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Abstract. A Banach space operator is biquasitriangular if its essential spectrum has no holes or pseudo
holes. Biquasitriangular Banach space operators A,B have a biquasitriangular tensor product, a biquasi-
triangular left-right multiplication operator LARB, and a biquasitriangular generalised derivation LA − RB.
Moreover, the Weyl spectral identity: σw(A ⊗ B) = σ(A) · σw(B) ∪ σw(A) · σ(B), the a-Weyl spectral identity:
σaw(A⊗B) = σ(A)·σaw(B)∪σaw(A)·σ(B), the δ-Weyl spectral identity: σw(LA−RB) = (σ(A)−σw(B))∪(σw(A)−σ(B)),
and the a-δ-Weyl spectral identity: σaw(LA − RB) = (σ(A) − σaw(B∗)) ∪ (σaw(A) − σ(B)) hold.

1. Introduction

Let X ( resp.,H) denote an infinite dimensional complex Banach space (resp., separable Hilbert space),
and let B[X] (resp., B[H]) denote the algebra of operators (equivalently, bounded linear transformations) on
X (resp., H). An operator A ∈ B[H] is quasitriangular if there is a sequence {Pn} of finite-rank projections
that converges strongly to the identity operator I and {(I − Pn)APn} converges uniformly to the null operator
[6, Section 2]. If both A and A∗ are quasitriangular, then A is biquasitriangular (BQT). Biquasitriangular
operators are equivalently described as follows:

(1) A is BQT if and only if σℓe(A) = σre(A) = σe(A) = σw(A)

[2, Theorem 5.4] and [3, Theorem 2.1] (also see [17, p.37]), where for an operator A ∈ B[X] with index
ind(A), σℓe(A) = {λ ∈ σ(A) : dim(λI − A)−1(0) = ∞ or (λI − A)(X) is not closed or (λI − A)(X) is not
complemented in X}, σre(A) = {λ ∈ σ(A) : dim(X \ (λI −A)(X)) = ∞ or (λI −A)−1(0) is not complemented in
X}, σe(A) = σℓe(A)∪ σre(A) and σw(A) = {λ ∈ σ(A) : λ ∈ σe(A) or ind(λI−A) , 0} denote (respectively) the left
essential spectrum, the right essential spectrum, the (Fredholm) essential spectrum and the Weyl spectrum of A [16].

Let Z denote the set of all integers, and set Z = Z ∪ {−∞,+∞}, the set of all extended integers. Let
SF denote the set of operators A ∈ B[H] which are either left semi–Fredholm or right semi–Fredholm, F
the set of operators A ∈ B[H] which are Fredholm, σk(A) = {λ ∈ C : λI − A ∈ SF and ind(λI − A) = k}
for every k ∈ Z\{0}, and let σ0(A) = σ(A)\σw(A) = {λ ∈ σ(A) : A − λI ∈ F and ind(A − λI) = 0}. Then
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σe(A) ⊆ σw(A) ⊆ σ(A), and σk(A) is a subset of the point spectrum of A for every extended integer k ∈ Z.
Also recall that (see e.g., [17, p.3] and [11, p.147]), for each non-zero integer k ∈ Z\{0}, σk(A) is a hole of
σe(A), and σ+∞(A) = σℓe(A)\σre(A) and σ−∞(A) = σre(A)\σℓe(A) are the pseudo holes of σe(A). Furthermore,

σw(A) = σe(A) ∪
∪

k∈Z\{0}
σk(A) = σ(A)\σ0(A),

so that the Weyl spectrum is the union of the essential spectrum with all its holes. This is the Schechter
Theorem (see, e.g., [11, Theorem 5.24]), which when applied to the definition of BQT in (1) implies:

(1′) A is BQT if and only if σe(A) has no holes and no pseudo holes

(see [14]). This version of the definition of BQT has a natural extension to Banach space operators.

For an A ∈ B[X], letN(A) = A−1(0) and R(A) = A(X) denote, respectively, the kernel and the range of A. We
say [16, Definition III.16.1] that A is

upper semi-Fredholm, A ∈ ΦSF+ (X), if R(A) is closed and dimN(A) < ∞,
lower semi-Fredholm, A ∈ ΦSF− (X), if codim R(A) < ∞,
semi-Fredholm, if A ∈ ΦSF(X) = ΦSF+ (X) ∪ΦSF− (X),
Fredholm, if A ∈ Φ(X) = ΦSF+ (X) ∩ΦSF−(X).

Corresponding to these classes of operators we have the following spectra.
σSF+ (A) = {λ ∈ C : A − λI < ΦSF+ (X)}, the upper semi-Fredholm spectrum,
σSF− (A) = {λ ∈ C : A − λI < ΦSF− (X)}, the lower semi-Fredholm spectrum,
σe(A)= {λ ∈ C : A − λI<Φ(X)}=σSF+ (A) ∪ σSF− (A), the Fredholm spectrum,
sk(A) = {λ ∈ C : A − λI ∈ ΦSF(X) and ind(A − λI) = k} for each k ∈ Z\{0}.

Recall that a hole of a set in a topological space is any bounded component of its complement. It is seen
that sk(A) with k ∈ Z \ {0} is a hole of σe(A). The set sk(A) with k = +∞ is a hole of σSF− (A) which lies in
σSF+ (A) and the set sk(A) with k = −∞ is a hole of σSF+(A) which lies in σSF− (A) : Sets sk(A) with k = ±∞ are
pseudo holes of σe(A). We say in the following that a Banach space operator A ∈ B[X] is biquasitriangular, A ∈ BQT,
if σe(A) has no holes or pseudo holes. It is immediate from the definition that σe(A) = σw(A) for every A ∈ BQT.

This paper considers Banach spaceBQT operators.We start by considering some elementary properties
of BQT operators in Section 2, including preservation under similarity, as well as compact and commuting
Riesz perturbations (see Theorem 1). Main result are proved in Section 3. These focus on tensor products
A ⊗ B and derivations δA,B = LA − RB; A,B ∈ B[X]. Theorem 2 deals with the tensor product A ⊗ B of BQT
operators A and B ∈ B[X]. Tensor products preserve biquasitriangulaity and the biquasitriangularity prop-
erty of tensor products implies that the Weyl spectral identity holds: Thus, if A and B are biquasitriangular,
then so is their tensor product A ⊗ B, and the Weyl spectral identity

σw(A ⊗ B) = σ(A) · σw(B) ∪ σw(A) · σ(B)

holds. These results (as well as their extensions) are carried from tensor products to the left-right multipli-
cation operator LARB in Corollary 1, and then to derivations δA,B = LA − RB in Theorems 3 and 4 (where the
tensor product A ⊗ B is replaced by the derivation δA,B).

2. Elementary properties ofBQT operators

In the following we gather together some basic properties ofBQToperators in B[X].Therefore, form now
on, throughout the paper, suppose A ∈ B[X], whereX is a Banach space. Let A be such that A − λI ∈ ΦSF+ (X).
Then either ind(A − λI) > 0 or ind(A − λI) ≤ 0. Since ind(A − λI) > 0 implies λ ∈ Φ(X), we conclude that
λ < σe(A) and the set sk(A) = {λ ∈ C : λ ∈ ΦSF+ (X), 0 < ind(A − λI) = k} for k , 0 is either a hole or a pseudo
hole of σe(A). Again, if ind(A − λI) < 0, then either λ < σe(A) and ind(A − λI) = k < 0 or ind(A − λI) =
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−∞; thus either λ < σe(A) and ind(A − λI) = 0, or, sk(A) (k , 0) is either a hole or a pseudo hole of σe(A).
Conclusion: If A ∈ BQT, then σSF+ (A) = σe(A). A similar argument works for when A − λI ∈ ΦSF− (X). This
yields a proof of the equivalence between (1) and (1′) (for Banach space BQT operators).

Proposition 1. A ∈ BQT if and only if σSF+ (A) = σSF− (A) = σe(A) = σw(A).

Let σa(A) and σs(A) denote, respectively, the approximate point spectrum and the surjectivity spectrum
of A ∈ B(X). That is let,

σa(A) = {λ ∈ C : A − λI is not bounded below},
σs(A) = {λ ∈ C : A − λI is not surjective}.

If A ∈ BQT and λ < σs(A), then λ < σSF− (A) = σw(A)⇐⇒ λ < σ(A). Hence, σs(A) = σ(A).A similar argument
shows that A ∈ BQT implies σa(A) = σ(A). So:

Proposition 2. [14] If A ∈ BQT, them σ(A) = σa(A) = σs(A).

An operator A ∈ B[X], has the single-valued extension property at λ0 ∈ C, SVEP at λ0 for short, if for every
open discDλ0 centered at λ0 the only analytic function f : Dλ0→ X which satisfies

(A − λI) f (λ) = 0 for all λ ∈ Dλ0

is the function f ≡ 0. A has SVEP if it has SVEP at everyλ ∈ C.Evidently, A has SVEP at points in the resolvent
set and the boundary ∂σ(A) of σ(A).Also, A (resp., A∗) has SVEP at 0 if asc(A) < ∞ (resp., dsc(A) < ∞), where
asc(A) (resp., dsc(A)), the ascent of A (resp., the descent of A), is the least non-negative integer p such that
A−p(0) = A−(p+1)(0) (resp., Ap(X) = Ap+1(X)). Let

σb(A) = {λ ∈ σ(A) : A − λI < Φ(X) or asc(A − λI) , dsc(A − λI)}
denote the Browder spectrum of A. Recall that σe(A) ⊆ σw(A) ⊆ σb(A) ⊆ σ(A).

Proposition 3. If A ∈ BQT, then the following statements are equivalent.

(i) σw(A) = σb(A).

(ii) A has SVEP on σ(A)\σSF+ (A).

(iii) A has SVEP on σ(A)\σSF− (A).

(iv) A has SVEP on σ(A)\σe(A).

(v) A has SVEP on σ(A)\σw(A).

Proof. Since A ∈ BQT, it would suffice to prove (i) ⇐⇒ (v). If σb(A) = σw(A), then λ < σw(A) implies
asc(A − λI) < ∞, and this in turn implies that A has SVEP on σ(A)\σw(A).Conversely, if A has SVEP at every
λ < σw(A), then asc(A − λI) = dsc(A − λI) < ∞, i.e., λ < σb(A) (see [1, Theorems 3.4 and 3.16]).

Operators A ∈ B[X] satisfying σw(A) = σb(A) have been described in the literature as satisfying Browder’s
theorem (see, e.g., [1]).

Recall from [8, Proposition 6.16] that the class of Hilbert spaceBQT operators is stable under similarities
and under perturbation by compact operators. This result has a natural extension to Banach space BQT
operators: Indeed, along with being invariant under similarities, the classBQT is invariant under perturba-
tions by commuting Riesz operators. But before we go on to prove this, we introduce some complementary
notation and results. Recall that an A ∈ B[X] is a Riesz operator, A ∈ R[X], if every of its non-zero spectral
points is a finite rank pole of the (resolvent of the) operator. (Thus, if A ∈ R[X], then σe(A) = {0}.) Let ℓ∞(X)
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denote the Banach space of all bounded sequences of elements ofX(with its natural “supremum norm”), let
m(X) denote the space of all precompact sequences ofX, and letXq = ℓ∞(X)/m(X). The unital homomorphism
Tq, with kernel the ideal of compact operators K[X], effecting the “essential enlargement”

Tq : B[X]→ B[Xq] so that Tq : A 7→ Aq

is then a norm decreasing monomorphism from B[X]/K[X]→ B[Xq] such that Tq maps upper semi-
Fredholm (resp., lower semi-Fredholm) operators in B[X] onto bounded below (resp., surjective) operators
in B[Xq] (see [4] and [16], Theorems 17.6 and 17.9, respectively).We show that BQT is similarity invariant.
Let α(A) = dimN(A) and β(A) = codim R(A) denote the deficiency indices of A ∈ B[X].

Proposition 4. Let A,B,S ∈ B[X] be such that A ∈ BQT, S is invertible, and AS = SB. Then B ∈ BQT.

Proof. Using the notation above, the hypotheses imply AqSq = SqBq, where Sq is invertible in B[Xq]. Since
similar operators have the same spectra, σx(B) = σx(A) for σx = σSF+ or σSF− or σe. It being evident that
α(A − λI) = α(B − λI) and β(A − λI) = β(B − λI) for all complex λ, the proof is complete.

Let δA,B ∈ B[B[X]]) denote the generalized derivation δA,B(X) = AX − XB. We say that the operators
A,B ∈ B[X] are quasinilpotent equivalent if

d(A,B) = lim
n→∞
∥δn

A,B(I)∥ 1
n = lim

n→∞
∥δn

B,A(I)∥ 1
n = 0.

Quasinilpotent equivalent operators have the same approximate point and surjectivity spectrum [15, Propo-
sition 3.4.11].Clearly, if A,B ∈ B[X] are such that d(TqA,TqB) = 0, that is if Aq and Bq are quasinilpotent equiv-
alent, then σa(Aq) = σa(Bq) and σs(Aq) = σs(Bq), and hence σx(A) = σx(B), where σx = σSF+ or σSF− or σe. This
implies that if A ∈ BQT, and Aq and Bq are quasinilpotent equivalent, then σSF+(B) = σSF− (B) = σe(B) = σw(A).
Does σe(B) = σw(B)? The following theorem says that the answer is in the affirmative in the case in which B
is a perturbation of A by a compact operator or by a commuting Riesz operator.

Theorem 1. The class of BQT operators is stable under perturbation by (i) compact operators and (ii) commuting
Riesz operators.

Proof. Let A,B ∈ B[X], where A ∈ BQT. Let Tq be the homomorphism defined above.

(i) If B ∈ K [X], then Tq(A − tB) = Aq for all 0 ≤ t ≤ 1, and so σx(Tq(A − tB)) = σx(TqA) for σx = σa or σs or σ
and all 0 ≤ t ≤ 1. Hence σx(A − tB) = σx(A) for σx = σSF+ or σSF− or σe and all 0 ≤ t ≤ 1. The local constancy
of the index implies ind(A − B) = ind(A); hence we have also that σw(A − B) = σw(A).

(ii) Assume now that B ∈ R[X], and AB = BA. Then Tq(A − tB) = Aq − tBq for all 0 ≤ t ≤ 1, where Bq is
quasinilpotent and AqBq = BqAq. Since

δn
Aq−tBq,Aq

(I) = (−1)ntnBn
q = (−1)nδn

Aq,Aq−tBq
(I),

it follows that d(Aq − tBq,Aq) = 0 and hence Aq − tBq and Aq are quasinilpotent equivalent for all 0 ≤ t ≤ 1.
Thus, as before, σx(A − tB) = σx(A) for σx = σSF+ or σSF− or σe and all 0 ≤ t ≤ 1.Once again the local constancy
of the index implies that we also have σw(A − B) = σw(A).

3. Main results: Tensor products and the operator δA,B = LA − RB.

A pair ⟨X, X̃⟩ of Banach spaces is a dual pairing if either X̃ = X∗, the dual space of X, or X = X̃∗. Let

X × X̃ → C, (x,u) 7→ ⟨x, u⟩,

denote the canonical bilinear mapping (in both cases), and let L[X] denote the subalgebra of B[X] consisting
of operators T ∈ B[X̃] for which there exists an operator T′ ∈ B[X̃] with ⟨Tx,u⟩ = ⟨x,T′u⟩ for all x ∈ X and
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u ∈ X̃. It is then clear that (i) if the dual pairing is ⟨X∗,X⟩, then L[X∗] = B[X∗], and (ii) each rank one operator
fy,v : X → X, x 7→ ⟨x, v⟩y, y ∈ X and v ∈ X̃, is contained in L[X]. Following Eschmeier [7, p.50], we say that
a tensor product of Banach spaces X and Y relative to the dual pairings ⟨X, X̃⟩, ⟨Y, Ỹ⟩ is a Banach space
X⊗̃Y together with continuous bilinear mappings

X ×Y → X⊗̃Y, (x, y) 7→ x ⊗ y,

L[X] × L[Y]→ B[X⊗̃Y], (T,S) 7→ T ⊗ S,

which satisfy the following conditions.

(i) ∥x ⊗ y∥ = ∥x∥ ∥y∥,

(ii) (T ⊗ S)(x ⊗ y) = Tx ⊗ Ty,

(iii) (T1 ⊗ S1) ◦ (T1 ⊗ S2) = T1T2 ⊗ S1S2, I ⊗ I = I,

(iv) R( fx,u) ⊗ I) ⊂ {x ⊗ y : y ∈ Y}, R(I ⊗ fy,v) ⊂ {x ⊗ y : x ∈ X}.

The completion X⊗̃Y (= X⊗̃αY) of the algebraic tensor product of X and Y with respect to a quasi-
uniform norm α then defines in a natural way a tensor product relative to the dual pairings ⟨X,X∗⟩ and
⟨Y,Y∗⟩. Given operators A ∈ B[X] and B ∈ B[Y], let A ⊗ B ∈ B[X⊗̃Y] denote the tensor product of A and B.
Then, see [7] and [9, 10],

σSF+ (A ⊗ B) = σa(A) · σSF+ (B) ∪ σSF+(A) · σa(B),
σSF− (A ⊗ B) = σs(A) · σSF−(B) ∪ σSF− (A) · σs(B),
σe(A ⊗ B) = σ(A) · σe(B) ∪ σe(A) · σ(B),
σb(A ⊗ B) = σ(A) · σb(B) ∪ σb(A) · σ(B),
σw(A ⊗ B) ⊆ σ(A) · σw(B) ∪ σw(A) · σ(B).

Consider the above inclusion involving the Weyl spectrum of tensor products. Following the terminology
introduced in [12], when this inclusion becomes an identity we say that A and B satisfy the Weyl spectral
identity (WSI) (see [12, 13] for a detailed account on the WSI). It has been proved in [14, Theorem 1] that the
biquasitriangular property transfers from A ∈ B[X] and B ∈ B[Y] to A ⊗ B ∈ B[X⊗̃Y], and also that, in this
case, A and B satisfy the Weyl spectral identity.

Theorem 2. [14] A and B biquasitriangular implies A ⊗ B biquasitriangular (i.e., if A,B ∈ BQT, them A ⊗ B ∈ BQT).
Furthermore, if A and B are biquasitriangular, then A ⊗ B satisfies the Weyl spectral identity. That is, if A,B ∈ BQT,
then

σw(A ⊗ B) = σ(A) · σw(B) ∪ σw(A) · σ(B).

The theorem implies that if A,B ∈ BQT, then

σ(A ⊗ B) = σa(A ⊗ B) = σs(A ⊗ B),

σaw(A ⊗ B) = σsw(A ⊗ B) = σw(A ⊗ B)
= σ(A) · σw(B) ∪ σw(A) · σ(B)
= σaw(A) · σs(B) ∪ σa(A) · σsw(B)
= σsw(A) · σa(B) ∪ σa(A) · σsw(B),

where
σaw(A) = {λ ∈ σa(A) : either λ ∈ σSF+ (A)
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or A − λI is upper semi-Fredholm of positive index},
σsw(A) = {λ ∈ σs(A) : either λ ∈ σSF− (A)

or A − λI is lower semi-Fredholm of negative index}.

An operator ideal J between Banach spaces Y and X is a linear subspace of B(Y,X) equipped with a
Banach norm α such that

(i) x ⊗ y′ ∈ J and α(x ⊗ y′) = ∥x∥ ∥y∥,

(ii) △ST(A) = LSRT(A) = SAT and α(SAT) ≤ ∥S∥α(A)∥T∥,

for all x ∈ X, y′ ∈ Y∗, A ∈ J, S ∈ B[X] and T ∈ B[Y] [7, p.51]. Thus defined, each J is a tensor product relative
to the dual pairings ⟨X,X∗⟩ and ⟨Y∗,Y⟩ and the bilinear mappings

X ×Y∗ → J, (x, y′)→ x ⊗ y′,

B[X] × B[Y∗]→ B(J), (S,T∗)→ S ⊗ T∗,

where S ⊗ T∗(A) = SAT (= LSRT(A) = △S,T(A)). The next result is immediate from the above and Theorem 2.

Corollary 1. If A,B ∈ BQT (so also B∗ ∈ BQT), then LARB ∈ BQT is such that

σw(LARB) = σ(A) · σw(B) ∪ σw(A) · σ(B).

Note that the above is the analogous of WSI (which was defined for tensor products), replacing A ⊗ B
with LARB. The corollary implies, in particular, that A ∈ BQT implies LA,RA ∈ BQT.We prove below that
A,B ∈ BQT implies δA,B = LA − RB ∈ BQT, and also that δA,B = LA − RB satisfies the analogous of WSI.
Observe (from an application of the spectral mapping theorem) that

σa(δA,B) = σa(A) − σs(B), σs(δA,B) = σs(A) − σa(B),

σ(δA,B) = σ(A) − σ(B), σe(δA,B) =
(
σ(A) − σe(B)

)
∪
(
σe(A) − σ(B)

)
,

σSF+ (δA,B) =
(
σa(A) − σSF−(B)

)
∪
(
σSF+ (A) − σs(B)

)
,

σSF− (δA,B) =
(
σs(A) − σSF+ (B)

)
∪
(
σSF− (A) − σa(B)

)
,

σb(δA,B) =
(
σ(A) − σb(B)

)
∪
(
σb(A) − σ(B)

)
,

where σx(A) − σy(B) means (symmetrical) numerical difference (not set difference).

The relationship between the various Weyl spectra of δA,B is a bit more delicate. Let H0(A) denote the
quasinilpotent part H0(A) = {x ∈ X : limn→∞ ||Anx|| 1n = 0} of A ∈ B[X] [1, Page 43].

Theorem 3. We claim that

σw(δA,B) ⊆
(
σ(A) − σw(B)

)
∪
(
σw(A) − σ(B)

)
,

σaw(δA,B) ⊆
(
σa(A) − σsw(B)

)
∪
(
σaw(A) − σs(B)

)
,

for every A ∈ B[X] and B ∈ B[Y].

Proof. If λ <
(
σ(A) − σw(B)

)
∪
(
σw(A) − σ(B)

)
and λ ∈ σ(A) − σ(B), then there are finite sequences {µi}ni=1 and

{νi}ni=1, of points µi ∈ σ(A) and νi ∈ σ(B), and an integer m ≥ 1 such that λ = µi − νi, νi < σw(B) ⊇ σe(B) and
µi < σw(A) ⊇ σe(A), 1 ≤ i ≤ n, µi ∈ isoσ(A) for all 1 ≤ i ≤ m and νi ∈ isoσ(B) for all m + 1 ≤ i ≤ n. Evidently,
λ < σe(δA,B).We prove that ind(δA,B − λI) = 0. Recall from [7, Theorem 4.2] that
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ind(δA,B − λI) =
n∑

i=m+1

dim H0(B − νiI) ind(A − µiI)

−
m∑

i=1

dim H0(A − µiI) ind(B − νiI).

As seen above, µi < σe(A) and µi ∈ isoσ(A) for all 1 ≤ i ≤ m; hence A − µiI has finite ascent (and descent),
H0(A − µiI) = (A − µiI)−s(0) for some positive integer s with dim H0(A − µiI) < ∞ for all 1 ≤ i ≤ m. Simi-
larly, A − µiI has finite ascent (and descent), H0(B − νiI) = (B − νiI)−t(0) for some positive integer t with
dim H0(B − νiI) < ∞ for all m + 1 ≤ i ≤ n. Since already ind(A − µiI) = 0 for all m + 1 ≤ i ≤ n (µi < σw(A)) and
ind(B − νiI) = 0 for all 1 ≤ i ≤ m (νi < σw(B)), we conclude that ind(δA,B − λI) = 0. So λ < σw(δA,B), and the
inclusion is proved.

The other inclusion is similar. If λ <
(
σa(A) − σsw(B)

)
∪
(
σaw(A) − σs(B)

)
and λ ∈ σa(A) − σs(B), then for every

µi ∈ σa(A) and νi ∈ σs(B) such thatλ = µi − νi we must have that νi < σsw(B) ⊇ σSF− (B) andµi < σaw(A) ⊇ σSF+(A).
Thus λ < σSF+ (δA,B). We claim that ind(δA,B − λI)≤0. For if not, then ind(δA,B − λI)> 0 implies λ < σe(δA,B).
Using the argument from the proof of the first inclusion it then follows that ind(δA,B − λI) = 0, which is a
contradiction. Hence λ < σaw(δA,B), and the inclusion is proved.

Let a-WSI denote the approximate point Weyl spectrum version of WSI: A and B satisfy the a-WSI (or
the a-WSI holds for the tensor product A ⊗ B) if [14]

σaw(A ⊗ B) = σaw(A) · σa(B) ∪ σa(A) · σaw(B)

(also see [5]). Let δ-WSI and δ-a-WSI, be the versions of WSI and a-WSI, respectively, with A ⊗ B replaced
with δA,B. The following theorem proves that, if A and B are biquasitriangular, then they satisfy the δ-WSI
and δ-a-WSI,

σw(δA,B) =
(
σw(A) − σ(B)

)
∪
(
σ(A) − σw(B)

)
,

and also

σaw(δA,B) =
(
σa(A) − σaw(B∗)

)
∪
(
σaw(A) − σa(B∗)

)
=
(
σ(A) − σaw(B∗)

)
∪
(
σaw(A) − σ(B)

)
.

Theorem 4. If A ∈ B[X] and B ∈ B[Y] areBQT operators, then δA,B ∈ BQT, and satisfies both δ-WSI and δ-a-WSI.

Proof. If A,B ∈ BQT, then σSF+(T) = σSF− (T) = σe(T) = σw(T), and σ(T) = σa(T) = σs(T) and σaw(T) = σsw(T) =
σw(T) = σe(T), where T = A or B. Hence

σSF+ (δAB) =
(
σa(A) − σSF− (B)

)
∪
(
σSF+ (A) − σs(B)

)
=
(
σs(A) − σSF+ (B)

)
∪
(
σSF− (A) − σa(B)

)
= σSF− (δA,B)

=
(
σ(A) − σe(B)

)
∪
(
σe(A) − σ(B)

)
= σe(δA,B),

σw(δA,B) ⊆
(
σ(A) − σw(B)

)
∪
(
σw(A) − σ(B)

)
=
(
σ(A) − σe(B)

)
∪
(
σe(A) − σ(B)

)
= σe(δA,B) ⊆ σw(δA,B)

⇒ σe(δA,B) = σw(δA,B) =
(
σ(A) − σw(B)

)
∪
(
σw(A) − σ(B)

)
,
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and

σaw(δA,B) ⊆
(
σa(A) − σsw(B)

)
∪
(
σaw(A) − σs(B)

)
=
(
σa(A)− σSF− (B)

)
∪
(
σSF+ (A)− σs(B)

)
= σSF+ (δA,B) ⊆ σaw(δA,B)

⇒ σaw(δA,B) =
(
σa(A) − σsw(B)

)
∪
(
σaw(A) − σs(B)

)
,

which leads to the claimed results.
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