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Abstract. Let H be a Hilbert space. In this paper we give a necessary and sufficient condition for a λ ∈ C
to be an eigenvalue of the linear operator T = D +

∑n
i=1 ui ⊗ vi, where D is a diagonalizable operator and

ui, vi ∈ H, i = 1, . . . , n.

1. Introduction and Preliminaries

Throughout this paper, let H denote a separable (complex) Hilbert space, and B(H) the C∗-algebra of
all bounded linear operators on H. We say that an operator D ∈ B(H) is diagonalizable if there exists an
orthonormal basis {en} for H and a bounded sequence {λn} such that D(en) = λnen for all n ∈N. For W ⊂ B(H)
we denote by W′ the set of all operators which commute with elements of W and set W′′ = (W′)′. For
any u, v ∈ H the rank one operator u ⊗ v is defined by (u ⊗ v)(x) = ⟨x, v⟩u. Let us recall that a norm-closed
subspace M of H is called a nontrivial hyperinvariant subspace for T if {0} , M , H and it is an invariant
subspace for every operator S ∈ {T}′. We use the matrix representation for bounded linear operators on a
separable Hilbert space; i.e., if T ∈ B(H) and {en} is an orthonormal basis for a separable Hilbert space H,
then an infinite matrix (ai j) represents T when Tx =

∑
i(
∑

j ai jx j)e j for all x =
∑∞

i=1 xiei ∈ H. In this case, we
have

∑
i |ai j|2 ≤ c and

∑
j |ai j|2 ≤ c for some c > 0, in this case the matrix operator T = (ai j) is Hilbert-Schmidt

operator if
∑

i, j |ai j|2 < ∞ . For more details see [6, Theorem 6.21, Theorem 5.6].
Our study motivated by the following problem;

Does every finite rank perturbation of a diagonalizable operator have a nontrivial hyperinvariant subspace?

This problem has been considered in several papers and solved in some special cases [1-5]. In [2] it was
shown that if an operator T < C1 has the form T = D + u ⊗ v, where D is a diagonalizable operator and
the Fourier coefficients {αk} and {βk} of u and v with respect to the orthonormal basis which diagonalizes D
satisfy

∑∞
k=1(|αk|

2
3 + |βk|

2
3 ) < ∞, then T has a nontrivial hyperinvariant subspace. In [1], it was shown that if

T = D +
∑n

i=1 ui ⊗ vi, where D is a diagonalizable operator with respect to the orthonormal basis {en} and,
moreover, the Fourier coefficients of ui, vi belong to the space l1 , then T has a nontrivial hyperinvariant
subspace. It is clear that, if λ is an eigenvalue of T, thenN(T − λ) is a nontrivial hyperinvariant subspace.
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In [5] it was shown that if the operator T = D + u ⊗ v is not a normal operator and for some n0 ∈ N,
αn0 = 0 or βn0 = 0(αn and βn are the Fourier coefficients of u, v, respectively), then T∗, the adjoint of T, has an
eigenvalue. Also it is shown that, if all Fourier coefficient of u and v are non-zero and at least one eigenvalue
of D has multiplicity larger than 1, then T has an eigenvalue. The following theorem was proved in the
same paper:

Theorem 1.1. Let u, v ∈ H and D be a diagonalizable operator. Suppose that T = D + u ⊗ v and µ ∈ σ(D). Then
µ ∈ ρ(T) if and only if the following conditions are satisfied:
(i) µ is an isolated eigenvalue of D, λn0 , of multiplicity one,
(ii) βn0 = ⟨v, en0⟩ , 0 and αn0 = ⟨u, en0⟩ , 0.

Our aim in this paper is to generalize this theorem to the operator T = D +
∑n

k=1 ui ⊗ vi where D is
diagonalizable operator and ui, vi ∈ H for all i = 1, . . . ,n.

2. Main Results

Throughout this work, let H be a separable Hilbert space and D be a diagonalizable operator with
Den = λnen for all n = 1, . . . ,n. In this case the set of eigenvalues of D is {λn; n ∈ N}. First note that if
{u1,u2, . . . ,un} or {v1, v2, . . . , vn} is linearly dependent then T = D +

∑n
i=1 ui ⊗ vi = D +

∑k
i=1 u′i ⊗ v′i for some

u′i , v
′
i in H and k < n, so without loss of generality, we assume that {u1, . . . ,un} and {v1, . . . , vn} are linearly

independent.

Theorem 2.1. Let T = D+
∑n

i=1 ui ⊗ vi, λ ∈ σ(D) and ui =
∑∞

k=1 αikek, vi =
∑∞

k=1 βikek. Then λ ∈ ρ(T) or λ ∈ ρ(T∗)
if and only if λ is an isolated eigenvalue of D with multiplicity m with respect to eigenvectors en1 , en2 , . . . , enm , such
that 


α1n1

α1n2

...
α1nm

 ,

α2n1

α2n2

...
α2nm

 , . . . ,

αnn1

αnn2

...
αnnm


 (1)

and 

β1n1

β2n1

...
βnn1

 ,

β1n2

β2n2

...
βnn2

 , . . . ,

β1nm

β2nm

...
βnnm


 (2)

are linearly independent.

Proof. Suppose that λ is an isolated eigenvalue of D with multiplicity m and λ = λn1 = · · · = λnm , such
that (1) and (2) are linearly independent. We show that λ < σ(T). Since D − λ and so T − λ are Fredholm
operators of index zero, it suffices to prove that λ < σp(T). Suppose that (T − λ)x = 0. It follows that

(D − λ)x +
n∑

i=1

⟨x, vi⟩ui = 0. (3)

Considering nk-th component of the matrix representation in (3), we get

n∑
i=1

⟨x, vi⟩αink = 0, k = 1, . . . , n
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and thus

⟨x, v1⟩


α1n1

...
α1nm

 + · · · + ⟨x, vn⟩


αnn1

...
αnnm

 = 0 . (4)

By hypothesis, for every i = 1, . . . ,n, we have ⟨x, vi⟩ = 0. Now, (3) implies that (D−λ)x = 0, so x =
∑m

k=1 ckenk

for some scalars ck. Therefore, by (3), we have∑
i

∑
k

ckβ̄ink ui = 0.

Since {u1, . . . ,un} is a linearly independent set, hence, taking complex conjugates

c1


β1n1

β2n1

...
βnn1

 + · · · + cm


β1nm

β2nm

...
βnnm

 = 0.

This yields that ck = 0, for k = 1, . . . , n, and therefore x = 0.
Conversely, assume that the second statement of theorem does not hold. Thus we have three cases: (1)

λ is not eigenvalue of D; (2) λ is an eigenvalue of D, but it is not isolated; (3) λ is an eigenvalue of D with
multiplicity m and at least one of (1) and (2) are linearly dependent.
If the cases (1) and (2) hold, then there exists a sequence (λ jk ) of eigenvalues of D such that converges to λ.
Since

(T − λ)e jk = (λ jk − λ)e jk +

n∑
i=1

⟨e jk , vi⟩ui,

we have

∥(T − λ)e jk∥ ≤ |λ jk − λ| +
n∑

i=1

|⟨e jk , vi⟩∥ui∥,

which converges to zero and shows that λ ∈ σ(T). If the case (3) is valid, and we assume that (2) is linearly
dependent and λ = λn1 = λn2 = · · · = λnm , then

(T − λ)enk =
∑

i

⟨enk , vi⟩ui =
∑

i

β̄ink ui (5)

On the other hand, by using the fact that (2) is linearly dependent, there exist scalars ck not simultaneously
zero such that ∑

k

ckβ̄ink = 0 , i = 1, . . . ,m

Therefore (T − λ)(c1en1 + · · · + cmenm ) = 0. Hence λ is an eigenvalues of T.
Similarly we can show that λ is an eigenvalue of T∗ whenever (1) is linearly dependent.

Remark 2.2. If λ satisfies in the hypothesis of the above theorem, then N(T − λ) is a nontrivial hyperinvariant
subspace of T. The above theorem is a generalization of Propositions 2.1, 2.2 and 2.3 in [5], for the finite rank
perturbation of diagonalzable operators.

Let W be the set of scalars λ, such that ui and vi belong to Im(D − λ) ∩ Im(D∗ − λ̄), for every i = 1, · · · ,n.
Assume that u ∈ H and u =

∑∞
k=1 αkek and λ ∈ W. Then (D − λ)−1 : Im(D − λ) −→ H is well-defined and

u ∈ Im(D − λ) if and only if
∑∞

k=1
|αk |2
|λk−λ|2 < ∞.

Now we have the following theorem.
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Theorem 2.3. Suppose that λ ∈W. Then λ < σp(T) if and only if

A(λ) =


1 + ⟨(D − λ)−1u1, v1⟩ . . . ⟨(D − λ)−1un, v1⟩

...
. . .

...
⟨(D − λ)−1u1, vn⟩ . . . 1 + ⟨(D − λ)−1un, vn⟩

 (6)

is invertible.

Proof. First, assume A(λ) is invertible and there exists x , 0 such that (T − λ)x = 0. Thus we have

(D − λ)(x + ⟨x, v1⟩(D − λ)−1u1 + · · · + ⟨x, vn⟩(D − λ)−1un) = 0.

This implies that
x + ⟨x, v1⟩(D − λ)−1u1 + · · · + ⟨x, vn⟩(D − λ)−1un = 0

which at least one of the ⟨x, vi⟩ is not zero. By the inner product with vi (i = 1, . . . , n), we get
(1 + ⟨(D − λ)−1u1, v1⟩)⟨x, v1⟩ + · · · + ⟨(D − λ)−1un, v1⟩⟨x, vn⟩ = 0

...
⟨(D − λ)−1u1, vn⟩⟨x, v1⟩ + · · · + (1 + ⟨(D − λ)−1un, vn)⟨x, vn⟩ = 0

(7)

This is a contradiction to the invertiblity of matrix (6). HenceN(T − λ) = 0.
Now suppose that the matrix (6) is not invertible. Then there is a nonzero vector x such that

⟨x, v1⟩, ⟨x, v2⟩, . . . , ⟨x, vn⟩ is a solution of the homogeneous systems of equations (7). Hence y = −∑n
i=1⟨x, vi⟩(D−

λ)−1ui is nonzero and (I +
∑n

i=1(D − λ)−1ui ⊗ vi)y = 0, whence (T − λ)y = 0.

We define the linear operator ϕ : Mn(B(H)) → H by ϕ(ai j) =
∑

i, j ai j, we also set B(λ) = ((D − λ)−1ui ⊗
(D∗ − λ̄)−1v j) and K(λ) = ϕ(A−1(λ)B(λ)), where A(λ) was introduced in Theorem 2.3, for every λ ∈W.

Corollary 2.4. For any f in Im(D − λ) and λ ∈W we have

(T − λ)
[
(D − λ)−1 − K(λ)

]
f = f .

Proof. Let f ∈ Im(D − λ) and A−1(λ) = (ai j), then

(T − λ)
[
(D − λ)−1 − K(λ)

]
f

= f −
∑

i, j

ai j⟨ f , (D∗ − λ̄)−1v j⟩ui +

n∑
l=1

⟨ f , (D∗ − λ̄)−1vl⟩ul −
n∑

l=1

⟨K(λ) f , vl⟩ul

= f −
∑

i, j

ai j⟨ f , (D∗ − λ̄)−1v j⟩ui +

n∑
l=1

⟨ f , (D∗ − λ̄)−1vl⟩ul

−
n∑

l=1

n∑
j=1

⟨ n∑
i=1

ai j⟨(D − λ)−1ui, vl⟩ f , (D∗ − λ̄)−1v j

⟩
ul

= f −
∑

i, j

ai j⟨ f , (D∗ − λ̄)−1v j⟩ui +

n∑
l=1

⟨ f , (D∗ − λ̄)−1vl⟩ul

−
n∑

l=1

n∑
j=1

⟨
(δl j − al j) f , (D∗ − λ̄)−1v j

⟩
ul

= f
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