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Abstract. In this paper, we prove some common coupled fixed point theorems for contractive type
conditions on S-metric spaces. We give some consequences of the main results. We also give an example
to validate the result. The results of findings in this paper generalize, extend and unify several previous
results in the existing literature.

1. Introduction

Banach contraction principle in metric spaces is one of the most important results in the theory of fixed
points and non-linear analysis. From 1922, when Stefan Banach ([4]) formulated the concept of contraction
and proved the famous theorem, scientist and mathematicians around the world are publishing new results
that are related either to establish a generalization of metric space or to get a improvement of contractive
conditions.

The famous Banach contraction principle, which states that every self mappingH defined on a complete
metric space (X, ρ) satisfying

ρ(H(x),H(y)) ≤ sρ(x, y), (1)

for all x, y ∈ X, where s ∈ (0, 1), has a unique fixed point and for every x0 ∈ X a sequence {Hnx0}n≥1 is
convergent to the fixed point. Inequality (1) also implies the continuity ofH .

Fixed point problem for contractive mappings in metric spaces with a partial order have been studied
by many authors. Guo and Lakshmikantham [9] introduced the notion of coupled fixed point. In 2006,
Bhashkar and Lakshmikantham [5] reconsidered the concept of a coupled fixed point of the mapping
F : X × X → X and established some coupled fixed point theorems in partially ordered complete metric
spaces. Bhashkar and Lakshmikantham [5] also proved mixed monotone property for the first time and
gave their classical coupled fixed point theorem for mapping which satisfy the mixed monotone property.
As, an application, they studied the existence and uniqueness of the solution for a periodic boundary
value problem associated with first order differential equation. Several other authors such as Ciric and
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Lakshmikantham [6], Sabetghadam et al. [18] and Olaleru et al. [16] have proved some coupled fixed point
theorems in metric spaces (see, also, [14], [15]).

In literature, there are many generalizations of the metric spaces and generalized metric spaces are exist.
One of such generalization is an S-metric space given by Sedghi et al. [19] in 2012.

Sedghi et al. [19] introduced a new notion called S-metric space and studied its some properties and they
also stated that S-metric space is a generalization of G-metric space. But Dung et al. [7] in 2014 showed by
an example that an S-metric space is not a generalization of G-metric space and conversely. Consequently,
the class of S-metric spaces and the class of G-metric spaces are different.

On the other hand, Jungck and Rhoades [12] introduced the concept of weak compatibility in the year
1998.

Recently, Sedghi et al. [21] proved some existence results of the unique common fixed point for a pair
of weakly compatible self-mappings satisfying some Φ-type contractive conditions in the framework of an
S-metric spaces and give example to validate the results. The results presented in this paper extend and
improve several results in the literature.

2. Preliminaries

In this section, we need some definitions, lemmas and auxiliary results of an S-metric spaces to prove
the main results (see, [19]).

Definition 2.1. ([19]) Let X be a nonempty set and let S : X3
→ [0,∞) be a function satisfying the following

conditions for all x, y, z, a ∈ X:
(S1) 0 < S(x, y, z) for all x, y, z ∈ X with x , y , z;
(S2) S(x, y, z) = 0 if and only if x = y = z;
(S3) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a).
Then the function S is called an S-metric on X and the pair (X,S) is called an S-metric space.

Example 2.2. ([19])
(1) Let X = Rn and ∥ · ∥ a norm on X, then S(x, y, z) = ∥y + z − 2x∥ + ∥y − z∥ is an S-metric on X.
(2)Let X = Rn and ∥ · ∥ a norm on X, then S(x, y, z) = ∥x − z∥ + ∥y − z∥ is an S-metric on X.

Example 2.3. ([20]) Let X = R be the real line. Then S(x, y, z) = |x− z|+ |y− z| for all x, y, z ∈ R is an S-metric on
X. This S-metric on X is called the usual S-metric on X.

Example 2.4. ([13]) Let X be a non-empty set and d be an ordinary metric on X. Then S(x, y, z) = d(x, z) + d(y, z)
for all x, y, z ∈ R is an S-metric on X.

Example 2.5. ([22]) Let X be a non-empty set and d1, d2 be two ordinary metrics on X. Then S(x, y, z) = d1(x, z) +
d2(y, z) for all x, y, z ∈ X is an S-metric on X.

Example 2.6. ([19]) Let X = R2 and d an ordinary metric on X. Put S(x, y, z) = d(x, y) + d(x, z) + d(y, z) for all
x, y, z ∈ R2, that is, S is the perimeter of the triangle given x, y, z. Then S is an S-metric on X.

Definition 2.7. Let (X,S) be an S-metric space. For r > 0 and x ∈ X we define the open ball BS(x, r) and closed ball
BS[x, r] with center x and radius r as follows, respectively:

BS(x, r) = {y ∈ X : S(y, y, x) < r},

BS[x, r] = {y ∈ X : S(y, y, x) ≤ r}.

Example 2.8. ([20]) Let X = R. Denote by S(x, y, z) = |y + z − 2x| + |y − z| for all x, y, z ∈ R. Then

BS(1, 2) = {y ∈ R : S(y, y, 1) < 2} = {y ∈ R : |y − 1| < 1}
= {y ∈ R : 0 < y < 2} = (0, 2),
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and

BS[2, 4] = {y ∈ R : S(y, y, 2) ≤ 4} = {y ∈ R : |y − 2| ≤ 2}
= {y ∈ R : 0 ≤ y ≤ 4} = [0, 4].

Definition 2.9. ([19], [20]) Let (X,S) be an S-metric space and A ⊂ X.
(1) The subset A is said to be an open subset of X, if for every x ∈ A there exists r > 0 such that BS(x, r) ⊂ A.
(2) A sequence {xn} in X converges to x ∈ X if S(xn, xn, x) → 0 as n → ∞, that is, for each ε > 0, there exists

n0 ∈N such that for all n ≥ n0 we have S(xn, xn, x) < ε. We denote this by limn→∞ xn = x or xn → x as n→∞.
(3) A sequence {xn} in X is called a Cauchy sequence if S(xn, xn, xm) → 0 as n,m → ∞, that is, for each ε > 0,

there exists n0 ∈N such that for all n,m ≥ n0 we have S(xn, xn, xm) < ε.
(4) The S-metric space (X,S) is called complete if every Cauchy sequence in X is convergent in X.
(5) Let τ be the set of all A ⊂ X with the property that for each x ∈ A and there exists r > 0 such thatBS(x, r) ⊂ A.

Then τ is a topology on X (induced by the S-metric space).
(6) A nonempty subset A of X is S-closed if closure of A coincides with A.

Definition 2.10. ([19]) Let (X,S) be an S-metric space. A mapping A : X → X is said to be a contraction if there
exists a constant 0 ≤ t < 1 such that

S(Ax,Ay,Az) ≤ t S(x, y, z), (2)

for all x, y, z ∈ X.

Remark 2.11. If the S-metric space (X,S) is complete then the mapping defined as above has a unique fixed point (see
[19], Theorem 3.1).

Definition 2.12. ([19]) Let (X,S) and (Y,S′) be two S-metric spaces. A function A : X→ Y is said to be continuous
at a point x0 ∈ X if for every sequence {xn} in X with S(xn, xn, x0)→ 0, S′(A(xn),A(xn),A(x0))→ 0 as n→ ∞. We
say that A is continuous on X if A is continuous at every point x0 ∈ X.

Definition 2.13. Let X be a non-empty set and let A,B : X → X be two self mappings of X. Then a point z ∈ X is
called a

(i) fixed point of operator A if A(z) = z;
(ii) common fixed point of A and B if A(z) = B(z) = z.

Definition 2.14. ([1]) Let A and B be single valued self-mappings on a set X. If u = Av = Bv for some v ∈ X, then
v is called a coincidence point point of A and B, and u is called a point of coincidence of A and B.

Definition 2.15. ([11]) Let A and B be single valued self-mappings on a set X. Mappings A and B are said to be
commuting if ABv = BAv for all v ∈ X.

Example 2.16. Let X = [0, 3
4 ] and define A,B : X → X defined by A(x) = x3

4 and B(x) = x4 for all x, y ∈ X. Then
the mappings A and B have two coincidence points 0 and 1

4 . Clearly, they commute at 0 but not at 1
4 .

Definition 2.17. ([3]) An element (x, y) ∈ X ×X is said to be a coupled fixed point of the mapping F : X ×X→ X if
F(x, y) = x and F(y, x) = y.

Example 2.18. Let X = [0,+∞) and F : X × X → X defined by F(x, y) = x+y
3 for all x, y ∈ X. One can easily see

that F has a unique coupled fixed point (0, 0).

Example 2.19. Let X = [0,+∞) and F : X × X→ X be defined by F(x, y) = x+y
2 for all x, y ∈ X. Then we see that F

has two coupled fixed point (0, 0) and (1, 1), that is, the coupled fixed point is not unique.

Definition 2.20. ([6]) Let X be a nonempty set. Then we say that the mappings F : X × X→ X and A : X→ X are
commutative if A(F(x, y)) = F(Ax,Ay).
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Definition 2.21. ([6]) An element (x, y) ∈ X×X is called a coupled coincidence point of the mappings F : X×X→ X
and A : X→ X if F(x, y) = Ax and F(y, x) = Ay.

Definition 2.22. ([2]) The mappings F : X × X → X and A : X → X are called weakly compatible if A(F(x, y)) =
F(Ax,Ay) and A(F(y, x)) = F(Ay,Ax) for all x, y ∈ X, whenever A(x) = F(x, y) and A(y) = F(y, x).

Lemma 2.23. ([19], Lemma 2.5) Let (X,S) be an S-metric space. Then, we have S(x, x, y) = S(y, y, x) for all x, y ∈ X.

Lemma 2.24. ([19], Lemma 2.12) Let (X,S) be an S-metric space. If xn → x and yn → y as n → ∞ then
S(xn, xn, yn)→ S(x, x, y) as n→∞.

Lemma 2.25. ([8], Lemma 8) Let (X,S) be an S-metric space and A is a nonempty subset of X. Then A is said to be
S-closed if and only if for any sequence {xn} in A such that xn → x as n→∞, then x ∈ A.

Lemma 2.26. ([19]) Let (X,S) be an S-metric space. If r > 0 and x ∈ X, then the ball BS(x, r) is an open subset of X.

Lemma 2.27. ([20]) The limit of a sequence {xn} in an S-metric space (X,S) is unique.

Lemma 2.28. ([19]) Let (X,S) be an S-metric space. Then any convergent sequence {xn} in X is Cauchy.

In the following lemma we see the relationship between a metric and S-metric.

Lemma 2.29. ([10]) Let (X, d) be a metric space. Then the following properties are satisfied:
(1) Sd(x, y, z) = d(x, z) + d(y, z) for all x, y, z ∈ X is an S-metric on X.
(2) xn → x in (X, d) if and only if xn → x in (X,Sd).
(3) {xn} is Cauchy in (X, d) if and only if {xn} is Cauchy in (X,Sd).
(4) (X, d) is complete if and only if (X,Sd) is complete.

We call the function Sd defined in Lemma 2.29 (1) as the S-metric generated by the metric d. It can be
found an example of an S-metric which is not generated by any metric in [10, 17].

Example 2.30. ([10]) Let X = R and the function S : X3
→ [0,∞) be defined as

S(x, y, z) = |x − z| + |x + z − 2y|,

for all x, y, z ∈ R. Then the function S is an S-metric on X and (X,S) is an S-metric space. Now, we prove that there
does not exists any metric d such that S = Sd. On the contrary, suppose that there exists a metric d such that

S(x, y, z) = d(x, z) + d(y, z),

for all x, y, z ∈ R. Hence, we obtain

S(x, x, z) = 2d(x, z) = 2|x − z|,

and

d(x, z) = |x − z|.

Similarly, we get

S(y, y, z) = 2d(y, z) = 2|y − z|,

and

d(y, z) = |y − z|,

for all x, y, z ∈ R. Hence, we have

|x − z| + |x + z − 2y| = |x − z| + |y − z|,

which is a contradiction. Therefore, S , Sd and (R,S) is a complete S-metric space.
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Recently, Aydi [3] obtained the following results in partial metric space.

Theorem 2.31. Let (X, p) be a complete partial metric space. Suppose that the mapping F : X × X→ X satisfies one
of the following contractive conditions (C1), (C2), (C3):

(C1) for all x, y,u, v ∈ X and nonnegative constants k, l with k + l < 1,

p(F(x, y),F(u, v)) ≤ kp(x,u) + lp(y, v), (3)

(C2) for all x, y,u, v ∈ X and nonnegative constants k, l with k + l < 1,

p(F(x, y),F(u, v)) ≤ kp(F(x, y), x) + lp(F(u, v),u), (4)

(C3) for all x, y,u, v ∈ X and nonnegative constants k, l with k + 2l < 1,

p(F(x, y),F(u, v)) ≤ kp(F(x, y),u) + lp(F(u, v), x). (5)

Then F has a unique coupled fixed point.

Motivated by Aydi [3] and some others, the purpose of this paper is to establish some unique common
coupled fixed point theorems for contractive type conditions in the setting of S-metric spaces and give some
corollaries of the main results. We also illustrate an example to support the result. Our results generalize,
extend and enrich several results from the existing literature.

3. Main Results

In this section, we prove some unique common coupled fixed point theorems for contractive type
mappings in the setting of S-metric spaces.

Theorem 3.1. Let (X,S) be a complete S-metric space. Let F : X×X→ X and A : X→ X be two functions such that

S(F(x, y),F(u, v),F(z,w)) ≤ r1 S(Ax,Au,Az) + r2 S(Ay,Av,Aw)
+r3 S(F(x, y),F(x, y),Ax)
+r4 S(F(u, v),F(u, v),Au)
+r5 S(F(z,w),F(z,w),Az), (6)

for all x, y,u, v, z,w ∈ X, where r1, r2, r3, r4, r5 > 0 are nonnegative reals such that r1 + r2 + r3 + r4 + r5 < 1. Assume
that F and A satisfy the following conditions:

(i) F(X × X) ⊆ A(X),
(ii) A(X) is complete, and
(iii) A is continuous and commute with F.
Then F and A have a coupled coincidence point in X. Moreover, if F and A are weakly compatible, then F and A

have a unique common coupled fixed point.

Proof. Let x0, y0 ∈ X. Since F(X × X) ⊆ A(X), for , we can choose x1, y1 ∈ X such that Ax1 = F(x0, y0) and
Ay1 = F(y0, x0). Again since F(X × X) ⊆ A(X), we can choose x2, y2 ∈ X such that Ax2 = F(x1, y1) and
Ay2 = F(y1, x1). Continuing this process, we can construct two sequences {xn} and {yn} in X such that
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Axn+1 = F(xn, yn) and Ayn+1 = F(yn, xn). For n ∈N, by equation (6), and using Lemma 2.23, we have

S(Axn,Axn,Axn+1) = S(F(xn−1, yn−1),F(xn−1, yn−1),F(xn, yn))
≤ r1 S(Axn−1,Axn−1,Axn) + r2 S(Ayn−1,Ayn−1,Ayn)
+r3 S(F(xn−1, yn−1),F(xn−1, yn−1),Axn−1)
+r4 S(F(xn−1, yn−1),F(xn−1, yn−1),Axn−1)
+r5 S(F(xn, yn),F(xn, yn),Axn)

= r1 S(Axn−1,Axn−1,Axn) + r2 S(Ayn−1,Ayn−1,Ayn)
+r3 S(Axn,Axn,Axn−1) + r4 S(Axn,Axn,Axn−1)
+r5 S(Axn+1,Axn+1,Axn)

= (r1 + r3 + r4) S(Axn−1,Axn−1,Axn)
+r2 S(Ayn−1,Ayn−1,Ayn)
+r5 S(Axn,Axn,Axn+1). (7)

Similarly by equation (6), we have

S(Ayn,Ayn,Ayn+1) = S(F(yn−1, xn−1),F(yn−1, xn−1),F(yn, xn))
≤ (r1 + r3 + r4) S(Ayn−1,Ayn−1,Ayn)
+r2 S(Axn−1,Axn−1,Axn)
+r5 S(Ayn,Ayn,Ayn+1). (8)

Set

Kn = S(Axn,Axn,Axn+1) + S(Ayn,Ayn,Ayn+1). (9)

Hence, we have

Kn = S(Axn,Axn,Axn+1) + S(Ayn,Ayn,Ayn+1)
≤ (r1 + r3 + r4) S(Axn−1,Axn−1,Axn)
+r2 S(Ayn−1,Ayn−1,Ayn)
+r5 S(Axn,Axn,Axn+1)
+(r1 + r3 + r4) S(Ayn−1,Ayn−1,Ayn)
+r2 S(Axn−1,Axn−1,Axn)
+r5 S(Ayn,Ayn,Ayn+1)

= (r1 + r2 + r3 + r4) [S(Axn−1,Axn−1,Axn)
+S(Ayn−1,Ayn−1,Ayn)] + r5 [S(Axn,Axn,Axn+1)
+S(Ayn,Ayn,Ayn+1)]

= (r1 + r2 + r3 + r4)Kn−1 + r5Kn. (10)

This implies that

Kn ≤

( r1 + r2 + r3 + r4

1 − r5

)
Kn−1 = qKn−1, (11)

where q =
(

r1+r2+r3+r4
1−r5

)
< 1, since r1 + r2 + r3 + r4 + r5 < 1.

Consequently, for each n ∈N, we obtain

Kn ≤ qKn−1 ≤ q2
Kn−2 ≤ · · · ≤ qn

K0. (12)



G. S. Saluja / FAAC 15 (1) (2023), 41–54 47

IfK0 = 0, then S(Ax0,Ax0,Ax1)+S(Ay0,Ay0,Ay1) = 0. Hence, by condition (S2), we get Ax0 = Ax1 = F(x0, y0)
and Ay0 = Ay1 = F(y0, x0), means that (Ax0,Ay0) is a coupled fixed point of F and A. Now, we assume that
K0 > 0. For each m > n, where n,m ∈N, and using (S3), we have

S(Axn,Axn,Axm) + S(Ayn,Ayn,Aym)

≤ 2S(Axn,Axn,Axn+1) + S(Axm,Axm,Axn+1)
+2S(Ayn,Ayn,Ayn+1) + S(Aym,Aym,Ayn+1)

= 2(S(Axn,Axn,Axn+1) + S(Ayn,Ayn,Ayn+1))
+S(Axm,Axm,Axn+1) + S(Aym,Aym,Ayn+1)

≤ . . .

≤ 2
(
Kn +Kn+1 + · · · +Km−1 +Km

)
≤ 2(qn + qn+1 + · · · + qm−1 + qm)K0

≤ 2qn(1 + q + q2 + . . . )K0

≤

( 2qn

1 − q

)
K0

→ 0 as n→∞,

since 0 < q < 1. Thus, {Axn} and {Ayn} are S-Cauchy sequence in A(X). Since A(X) is complete, we get {Axn}

and {Ayn} are S-convergent to some x ∈ X and y ∈ X respectively. Since A is continuous, we have {AAxn} is
S-convergent to Ax and {AAyn} is S-convergent to Ay. Also, since A and F are commute, we have

AAxn+1 = A(F(xn, yn)) = F(Axn,Ayn),

and

AAyn+1 = A(F(yn, xn)) = F(Ayn,Axn).

Thus,

S(AAxn+1,AAxn+1,F(x, y)) = S(F(Axn,Ayn),F(Axn,Ayn),F(x, y))
≤ r1 S(AAxn,AAxn,Ax) + r2 S(AAyn,AAyn,Ay)
+r3 S(F(Axn,Ayn),F(Axn,Ayn),AAxn)
+r4 S(F(Axn,Ayn),F(Axn,Ayn),AAxn)
+r5 S(F(x, y),F(x, y),Ax)

= r1 S(AAxn,AAxn,Ax) + r2 S(AAyn,AAyn,Ay)
+r3 S(AAxn+1,AAxn+1,AAxn)
+r4 S(AAxn+1,AAxn+1,AAxn)
+r5 S(F(x, y),F(x, y),Ax).

Passing to the limit as n→∞, using Lemma 2.23, Lemma 2.24 and the condition (S2), we get that

S(Ax,Ax,F(x, y)) ≤ r5 S(Ax,Ax,F(x, y))
≤ (r1 + r2 + r3 + r4 + r5)S(Ax,Ax,F(x, y))
< S(Ax,Ax,F(x, y)),

which is a contradiction, since r1+r2+r3+r4+r5 < 1. Hence, we get S(Ax,Ax,F(x, y)) = 0, that is, Ax = F(x, y).
Similarly, we may show that Ay = F(x, y). Thus (x, y) is a coupled coincidence point of the mappings F and
A. Since the pair (F,A) is weakly compatible, so by weak compatibility of F and A, we have

A(F(x, y)) = F(Ax,Ay) and A(F(y, x)) = F(Ay,Ax).
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Hence (Ax,Ay) is a common coupled fixed point of F and A.
Now, we show the uniqueness of the common coupled fixed point of F and A. Assume that (Ax1,Ay1) is

another common coupled fixed point of F and A with Ax , Ax1 and Ay , Ay1, that is, (Ax,Ay) , (Ax1,Ay1).
Then by using equation (6), using Lemma 2.23 and the condition (S2), we have

S(Ax,Ax,Ax1) = S(F(x, y),F(x, y),F(x1, y1))
≤ r1 S(Ax,Ax,Ax1) + r2 S(Ay,Ay,Ay1)
+r3 S(F(x, y),F(x, y),Ax)
+r4 S(F(x, y),F(x, y),Ax)
+r5 S(F(x1, y1),F(x1, y1),Ax1)

= r1 S(Ax,Ax,Ax1) + r2 S(Ay,Ay,Ay1)
+r3 S(Ax,Ax,Ax) + r4 S(Ax,Ax,Ax)
+r5 S(Ax1,Ax1,Ax1)

= r1 S(Ax,Ax,Ax1) + r2 S(Ay,Ay,Ay1). (13)

Similarly, we obtain

S(Ay,Ay,Ay1) ≤ r1 S(Ay,Ay,Ay1) + r2 S(Ax,Ax,Ax1). (14)

Hence from equations (13) and (14), we get

S(Ax,Ax,Ax1) + S(Ay,Ay,Ay1) ≤ r1 S(Ax,Ax,Ax1) + r2 S(Ay,Ay,Ay1)
+r1 S(Ay,Ay,Ay1) + r2 S(Ax,Ax,Ax1)

= (r1 + r2) [S(Ax,Ax,Ax1) + S(Ay,Ay,Ay1)]
≤ (r1 + r2 + r3 + r4 + r5) [S(Ax,Ax,Ax1)
+S(Ay,Ay,Ay1)]

< S(Ax,Ax,Ax1) + S(Ay,Ay,Ay1),

which is a contradiction, since r1 + r2 + r3 + r4 + r5 < 1. Hence, we get S(Ax,Ax,Ax1) + S(Ay,Ay,Ay1) = 0,
and so, Ax = Ax1 and Ay = Ay1. Thus, F and A have a unique common coupled fixed point. This completes
the proof.

Remark 3.2. (1) Theorem 3.1 is an extension and a generalization of the results of Aydi [3] from partial metric space
to the setting of S-metric space.

(2) Theorem 3.1 also extends the results of Sabetghadam et al. [18] from cone metric space to the setting of S-metric
space.

Theorem 3.3. Let (X,S) be a complete S-metric space. Let F : X×X→ X and A : X→ X be two functions such that

S(F(x, y),F(u, v),F(z,w)) ≤ λL(x, y,u, v, z,w), (15)

for all x, y,u, v, z,w ∈ X, where λ ∈ [0, 1) is a constant and

L(x, y,u, v, z,w) = max
{
S(Ax,Au,Az),S(Ay,Av,Aw),

S(F(x, y),F(x, y),Ax),
S(F(u, v),F(u, v),Au),

S(F(z,w),F(z,w),Az)
1 + S(F(z,w),F(z,w),Az)

}
. (16)

Assume that F and A satisfy the following conditions:
(i) F(X × X) ⊆ A(X),
(ii) A(X) is complete, and



G. S. Saluja / FAAC 15 (1) (2023), 41–54 49

(iii) A is continuous and commute with F.
Then F and A have a coupled coincidence point in X. Moreover, if F and A are weakly compatible, then F and A

have a unique common coupled fixed point.

Proof. Let x0, y0 ∈ X. Since F(X × X) ⊆ A(X), for , we can choose x1, y1 ∈ X such that Ax1 = F(x0, y0)
and Ay1 = F(y0, x0). Again since F(X × X) ⊆ A(X), we can choose x2, y2 ∈ X such that Ax2 = F(x1, y1)
and Ay2 = F(y1, x1). Continuing this process, we can construct two sequences {xn} and {yn} in X such that
Axn+1 = F(xn, yn) and Ayn+1 = F(yn, xn). Let Gn = S(Axn,Axn,Axn+1) and Hn = S(Ayn,Ayn,Ayn+1). For n ∈N,
by equations (15), (16) and using Lemma 2.23, we have

S(Axn,Axn,Axn+1) = S(F(xn−1, yn−1),F(xn−1, yn−1),F(xn, yn))
≤ λL(xn−1, yn−1, xn−1, yn−1, xn, yn), (17)

where

L(xn−1, yn−1, xn−1, yn−1, xn, yn)

= max
{
S(Axn−1,Axn−1,Axn),S(Ayn−1,Ayn−1,Ayn),

S(F(xn−1, yn−1),F(xn−1, yn−1),Axn−1),
S(F(xn−1, yn−1),F(xn−1, yn−1),Axn−1),

S(F(xn, yn),F(xn, yn),Axn)
1 + S(F(xn, yn),F(xn, yn),Axn)

}
= max

{
S(Axn−1,Axn−1,Axn),S(Ayn−1,Ayn−1,Ayn),

S(Axn,Axn,Axn−1),S(Axn,Axn,Axn−1),
S(Axn+1,Axn+1,Axn)

1 + S(Axn+1,Axn+1,Axn)

}
= max

{
S(Axn−1,Axn−1,Axn),S(Ayn−1,Ayn−1,Ayn),

S(Axn−1,Axn−1,Axn),S(Axn−1,Axn−1,Axn),
S(Axn,Axn,Axn+1)

1 + S(Axn,Axn,Axn+1)

}
= max

{
S(Axn−1,Axn−1,Axn),S(Ayn−1,Ayn−1,Ayn),

S(Axn,Axn,Axn+1)
1 + S(Axn,Axn,Axn+1)

}
= max

{
Gn−1,Hn−1,

Gn

1 + Gn

}
= max

{
Gn−1,Hn−1

}
. (18)

Similarly, we have

S(Ayn,Ayn,Ayn+1) = S(F(yn−1, xn−1),F(yn−1, xn−1),F(yn, xn))
≤ λL(yn−1, xn−1, yn−1, xn−1, yn, xn), (19)

where

L(yn−1, xn−1, yn−1, xn−1, yn, xn)
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= max
{
S(Ayn−1,Ayn−1,Ayn),S(Axn−1,Axn−1,Axn),

S(Ayn,Ayn,Ayn+1)
1 + S(Ayn,Ayn,Ayn+1)

}
= max

{
Hn−1,Gn−1,

Hn

1 +Hn

}
= max

{
Hn−1,Gn−1

}
. (20)

Set

Wn = S(Axn,Axn,Axn+1) + S(Ayn,Ayn,Ayn+1)
= Gn +Hn. (21)

Now consider the following possible cases.

Case 1. If max
{
Gn−1,Hn−1

}
= Gn−1, then from equations (17)-(21), we obtain

Wn ≤ S(Axn,Axn,Axn+1) + S(Ayn,Ayn,Ayn+1) = Gn +Hn

≤ λ [Gn−1 + Gn−1] = 2λGn−1. (22)

Case 2. If max
{
Gn−1,Hn−1

}
= Hn−1, then from equations (17)-(21), we obtain

Wn ≤ S(Axn,Axn,Axn+1) + S(Ayn,Ayn,Ayn+1) = Gn +Hn

≤ λ [Hn−1 +Hn−1] = 2λHn−1. (23)

Hence from equations (22) and (23), we obtain

2Wn ≤ 2λ [Gn−1 +Hn−1] = 2λWn−1,

or

Wn ≤ λWn−1.

Consequently, for all n ∈N, we obtain that

Wn ≤ λWn−1 ≤ λ
2 Wn−2 ≤ · · · ≤ λ

n W0. (24)

If W0 = 0, then S(Ax0,Ax0,Ax1) + S(Ay0,Ay0,Ay1) = 0. Hence, from condition (S2), we get Ax0 = Ax1 =
F(x0, y0) and Ay0 = Ay1 = F(y0, x0), means that (Ax0,Ay0) is a coupled fixed point of F and A. Now, we
assume that W0 > 0. For each m > n, where n,m ∈N, and using (S3), we have

S(Axn,Axn,Axm) + S(Ayn,Ayn,Aym) ≤ 2S(Axn,Axn,Axn+1) + S(Axm,Axm,Axn+1)
+ 2S(Ayn,Ayn,Ayn+1) + S(Aym,Aym,Ayn+1)
= 2(S(Axn,Axn,Axn+1) + S(Ayn,Ayn,Ayn+1))
+ S(Axm,Axm,Axn+1) + S(Aym,Aym,Ayn+1)
≤ . . .

≤ 2
(
Wn +Wn+1 + · · · +Wm−1 +Wm

)
≤ 2(λn + λn+1 + · · · + λm−1 + λm)W0

≤ 2λn(1 + λ + λ2 + . . . )W0

≤

( 2λn

1 − λ

)
W0

→ 0 as n→∞,
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since 0 ≤ λ < 1. Thus, {Axn} and {Ayn} are S-Cauchy sequence in A(X). Since A(X) is complete, we get {Axn}

and {Ayn} are S-convergent to some p ∈ X and r ∈ X respectively. Since A is continuous, we have {AAxn} is
S-convergent to Ap and {AAyn} is S-convergent to Ar. Also, since A and F are commute, we have

AAxn+1 = A(F(xn, yn)) = F(Axn,Ayn),

and

AAyn+1 = A(F(yn, xn)) = F(Ayn,Axn).

Thus,

S(AAxn+1,AAxn+1,F(p, r)) = S(F(Axn,Ayn),F(Axn,Ayn),F(p, r))
≤ λL(xn, yn, xn, yn, p, r), (25)

where

L(xn, yn, xn, yn, p, r) = max
{
S(AAxn,AAxn,Ap),S(AAyn,AAyn,Ar),

S(F(Axn,Ayn),F(Axn,Ayn),AAxn),
S(F(Axn,Ayn),F(Axn,Ayn),AAxn),

S(F(p, r),F(p, r),Ap)
1 + S(F(p, r),F(p, r),Ap)

}
= max

{
S(AAxn,AAxn,Ap),S(AAyn,AAyn,Ar),

S(AAxn+1,AAxn+1,AAxn),
S(AAxn+1,AAxn+1,AAxn),

S(F(p, r),F(p, r),Ap)
1 + S(F(p, r),F(p, r),Ap)

}
. (26)

Passing to the limit as n → ∞ in equation (26), using Lemma 2.23, Lemma 2.24 and the condition (S2), we
get that

L(xn, yn, xn, yn, p, r) = max
{
S(Ap,Ap,Ap),S(Ar,Ar,Ar),S(Ap,Ap,Ap),

S(Ap,Ap,Ap),
S(Ap,Ap,F(p, r))

1 + S(Ap,Ap,F(p, r))

}
= max

{
0, 0, 0, 0,

S(Ap,Ap,F(p, r))
1 + S(Ap,Ap,F(p, r))

}
=

S(Ap,Ap,F(p, r))
1 + S(Ap,Ap,F(p, r))

. (27)

Passing to the limit as n→∞ in equation (25) and using equation (27), we get

S(Ap,Ap,F(p, r)) ≤ λ
S(Ap,Ap,F(p, r))

1 + S(Ap,Ap,F(p, r))
≤ λS(Ap,Ap,F(p, r)), (28)

which is a contradiction, since 0 ≤ λ < 1. Hence, we have S(Ap,Ap,F(p, r)) = 0, that is, F(p, r) = Ap.
Similarly, we can show that F(r, p) = Ar. Thus (Ap,Ar) is a coupled coincidence point of the mappings F
and A. Since the pair (F,A) is weakly compatible, so by weak compatibility of F and A, we have

A(F(p, r)) = F(Ap,Ar) and A(F(r, p)) = F(Ar,Ap). (29)

Hence (Ap,Ar) is a common coupled fixed point of F and A.
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Now, we show the uniqueness of the common coupled fixed point of F and A. Assume that (Ap1,Ar1) is
another common coupled fixed point of F and A with Ap , Ap1 and Ar , Ar1, that is, (Ap,Ar) , (Ap1,Ar1).
Then by using equations (15), (16), using Lemma 2.23 and the condition (S2), we have

S(Ap,Ap,Ap1) = S(F(p, r),F(p, r),F(p1, r1))
≤ λL(p, r, p, r, p1, r1), (30)

where

L(p, r, p, r, p1, r1) = max
{
S(Ap,Ap,Ap1),S(Ar,Ar,Ar1),S(F(p, r),F(p, r),Ap),

S(F(p, r),F(p, r),Ap),
S(F(p1, r1),F(p1, r1),Ap1)

1 + S(F(p1, r1),F(p1, r1),Ap1)

}
= max

{
S(Ap,Ap,Ap1),S(Ar,Ar,Ar1),S(Ap,Ap,Ap),

S(Ap,Ap,Ap),
S(Ap1,Ap1,Ap1)

1 + S(Ap1,Ap1,Ap1)

}
= max

{
S(Ap,Ap,Ap1),S(Ar,Ar,Ar1), 0, 0, 0

}
= max

{
S(Ap,Ap,Ap1),S(Ar,Ar,Ar1), 0

}
. (31)

Similarly, we obtain

S(Ar,Ar,Ar1) = S(F(r, p),F(r, p),F(r1, p1))
≤ λL(r, p, r, p, r1, p1), (32)

where

L(r, p, r, p, r1, p1) = max
{
S(Ap,Ap,Ap1),S(Ar,Ar,Ar1), 0

}
. (33)

From equations (30) and (32), we obtain

S(Ap,Ap,Ap1) + S(Ar,Ar,Ar1)

≤ λ [L(p, r, p, r, p1, r1) +L(r, p, r, p, r1, p1)]. (34)

Set

Q = S(Ap,Ap,Ap1) + S(Ar,Ar,Ar1), (35)

and

M = S(Ap,Ap,Ap1), N = S(Ar,Ar,Ar1). (36)

Now, we consider the following possible cases.

Case 10. If max
{
M,N, 0

}
=M, then from equations (34)-(36), we obtain

Q = S(Ap,Ap,Ap1) + S(Ar,Ar,Ar1) =M +N
≤ λ [M +M] = 2λM. (37)

Case 20. If max
{
M,N, 0

}
= N, then from equations (34)-(36), we obtain

Q = S(Ap,Ap,Ap1) + S(Ar,Ar,Ar1) =M +N
≤ λ [N +N] = 2λN. (38)

Hence from equations (37) and (38), we obtain that 2Q ≤ 2λ [M +N] = 2λQ or Q ≤ λQ, which is a contra-
diction, since 0 ≤ λ < 1. Hence, we conclude that Q = 0, that is, S(Ap,Ap,Ap1) + S(Ar,Ar,Ar1) = 0, and so,
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Ap = Ap1 and Ar = Ar1.

Case 30. If max
{
M,N, 0

}
= 0, then from equations (34)-(36), we obtain Q ≤ λ [0 + 0] = 0. Hence, we

conclude that Q = 0, that is, S(Ap,Ap,Ap1) + S(Ar,Ar,Ar1) = 0, and so, Ap = Ap1 and Ar = Ar1.

Thus in both the above cases, we obtain Ap = Ap1 and Ar = Ar1. Consequently, F and A have a unique
common coupled fixed point. This completes the proof.

Now, we give an example in support of the result.

Example 3.4. Let X = [0, 1] and the function S : X3
→ [0,∞) be defined as

S(x, y, z) = |y − z| + |y + z − 2x|,

for all x, y, z ∈ X. Then the function S is an S-metric on X and (X,S) is an S-metric space. Define a map F : X×X→ X
by F(x, y) = x

128 +
y

256 for x, y ∈ X. Also, define A : X→ X by A(x) = x
4 . We have

S(F(x, y),F(u, v),F(z,w)) = |F(u, v) + F(z,w) − 2F(x, y)|
+|F(u, v) − F(z,w)|

=
∣∣∣∣ u
128
+

v
256
+

z
128
+

w
256
−

2x
128
−

2y
256

∣∣∣∣
+
∣∣∣∣ u
128
+

v
256
−

z
128
−

w
256

∣∣∣∣
=

1
128
|u + z − 2x| +

1
256
|v + w − 2y|

+
1

128
|u − z| +

1
256
|v − w|

=
1

128

(
|u + z − 2x| + |u − z|

)
+

1
256

(
|v + w − 2y| + |v − w|

)
=

1
32

(∣∣∣∣u4 + z
4
−

2x
4

∣∣∣∣ + ∣∣∣∣u4 − z
4

∣∣∣∣)
+

1
64

(∣∣∣∣v4 + w
4
−

2y
4

∣∣∣∣ + ∣∣∣∣v4 − w
4

∣∣∣∣)
=

1
32

S(Ax,Au,Az) +
1
64

S(Ay,Av,Aw)

≤
1

32

(
S(Ax,Au,Az) + S(Ay,Av,Aw)

)
≤

1
32

(
S(Ax,Au,Az) + S(Ay,Av,Aw)

+S(F(x, y),F(x, y),Ax)
+S(F(u, v),F(u, v),Au)

+S(F(z,w),F(z,w),Az)
)
,

holds for all x, y, z,u, v,w ∈ X. It is easy to see that F and A satisfy all the conditions of Theorem 3.1 for r1 = r2 =
r3 = r4 = r5 =

1
32 with r1 + r2 + r3 + r4 + r5 =

5
32 < 1. Thus F and A have a unique common coupled fixed point.

Here F(0, 0) = 0 and A(0) = 0.
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4. Conclusion

In this paper, we prove some unique common coupled fixed point theorems in the setting of S-metric
spaces for a pair of weakly compatible mappings. Our results of findings extend and generalize several
previously published findings from the existing literature.
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