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Abstract. Let H be a Hilbert space. In this paper we give a necessary and sufficient condition fora A € C
to be an eigenvalue of the linear operator T = D + )", u; ® v;, where D is a diagonalizable operator and
u,v;e€H,i=1,...,n

1. Introduction and Preliminaries

Throughout this paper, let H denote a separable (complex) Hilbert space, and B(H) the C*-algebra of
all bounded linear operators on H. We say that an operator D € B(H) is diagonalizable if there exists an
orthonormal basis {e,,} for H and a bounded sequence {A,} such that D(e,,) = A,e, foralln € IN. For W c B(H)
we denote by W’ the set of all operators which commute with elements of W and set W’ = (W’)’. For
any u,v € H the rank one operator u ® v is defined by (1 ® v)(x) = (x, v)u. Let us recall that a norm-closed
subspace M of H is called a nontrivial hyperinvariant subspace for T if {0} # M # H and it is an invariant
subspace for every operator S € {T}’. We use the matrix representation for bounded linear operators on a
separable Hilbert space; i.e., if T € B(H) and {e,} is an orthonormal basis for a separable Hilbert space H,
then an infinite matrix (a;;) represents T when Tx = },(}. jaijxj)ej for all x = Y., xie; € H. In this case, we
have ), Ia,-]-l2 <cand ) i Iaijl2 < c for some ¢ > 0, in this case the matrix operator T = (a;;) is Hilbert-Schmidt
operator if }, ij Iaijl2 < oo . For more details see [6, Theorem 6.21, Theorem 5.6].

Our study motivated by the following problem;

Does every finite rank perturbation of a diagonalizable operator have a nontrivial hyperinvariant subspace?

This problem has been considered in several papers and solved in some special cases [1-5]. In [2] it was
shown that if an operator T ¢ C1 has the form T = D + u ® v, where D is a diagonalizable operator and
the Fourier coefficients {ax} and {B¢} of u and v with respect to the orthonormal basis which diagonalizes D
satisfy Z,Zl(laklg +|Bil?) < oo, then T has a nontrivial hyperinvariant subspace. In [1], it was shown that if
T=D+Y!, u®v;, where D is a diagonalizable operator with respect to the orthonormal basis {e,} and,
moreover, the Fourier coefficients of u;, v; belong to the space I' | then T has a nontrivial hyperinvariant
subspace. It is clear that, if A is an eigenvalue of T, then N(T — A) is a nontrivial hyperinvariant subspace.
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In [5] it was shown that if the operator T = D + u ® v is not a normal operator and for some 1y € IN,
Ay, = 0or B, = 0(a, and f,, are the Fourier coefficients of u, v, respectively), then T*, the adjoint of T, has an
eigenvalue. Also it is shown that, if all Fourier coefficient of u and v are non-zero and at least one eigenvalue
of D has multiplicity larger than 1, then T has an eigenvalue. The following theorem was proved in the
same paper:

Theorem 1.1. Let u,v € H and D be a diagonalizable operator. Suppose that T = D+ u ® v and p € o(D). Then
u € p(T) if and only if the following conditions are satisfied:

(i) u is an isolated eigenvalue of D, A, of multiplicity one,

(ii) Bny = 0, €ny) # 0 and o,y = (U, e,,) # 0.

Our aim in this paper is to generalize this theorem to the operator T = D + Y./, u; ® v; where D is
diagonalizable operator and u;,v; € Hforalli =1,...,n.

2. Main Results

Throughout this work, let H be a separable Hilbert space and D be a diagonalizable operator with
De, = Aye, for all m = 1,...,n. In this case the set of eigenvalues of D is {A,;n € IN}. First note that if
{ur, uz, ..., uy} or {v1,vs,...,0,} is linearly dependent then T =D + Y./, u; ® v; = D + Zle u; ® v/ for some
u;,v; in H and k < n, so without loss of generality, we assume that {uy,...,u,} and {vy,...,v,} are linearly
independent.

Theorem 2.1. Let T=D+ ).\, u; ®v;, A € o(D) and u; = Y ;o aixex, Vi = Y oq Pixek. Then A € p(T) or A € p(T")
if and only if A is an isolated eigenvalue of D with multiplicity m with respect to eigenvectors ey, ,ep,, ... ,€n,, Such
that

A1y A2ny Xy
X1n, , Q2n, L Xnny 1)
Q1n,, Ao, Ann,,

and
Bin, Bin, Ban,,
S N S T @
B ) \ B .

are linearly independent.

Proof. Suppose that A is an isolated eigenvalue of D with multiplicity m and A = A,, = --- = A,,,, such

that (1) and (2) are linearly independent. We show that A ¢ o(T). Since D — A and so T — A are Fredholm
operators of index zero, it suffices to prove that A ¢ 0,(T). Suppose that (T — A)x = 0. It follows that

n
(D - M)x + Z(x, oi)u; = 0. 3)
i=1
Considering n;-th component of the matrix representation in (3), we get

n
Z<x10i>aink =0, k=1,...,n
i=1
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and thus
M1py Qyny
o] ¢ |+ +H o)

0. 4)
a1 My a””m

By hypothesis, forevery i =1,...,n, we have (x, v;) = 0. Now, (3) implies that (D — A)x = 0,50 x = Y.}, Cxen,
for some scalars cx. Therefore, by (3), we have

Z Z ckBmkui =0.
ik

Since {uy, ..., u,} is a linearly independent set, hence, taking complex conjugates

ﬁlnl ﬁlnm
,82711 ﬁznm

C1 . + et Oy . =
ﬁnnl ﬁnnm

This yields that ¢, =0, for k =1, ...,n, and therefore x = 0.

Conversely, assume that the second statement of theorem does not hold. Thus we have three cases: (1)
A is not eigenvalue of D; (2) A is an eigenvalue of D, but it is not isolated; (3) A is an eigenvalue of D with
multiplicity m and at least one of (1) and (2) are linearly dependent.
If the cases (1) and (2) hold, then there exists a sequence (A,) of eigenvalues of D such that converges to A.
Since

(T = Neji = (j, = ey, + Y eji, v,
i=1

we have
n
(T = Aejll < 1A, — Al + 2 [<eje, vidlluill,
i=1
which converges to zero and shows that A € o(T). If the case (3) is valid, and we assume that (2) is linearly
dependentand A = A, = A, =--- = A, then

(T = Aey, = Z<enk, o = Z Bincti 5)

On the other hand, by using the fact that (2) is linearly dependent, there exist scalars c; not simultaneously

zero such that
chﬁ_i”k =O, i= 1,...,m
k

Therefore (T — A)(c1en, + - - + Cien,) = 0. Hence A is an eigenvalues of T.
Similarly we can show that A is an eigenvalue of T* whenever (1) is linearly dependent. [

Remark 2.2. If A satisfies in the hypothesis of the above theorem, then N(T — A) is a nontrivial hyperinvariant
subspace of T. The above theorem is a generalization of Propositions 2.1, 2.2 and 2.3 in [5], for the finite rank
perturbation of diagonalzable operators.

Let W be the set of scalars A, such that u; and v; belong to Im(D — A) N Im(D* — A), for everyi =1,--- ,n.
Assume that u € Hand u = Y;2; axey and A € W. Then (D — A)! : Im(D — A) — H is well-defined and

u € Im(D — A) if and only if 2, % < oo,

Now we have the following theorem.
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Theorem 2.3. Suppose that A € W. Then A ¢ o,(T) if and only if

1+{(D =N "lu, vy ... (D=A)"u,,v)
A(A) = : : (6)
(D - A)‘lul,vn> o 1+({(D- A)‘lun,vn>

is invertible.
Proof. First, assume A(A) is invertible and there exists x # 0 such that (T — A)x = 0. Thus we have
(D = M)+ x,00(D = A7 g + -+ (6, 0,)(D = 1)) = 0.

This implies that
x4+ @)D =AD" g+ + x,o0D - A) M, =0

which at least one of the (x, v;) is not zero. By the inner product with v; (i =1, ...,n), we get

(L+ (D = A)7tug, v))x,01) + - + (D = A) Ly, 01¢x, v,) = 0

(D = A Mt1, 00, 01) + - + (L (D = A) 1t )%, 00 = O

This is a contradiction to the invertiblity of matrix (6). Hence N(T — A) = 0.

Now suppose that the matrix (6) is not invertible. Then there is a nonzero vector x such that
(x,v1),{x,02),...,{x, vy)is a solution of the homogeneous systems of equations (7). Hence y = — Z?:l (x,v;)(D—
M) ~lu; is nonzero and (I + Y1 (D — A)~'u; ® v;)y = 0, whence (T — )y = 0. O

We define the linear operator ¢ : M,(B(H)) — H by ¢(a;) = ¥.; jaij, we also set B(A) = ((D - A7 ®
(D= A)~ v]) and K(A) = ¢(A71(A)B(A)), where A(A) was introduced in Theorem 2.3, for every A € W.

Corollary 2.4. For any f in Im(D — A) and A € W we have
(T-NH[DO-)T"-KW)]|f=f.
Proof. Let f € Im(D — A) and A™'(A) = (a;;), then

(T-M[DO-1"-KW)]f

ﬁ-z%q@*‘vWIZq =D o= ) (KA oy
I=1
=f- Z aii f, (D" = D)~ Mopu; + Z< £, = D)oy
ij =1

_ Z Z <Z a;i{(D - M7, o f, (D = )-\)—10],> U

=1 j=1
#’Z%UW _mm+ZU®*Mwm
N (IR ACE
=1 j=1

=f
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