)e_j$ for all $x = \sum_{i=1}^{\infty} x_i e_i \in H$. In this case, we have $\sum_i |a_{ij}|^2 \leq c$ and $\sum_j |a_{ij}|^2 \leq c$ for some c > 0, in this case the matrix operator $T = (a_{ij})$ is Hilbert-Schmidt operator if $\sum_{i,j} |a_{ij}|^2 < \infty$. For more details see [6, Theorem 6.21, Theorem 5.6]. Our study motivated by the following problem;

Does every finite rank perturbation of a diagonalizable operator have a nontrivial hyperinvariant subspace?

This problem has been considered in several papers and solved in some special cases [1-5]. In [2] it was shown that if an operator $T \notin \mathbb{C}1$ has the form $T = D + u \otimes v$, where D is a diagonalizable operator and the Fourier coefficients $\{\alpha_k\}$ and $\{\beta_k\}$ of u and v with respect to the orthonormal basis which diagonalizes D satisfy $\sum_{k=1}^{\infty} (|\alpha_k|^2 + |\beta_k|^2) < \infty$, then T has a nontrivial hyperinvariant subspace. In [1], it was shown that if $T = D + \sum_{i=1}^{n} u_i \otimes v_i$, where D is a diagonalizable operator with respect to the orthonormal basis $\{e_n\}$ and, moreover, the Fourier coefficients of u_i, v_i belong to the space l^1 , then T has a nontrivial hyperinvariant subspace. It is clear that, if λ is an eigenvalue of T, then $\mathcal{N}(T - \lambda)$ is a nontrivial hyperinvariant subspace.

²⁰¹⁰ Mathematics Subject Classification. Primary 47A15; Secondary 47B07.

Keywords. Hyperinvariant subspace; Matrix operator; Finite rank perturbation.

Received: 7 January 2014; Accepted: 21 February 2014

Communicated by Dragan S. Djordjević

Email addresses: r_eskandari@znu.ac.ir (R. Eskandari), f.mirza@znu.ac.ir (F. Mirzapour)

In [5] it was shown that if the operator $T = D + u \otimes v$ is not a normal operator and for some $n_0 \in \mathbb{N}$, $\alpha_{n_0} = 0$ or $\beta_{n_0} = 0(\alpha_n \text{ and } \beta_n \text{ are the Fourier coefficients of } u, v$, respectively), then T^* , the adjoint of T, has an eigenvalue. Also it is shown that, if all Fourier coefficient of u and v are non-zero and at least one eigenvalue of D has multiplicity larger than 1, then T has an eigenvalue. The following theorem was proved in the same paper:

Theorem 1.1. Let $u, v \in H$ and D be a diagonalizable operator. Suppose that $T = D + u \otimes v$ and $\mu \in \sigma(D)$. Then $\mu \in \rho(T)$ if and only if the following conditions are satisfied: (i) μ is an isolated eigenvalue of D, λ_{n_0} , of multiplicity one, (ii) $\beta_{n_0} = \langle v, e_{n_0} \rangle \neq 0$ and $\alpha_{n_0} = \langle u, e_{n_0} \rangle \neq 0$.

Our aim in this paper is to generalize this theorem to the operator $T = D + \sum_{k=1}^{n} u_i \otimes v_i$ where *D* is diagonalizable operator and $u_i, v_i \in H$ for all i = 1, ..., n.

2. Main Results

Throughout this work, let *H* be a separable Hilbert space and *D* be a diagonalizable operator with $De_n = \lambda_n e_n$ for all n = 1, ..., n. In this case the set of eigenvalues of *D* is $\{\lambda_n; n \in \mathbb{N}\}$. First note that if $\{u_1, u_2, ..., u_n\}$ or $\{v_1, v_2, ..., v_n\}$ is linearly dependent then $T = D + \sum_{i=1}^n u_i \otimes v_i = D + \sum_{i=1}^k u'_i \otimes v'_i$ for some u'_i, v'_i in *H* and k < n, so without loss of generality, we assume that $\{u_1, ..., u_n\}$ and $\{v_1, ..., v_n\}$ are linearly independent.

Theorem 2.1. Let $T = D + \sum_{i=1}^{n} u_i \otimes v_i$, $\lambda \in \sigma(D)$ and $u_i = \sum_{k=1}^{\infty} \alpha_{ik} e_k$, $v_i = \sum_{k=1}^{\infty} \beta_{ik} e_k$. Then $\lambda \in \rho(T)$ or $\lambda \in \rho(T^*)$ if and only if λ is an isolated eigenvalue of D with multiplicity m with respect to eigenvectors $e_{n_1}, e_{n_2}, \ldots, e_{n_m}$, such that

$$\left\{ \begin{pmatrix} \alpha_{1n_1} \\ \alpha_{1n_2} \\ \vdots \\ \alpha_{1n_m} \end{pmatrix}, \begin{pmatrix} \alpha_{2n_1} \\ \alpha_{2n_2} \\ \vdots \\ \alpha_{2n_m} \end{pmatrix}, \dots, \begin{pmatrix} \alpha_{nn_1} \\ \alpha_{nn_2} \\ \vdots \\ \alpha_{nn_m} \end{pmatrix} \right\}$$
(1)

and

$$\left\{ \begin{pmatrix} \beta_{1n_1} \\ \beta_{2n_1} \\ \vdots \\ \beta_{nn_1} \end{pmatrix}, \begin{pmatrix} \beta_{1n_2} \\ \beta_{2n_2} \\ \vdots \\ \beta_{nn_2} \end{pmatrix}, \dots, \begin{pmatrix} \beta_{1n_m} \\ \beta_{2n_m} \\ \vdots \\ \beta_{nn_m} \end{pmatrix} \right\}$$
(2)

are linearly independent.

Proof. Suppose that λ is an isolated eigenvalue of D with multiplicity m and $\lambda = \lambda_{n_1} = \cdots = \lambda_{n_m}$, such that (1) and (2) are linearly independent. We show that $\lambda \notin \sigma(T)$. Since $D - \lambda$ and so $T - \lambda$ are Fredholm operators of index zero, it suffices to prove that $\lambda \notin \sigma_p(T)$. Suppose that $(T - \lambda)x = 0$. It follows that

$$(D-\lambda)x + \sum_{i=1}^{n} \langle x, v_i \rangle u_i = 0.$$
(3)

Considering n_k -th component of the matrix representation in (3), we get

$$\sum_{i=1}^{n} \langle x, v_i \rangle \alpha_{in_k} = 0, \quad k = 1, \dots, n$$

and thus

$$\langle x, v_1 \rangle \begin{pmatrix} \alpha_{1n_1} \\ \vdots \\ \alpha_{1n_m} \end{pmatrix} + \dots + \langle x, v_n \rangle \begin{pmatrix} \alpha_{nn_1} \\ \vdots \\ \alpha_{nn_m} \end{pmatrix} = 0.$$
(4)

By hypothesis, for every i = 1, ..., n, we have $\langle x, v_i \rangle = 0$. Now, (3) implies that $(D - \lambda)x = 0$, so $x = \sum_{k=1}^{m} c_k e_{n_k}$ for some scalars c_k . Therefore, by (3), we have

$$\sum_{i}\sum_{k}c_{k}\bar{\beta}_{in_{k}}u_{i}=0.$$

Since $\{u_1, \ldots, u_n\}$ is a linearly independent set, hence, taking complex conjugates

$$c_1 \begin{pmatrix} \beta_{1n_1} \\ \beta_{2n_1} \\ \vdots \\ \beta_{nn_1} \end{pmatrix} + \dots + c_m \begin{pmatrix} \beta_{1n_m} \\ \beta_{2n_m} \\ \vdots \\ \beta_{nn_m} \end{pmatrix} = 0$$

This yields that $c_k = 0$, for k = 1, ..., n, and therefore x = 0.

Conversely, assume that the second statement of theorem does not hold. Thus we have three cases: (1) λ is not eigenvalue of *D*; (2) λ is an eigenvalue of *D*, but it is not isolated; (3) λ is an eigenvalue of *D* with multiplicity *m* and at least one of (1) and (2) are linearly dependent.

If the cases (1) and (2) hold, then there exists a sequence (λ_{j_k}) of eigenvalues of *D* such that converges to λ . Since

$$(T-\lambda)e_{j_k} = (\lambda_{j_k} - \lambda)e_{j_k} + \sum_{i=1}^n \langle e_{j_k}, v_i \rangle u_i,$$

we have

$$\|(T-\lambda)e_{j_k}\| \leq |\lambda_{j_k}-\lambda| + \sum_{i=1}^n |\langle e_{j_k}, v_i\rangle||u_i||,$$

which converges to zero and shows that $\lambda \in \sigma(T)$. If the case (3) is valid, and we assume that (2) is linearly dependent and $\lambda = \lambda_{n_1} = \lambda_{n_2} = \cdots = \lambda_{n_m}$, then

$$(T-\lambda)e_{n_k} = \sum_i \langle e_{n_k}, v_i \rangle u_i = \sum_i \bar{\beta}_{in_k} u_i$$
(5)

On the other hand, by using the fact that (2) is linearly dependent, there exist scalars c_k not simultaneously zero such that

$$\sum_{k}c_{k}\bar{\beta}_{in_{k}}=0,\ i=1,\ldots,m$$

Therefore $(T - \lambda)(c_1e_{n_1} + \dots + c_me_{n_m}) = 0$. Hence λ is an eigenvalues of *T*.

Similarly we can show that λ is an eigenvalue of T^* whenever (1) is linearly dependent. \Box

Remark 2.2. If λ satisfies in the hypothesis of the above theorem, then $N(T - \lambda)$ is a nontrivial hyperinvariant subspace of T. The above theorem is a generalization of Propositions 2.1, 2.2 and 2.3 in [5], for the finite rank perturbation of diagonalzable operators.

Let *W* be the set of scalars λ , such that u_i and v_i belong to $\operatorname{Im}(D - \lambda) \cap \operatorname{Im}(D^* - \overline{\lambda})$, for every $i = 1, \dots, n$. Assume that $u \in H$ and $u = \sum_{k=1}^{\infty} \alpha_k e_k$ and $\lambda \in W$. Then $(D - \lambda)^{-1} : \operatorname{Im}(D - \lambda) \longrightarrow H$ is well-defined and $u \in \operatorname{Im}(D - \lambda)$ if and only if $\sum_{k=1}^{\infty} \frac{|\alpha_k|^2}{|\lambda_k - \lambda|^2} < \infty$.

Now we have the following theorem.

Theorem 2.3. Suppose that $\lambda \in W$. Then $\lambda \notin \sigma_p(T)$ if and only if

x

$$A(\lambda) = \begin{pmatrix} 1 + \langle (D-\lambda)^{-1}u_1, v_1 \rangle & \dots & \langle (D-\lambda)^{-1}u_n, v_1 \rangle \\ \vdots & \ddots & \vdots \\ \langle (D-\lambda)^{-1}u_1, v_n \rangle & \dots & 1 + \langle (D-\lambda)^{-1}u_n, v_n \rangle \end{pmatrix}$$
(6)

is invertible.

Proof. First, assume $A(\lambda)$ is invertible and there exists $x \neq 0$ such that $(T - \lambda)x = 0$. Thus we have

$$(D-\lambda)(x+\langle x,v_1\rangle(D-\lambda)^{-1}u_1+\cdots+\langle x,v_n\rangle(D-\lambda)^{-1}u_n)=0.$$

This implies that

$$+ \langle x, v_1 \rangle (D - \lambda)^{-1} u_1 + \dots + \langle x, v_n \rangle (D - \lambda)^{-1} u_n = 0$$

which at least one of the $\langle x, v_i \rangle$ is not zero. By the inner product with v_i (i = 1, ..., n), we get

$$\begin{cases} (1 + \langle (D - \lambda)^{-1} u_1, v_1 \rangle) \langle x, v_1 \rangle + \dots + \langle (D - \lambda)^{-1} u_n, v_1 \rangle \langle x, v_n \rangle = 0 \\ \vdots \\ \langle (D - \lambda)^{-1} u_1, v_n \rangle \langle x, v_1 \rangle + \dots + (1 + \langle (D - \lambda)^{-1} u_n, v_n) \langle x, v_n \rangle = 0 \end{cases}$$

$$(7)$$

This is a contradiction to the invertibility of matrix (6). Hence $\mathcal{N}(T - \lambda) = 0$.

Now suppose that the matrix (6) is not invertible. Then there is a nonzero vector x such that

 $\langle x, v_1 \rangle, \langle x, v_2 \rangle, \dots, \langle x, v_n \rangle$ is a solution of the homogeneous systems of equations (7). Hence $y = -\sum_{i=1}^n \langle x, v_i \rangle (D - \lambda)^{-1} u_i$ is nonzero and $(I + \sum_{i=1}^n (D - \lambda)^{-1} u_i \otimes v_i) y = 0$, whence $(T - \lambda) y = 0$. \Box

We define the linear operator $\phi : M_n(B(H)) \to H$ by $\phi(a_{ij}) = \sum_{i,j} a_{ij}$, we also set $B(\lambda) = ((D - \lambda)^{-1}u_i \otimes (D^* - \overline{\lambda})^{-1}v_j)$ and $K(\lambda) = \phi(A^{-1}(\lambda)B(\lambda))$, where $A(\lambda)$ was introduced in Theorem 2.3, for every $\lambda \in W$.

Corollary 2.4. For any f in $Im(D - \lambda)$ and $\lambda \in W$ we have

$$(T - \lambda) \left[(D - \lambda)^{-1} - K(\lambda) \right] f = f.$$

Proof. Let $f \in \text{Im}(D - \lambda)$ and $A^{-1}(\lambda) = (a_{ij})$, then

$$\begin{split} (T-\lambda) \left[(D-\lambda)^{-1} - K(\lambda) \right] f \\ &= f - \sum_{i,j} a_{ij} \langle f, (D^* - \bar{\lambda})^{-1} v_j \rangle u_i + \sum_{l=1}^n \langle f, (D^* - \bar{\lambda})^{-1} v_l \rangle u_l - \sum_{l=1}^n \langle K(\lambda) f, v_l \rangle u_l \\ &= f - \sum_{i,j} a_{ij} \langle f, (D^* - \bar{\lambda})^{-1} v_j \rangle u_i + \sum_{l=1}^n \langle f, (D^* - \bar{\lambda})^{-1} v_l \rangle u_l \\ &- \sum_{l=1}^n \sum_{j=1}^n \left\{ \sum_{i=1}^n a_{ij} \langle (D - \lambda)^{-1} u_i, v_l \rangle f, (D^* - \bar{\lambda})^{-1} v_j \right\} u_l \\ &= f - \sum_{i,j} a_{ij} \langle f, (D^* - \bar{\lambda})^{-1} v_j \rangle u_i + \sum_{l=1}^n \langle f, (D^* - \bar{\lambda})^{-1} v_l \rangle u_l \\ &- \sum_{l=1}^n \sum_{j=1}^n \left\{ (\delta_{lj} - a_{lj}) f, (D^* - \bar{\lambda})^{-1} v_j \right\} u_l \\ &= f \end{split}$$

Acknowledgments

The authors would like to sincerely thank from the referee for several useful comments.

References

- [1] Q. Fang and J. Xia Invariant subspaces for certain finite-rank perturbations of diagonal operator, J. Funct. Anal., 263 (2012),
- 1356-1377. [2] C. Foias, I.B. Jung, E. Ko, C. Pearcy Spectral decomposablity of rank-one perturbations of normal operators , J. Math. Anal. Appl., 375 (2011), 602-609.
- [3] C. Foias, I.B. Jung, E. Ko, C. Pearcy On rank-one perturbations of normal operaors, J. Funct. Anal., 253 (2007), 628-646.
 [4] S. Hamid, C. Onica and C. Pearcy On the Hyperinvariant Subspace Problem. II, Indian. Univ. Math. J., Vol. 54(3) (2005), 743-754.
- [5] E.J. Ionascu, Rank-one perturbations of diagonal operators, Integr. equ. oper. theory., 39 (2001), 421-440.
 [6] J. Wiedmann, Linear Operators in Hilbert Spaces, Springer-Verlag, New York, 1980.