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Abstract. A topological algebra A overC is called functionally continuous if each complex homomorphism
on A is continuous. It is well-known that each Banach algebra is functionally continuous, but it is not
known whether or not each commutative Fréchet algebra has this property; This is a famous question
called Michael’s problem. Many mathematicians have been trying to answer this old problem in the past
70 years. To give an affirmative answer to this conjecture we use two great theorems of functional analysis,
namely the closed graph theorem and the open image theorem: Let φ be complex homomorphism on a
commutative Fréchet algebra

(
A; (|| ||n)n⩾0

)
. Our first result shows that there exists an integer q such that

ker
(
|| ||q

)
⊂ ker

(
φ
)

(Theorem 2.1). Next, we will provide A with a sequence
(
||.||′n

)
n of semi-norms under

which A is a Fréchet algebra (Lemma2.2 ) and which make the character φ continuous. The Closed graph
theorem [2 , B.2, p.335] and the open image theorem [2, B.1, p.335 ] allow us to show that the two topologies
are equivalent on A (Lemma2.3) and therefore φ is (|| ||n)n-continuous (Theorem2.3).

1. Introduction

Let A be a Banach algebra over the complex numbers. It is will known that every homomorphism
φ : A→ C is automatically continuous. Michael posed the question as whether the same is true for Fréchet
algebras [3]. This question is a long standing problem which remains unsolved. This problem can be
described as the origin of the foundations of the locally m-convex algebras. In this era the theory of lmc
algerbras was developed through the efforts of mathematecians from many countries. There were several
monographs written on the subject. The purpose of this study is to give a positive answer to this question.

A Fréchet algebra A is a complete metrizable topological linear space and has a neighbourhood basis
(Vn)n of zero consisting of convex sets Vn such that Vn+1 ⊂ Vn, VnVn ⊂ Vn for all n ∈ N. The topology of A
can be generated by an increasing sequence (|| ||n)n⩾1 of separating seminorms

||x||n = inf
{
α > 0 ; α−1x ∈ Vn

}
(the gauge of Vn which satisfies: x ∈ Vn ⇔ ||x||n < 1 [1, p.6]). If forthermor A is unital then || ||n can be

chosen such that ||1||n = 1. For each n ∈ N denote by In the closed ideal In = ker (|| ||n) = {x ∈ A : ||x||n = 0},
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Email address: mustaphalaayouni@yahoo.fr (Mustapha Laayouni)



M. Laay / FAAC 16 (2) (2024), 41–47 42

and denote by An the algebra A/In endowed with the norm ||a+ In||n = ||a||n. It is well-known that
⋂
n⩾0

In = {0}.

We set πn : A −→ An, x 7→ x + In. Then πn is a continuous homomorphism.

The Fréchet algebra A with the above generating sequence of seminorms (|| ||n)n⩾0 is denoted by(
A; (|| ||n)n⩾0

)
. Note that a sequence (ak) converges to a in

(
A; (|| ||n)n⩾0

)
iff (||ak − a||n) → 0 for each n ∈ N, as

k→ +∞.

Denote by S (A) the set of all non zero complex-valued algebra homomorphisms andM (A) the set of
all continuous members of S (A).

2. Automatic continuity

In trying to construct a discontinuous character φ on a Fréchet algebra A, that is to say construct a
sequence (an)n with an ∈ ker (|| ||n) and

(
φ(an)

)
→ 1 we have met the following.

Theorem 2.1. Let
(
A; (|| ||n)n⩾0

)
be a commutative Fréchet algebra with unit. If φ ∈ S (A), then there exists q ∈ N

such that
ker

(
|| ||q

)
⊂ ker

(
φ
)

Proof. Suppose by way of contradiction that the theorem is not true. Then there is a sequence (xn)n∈N
in A satisfying xn ∈ In and xn < ker

(
φ
)

for all n ∈ N. Since ker
(
φ
)

is a maximal ideal, it follows that
A = Axn + ker

(
φ
)
. Consequently, there exist an ∈ In and bn ∈ ker

(
φ
)

such that 1 = an + bn for all n ∈ N. It
follows from [3, Corollary5.6 (a) and Lemma6.1 (a)] that for every n ∈N there exists some θn ∈ M (A) such
that θn (an) = φ (an) and θn (bn) = φ (bn). Hence θn (bn) = 0 and θn (an) = φ (an + bn) = φ (1) = 1 for all n ∈N.
Since θn is continuous, it follows from [2, Remarks.3.2.2 (ii), p.73 ]that there exists a positive integer q such
that

|θn (x) | ⩽ ||x||q, ∀x ∈ A

It is obvious that this inequality is satisfied for all k ⩾ q and the integer pn defined by

pn = min {k ∈N : |θn (x) | ⩽ ||x||k ∀x ∈ A}

exists for all n ∈N.
Now define the mapping Γ : A→ R by

Γ (x) =


0 if x ∈ I0 or θn (x) = 0 for some n ∈N
+∞∏
n=0

[
|θn (x) |
||x||pn

] |θn (x)|
2n ||x||pn

otherwise

+∞∏
n=0

[
|θn (x) |
||x||pn

] |θn (x)|
2n ||x||pn

is defined to be lim
k→+∞

k∏
n=0

[
|θn (x) |
||x||pn

] |θn(x)|
2n ||x||pn

.

Since θn (1) = 1, and so by the above discussion ||1||n = 1 for all integer n then Γ (1) = 1.
We consider x ∈ A − I0. Assume that there exists n ∈ N such that θn (x) = 0 then Γ (x) = 0. Otherwise

|θn (x) | > 0 for all n ∈N and

Γ (x) = lim
k→+∞

exp

 k∑
n=0

|θn (x) |
2n||x||pn

ln
(
|θn (x) |
||x||pn

)



M. Laay / FAAC 16 (2) (2024), 41–47 43

is well defined. Indeed, since Ipn ⊂ I0 and 0 < |θn (x) | ⩽ ||x||pn . Then
k∑

n=0

[
|θn (x) |
2n||x||pn

ln
(
|θn (x) |
||x||pn

)]
becomes a

decreasing sequence of negative reals. It follows from the completeness ofR that the series
∑ |θn(x)|

2n ||x||pn
ln

(
|θn(x)|
||x||pn

)
is convergent to its infimum β (x) or

+∞∑
n=0

|θn (x) |
2n||x||pn

ln
(
|θn (x) |
||x||pn

)
= −∞. Hereby Γ (x) is defined to be in [0, 1].

We claim tha Γ is continuous in the identity. Indeed, 1 belong to the open subset A− I0. We must show that
|Γ (x) − 1| → 0 if ||x − 1||q → 0 for some q ∈N. To this end, we will show that, |β (x) | → 0 when ||x − 1||q → 0.

We must find q ∈N such that for all ε > 0, there exists η > 0 satisfying for every x ∈ A − I0

||x − 1||q < η ⇒ −ε < β (x) ⩽ 0 (2.1)

Consider an element x ∈ A− I0. The desired assertion (2.1) is trivial in the case where θn(x) = 0 for some
n (note that, according to the definition of the function Γ, this may happen for some x ∈ A − I0 ). Assume
now that θn(x) , 0 holds for all n. Pik ε > 0
Let u ∈ R such that 0 < u < 1. Since for each n ∈Nwe have

(1 − u)
(
1 + u + u2 + ... + un

)
= 1 − un+1

then
1

1 − u
=

+∞∑
n=0

un and ln (1 − u) = −
+∞∑
n=0

1
n + 1

un+1

Applying to t = 1 − u the last equality, we obtain

ln (t) = −

+∞∑
k=1

(1
k

(1 − t)k
)

⩾ −

+∞∑
k=1

(1 − t)k

⩾ − (1 − t)
+∞∑
k=0

(1 − t)k

⩾ − (1 − t)
1
t

(2.2)

we conclude that

t ln (t) ⩾ t
t − 1

t
⩾ t − 1
> −1 (2.3)

holds for every 0 < t < 1. Obviously 1 satisfies (2.3). Then for every n ∈ N and for 0 < t = |θn(x)|
||x||pn

⩽ 1 we
have

|θn (x) |
||x||pn

ln
(
|θn (x) |
||x||pn

)
> −1

and so



M. Laay / FAAC 16 (2) (2024), 41–47 44

|θn (x) |
2n||x||pn

ln
(
|θn (x) |
||x||pn

)
> − 1

2n (2.4)

By the convergence of the series
∑ 1

2n , there exists s ∈Nwith

−

+∞∑
k=s

1
2n ⩾ −

ε
2

and then

+∞∑
n=s

|θn (x) |
2n||x||pn

ln
(
|θn (x) |
||x||pn

)
> −

ε
2

(2.5)

Put q = max
{
pn : n ⩽ s

}
, we can assume without loss of generality that q ⩾ s. Since || ||pn ⩽ || ||q then

||x − 1||q → 0 implies that ||x − 1||pn → 0 and |θn (x) | → 1 for n = 0, 1, ..., s. On the other hand, the real-valued
function t → t ln t satisfies lim

t→1
(t ln t) = 0. Then, for each n = 0, 1, ..., s, there exists a real ηn > 0 such that

||x − 1||pn < ηn implies |θn(x)|
||x||pn

ln
(
|θn(x)|
||x||pn

)
> − ε4 . In this way, the real η = min

{
ηn : n = 0, 1, 2, ..., s

}
satisfies η > 0

and for every n = 0, 1, ..., s

||x − 1||q < η ⇒
|θn (x) |
||x||pn

ln
(
|θn (x) |
||x||pn

)
> −
ε
4

(2.6)

we conclude from (2.5) and (2.6) that

0 > β (x) =

+∞∑
n=0

|θn (x) |
2n||x||pn

ln
(
|θn (x) |
||x||pn

)

=

s∑
n=0

|θn (x) |
2n||x||pn

ln
(
|θn (x) |
||x||pn

)
+

+∞∑
n=s

|θn (x) |
2n||x||pn

ln
(
|θn (x) |
||x||pn

)

> −
ε
2
+

s∑
n=0

|θn (x) |
2n||x||pn

ln
(
|θn (x) |
||x||pn

)

> −
ε
2
−
ε
4

s∑
n=0

1
2n

> −
ε
2
−
ε
4

+∞∑
n=0

1
2n

> −ε (2.7)

remain true for every x ∈ A− I0 satisfying ||x−1||q < η given by (2.6). Then β is continuous in the identity
as well as Γ = exp ◦β as desired.

On the other hand, it is easily realized that lim
n→∞

an = 0. Indeed, for all m,n ∈N.

an+m ∈ In+m ⊂ Vn+m ⊂ Vn

So,
lim
n→∞

bn = lim
n→∞

(1 − an) = 1
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with Γ (bn) = 0 fot all n ∈N and Γ (1) = 1. Which is a contradiction. This completes the proof.

Denote by qφ the positive integer defined by

qφ = min
{
q ∈N; ker

(
|| ||q ⊂ ker

(
φ
))}

For every integer q ⩾ qφ, consider the homomorphism φq from Aq to C such that

φq

(
x + ker

(
|| ||q

))
= φ (x)

in such a way that the following diagram is commutatif.

(A, (|| ||n))
πq //

φ

%%

(
Aq, || ||q

)
φq

��
C

According to Theorem2.1, we have the following.

Theorem 2.2. Let
(
A; (|| ||n)n⩾0

)
be a commutative Fréchet algebra, and letφ be a Character of A. Thenφ is continuous

if and only if there exists an integer q ⩾ qφ such that φq is continuous.

Proof. First assume that A has a unit. In view of Theorem2.1, it is enough to show that, x+ker
(
|| ||q

)
→ φ (x)

becomes an homomorphism φq from Aq onto C such that φq ◦πq = φ. It is well known that φ is continuous
if and only if φq is too.

Now, assume that A does not have a unit. Set A′ = A ⊕ C the algebra obtained by adjoining an identity
to A endowed with the topology wich is generated by seminorms

||x + α||n,1 = ||x||n + |α|

It is easy to show that A′ becomes a Fréchet algebra and 0A + 1 is an identity. On the other hand, the
mapping φ̂ : A′ → C defined by

φ̂ (x + α) = φ (x) + α

is an algebra homomorphism. From the conclusion of the unitary case, φ̂ is continous, and so is φ.

It is easy to see that without loss of generality we can assume that Iq = ker
(
|| ||q

)
⊂ ker

(
φ
)

holds for all

q. Denote Aq, the completion of Aq = A/Iq with respect to the norm x+ Iq 7→ ||x||q. We also denote by || ||q the
norm of Aq.

We now provide A with an interesting Fréchet topology which we call, as in the Banach case [1, p.20],
the Fréchet topology of the graph.

|| ||
′

q : A → R+

x 7→ ||x||′q

by ||x||′q = ||x||q + |φ (x) |. It is easy to see that || ||′q is a submultiplicative seminorm satisfying

||x||′q ⩽ ||x||
′

q+1 for all x ∈ A and q ⩾ 1 (2.8)
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Lemma 2.3. With this notations we have: ker
(
|| ||
′
q

)
= ker

(
|| ||q

)
.

Proof. If an element x of A is in ker
(
|| ||q

)
then Theorem2.1 implies x is in ker

(
φ
)
. Thus x belongs to ker

(
|| ||
′
q

)
.

The converse inclusion follows easily from the inequality || ||q ⩽ || ||′q.

Clearly,πq (x) = x+Iq 7→ ||x||′q makes Aq a normed algebra. Ãq denotes the completion of Aq with respect to

this norm. We keep the notation || ||′q for the norm of Ãq. So from the relation |φq

(
πq (x)

)
| = |φ (x) | ⩽ ||πq (x) ||′q,

we easily see that φq is || ||′q-continuous and hence, extends to a continuous morphism φ̃q : Ãq → C.

Lemma 2.4. A equipped with the seminorms
(
|| ||
′
q

)
n

is a commutative Fréchet algebra.

Proof. Clearly,
(
|| ||
′
q

)
n

are submultiplicative. On the other hand, it follows from Lemma2.1 that⋂
q

ker
(
|| ||
′

q

)
=

⋂
q

ker
(
|| ||q

)
= {0}

To complete the proof, it suffices to show that the seminorms
(
|| ||
′
q

)
n

generate on A a complete topology. To
this end, let (xn)n be a sequence in A satisfying lim

m,n→∞
||xm − xn||

′

q = 0 for each q. Since ||xm − xn||q ⩽ ||xm − xn||
′
q

then (xn)n is a
(
|| ||q

)
q
-Cauchy sequence and so

(
|| ||q

)
q
-converges to x ∈ A. Fix q, the graph G

(
φ̃q

)
of

the continuous mapping φ̃q is closed in the Banach space Ãq × C then G
(
φ̃q

)
is itself complete. So,(

π̃q (xn) , φ̃q

(
π̃q (xn)

))
→

(
y, φ̃q

(
y
))

for some y ∈ Ãq. So, for each n ⩾ 1

|φ (xn) − φ̃q
(
y
)
| = |φq

(
πq (xn)

)
− φ̃q

(
y
)
|

= |φ̃q

(
π̃q (xn)

)
− φ̃q

(
y
)
|

⩽ ||π̃q (xn) − y||q + |φ̃q

(
π̃q (xn)

)
− φ̃q

(
y
)
|

= ||π̃q (xn) − y||′q
→ 0 whenever n→∞ (2.9)

||π̃q (xn) − y||q ⩽ ||π̃q (xn) − y||q + |φ̃q

(
π̃q (xn)

)
− φ̃q

(
y
)
|

= ||π̃q (xn) − y||′q
→ 0 whenever n→∞ (2.10)

Furthermore

||π̃q (xn) − π̃q (x) ||q = ||xn − x||q
→ 0 whenever n→∞ (2.11)

Combining (2.10) with (2.11), we get y = π̃q (x) and φ (x) = φ̃q

(
π̃q (x)

)
= φ̃q

(
y
)
. Which gives in addition

to the identity (2.9)
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||xn − x||′q = ||π̃q (xn) − π̃q (x) ||′q
= ||π̃q (xn) − y||′q
→ 0 whenever n→∞

Since q is arbitrary, it follows that A is complete under the topology generated by the seminorms
(
|| ||
′
q

)
q

as desired.

This lemma means that
(
A,

(
||.||′p

)
p

)
is a Fréchet algebra. Clearly, the homomorphism φ :

(
A,

(
||.||′p

)
p

)
→ C

is continuous. To return to the initial topology of A we have the following lemma.

Lemma 2.5. The two topologies
(
||.||′n

)
n and (||.||n)n of A are equivalent.

Proof. Obviously, the identity
(
A,

(
||.||′p

)
p

)
→

(
A,

(
||.||p

)
p

)
is continuous, and so by the open mapping theorem,

we get the conclusion of the lemma.

Thus we obtain the following main result.

Theorem 2.6. If A is a commutative Fréchet algebra, then every caracter of A is automatically continuous.
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