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Some results on the stability of σeap(·) and σeδ(·) of linear relations
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Abstract. In this research paper, we provide firstly the necessary and sufficient conditions for the algebraic
sum to become a closed and closable linear relation. Secondly, we investigate the stability of the essential
approximate point spectrum σeap(.) as well as the essential defect spectrum σeδ(T), in terms of linear relations
on Banach spaces, which were introduced by T. Àlvarez and all in [1].

1. Introduction

The multivalued linear operator which was originally introduced into Functional Analysis by J. Von
Neumann [19] is an intrinsic factor for the investigation of differential equations [10] controlled by non-
densely defined operators. The adjoint of such operators is linear relations. These linear operators are more
appropriate for the definition of the closure, the completion and the inverse of linear relations. In fact,
exploring some Cauchy problems associated with parabolic type equations in Banach spaces [13] is a good
example of the investigations conducted about the multivalued linear operator. It is worth mentioning
that there are significant research works dealing with linear relations. Among these works, we can cite
that of M. Gromov [15] handling a treatise on partial differential relations, that of A. Favini and A. Yagi
[13] addressing the application of multivalued methods to the solution of differential equations. Other
research works tackled the development of a fixed point theory for linear relations into mild solutions
of quasi-linear differential inclusions of evolution as well as into many problems of fuzzy theory (see for
example [3, 7, 14, 18, 20]). There are also many papers on semi-Fredholm linear relations and other classes
related to them ( see for example [6, 8, 9]).

Throughout this work, except where stated otherwise, X, Y and Z will denote complex normed linear
spaces, overK = R orC. L(X,Y) denotes the class of all linear bounded operators on X into Y. A multivalued
linear operator (or a linear relation) T from X to Y is a mapping from a subspace

D(T) := {x ∈ X : Tx , ∅}

of X, called the domain of T, into P(Y)\{∅} (collection of non-empty subsets of Y) such that T(αx + βy) =
αT(x) + βT(y) for all non-zero scalars α, β ∈ C and x, y ∈ D(T). If T maps the points of its domain to
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singletons, then T is said to be a single valued linear operator (or simply an operator).
A linear relation is uniquely determined by its graph G(T), which is defined by

G(T) := {(x, y) ∈ X × Y : x ∈ D(T) and y ∈ Tx}.

In this notation, LR(X,Y) denotes the class of all linear relations on X into Y, if X = Y would simply
denote LR(X,X) := LR(X) .
The inverse of T is the linear relation, T−1 defined by

G(T−1) := {(y, x) ∈ Y × X : (x, y) ∈ G(T)}.

The subspace N(T) := T−1(0) is called the null space of T, and T is called injective if N(T) = {0}, that is,
if T−1 is a single valued linear operator. The range of T is the subspace R(T) := T(D(T)), and T is called
surjective if R(T) = Y. When T is injective and surjective, we say that T is bijective. The quantities

α(T) := dim (N(T)) and β(T) := codim(R(T)) = dim(Y/R(T))

are called the nullity (or the kernel index) and the deficiency of T, respectively. We also write β(T) :=
codim(R(T)). The index of T is defined by i(T) := α(T) − β(T) provided that both α(T) and β(T) are not
infinite. If α(T) and β(T) are infinite, then T is said to have no index.

Let M be a subspace of X such that M ∩D(T) , ∅ and let T ∈ LR(X,Y). Then, the restriction T|M, is the
linear relation given by

G(T|M) := {(m, y) ∈ G(T) : m ∈M} = G(T) ∩ (M × Y).

For S, T ∈ LR(X,Y) and R ∈ LR(Y,Z), the sum S + T and the product RS are the linear relations defined by

G(T + S) := {(x, y + z) ∈ X × Y : (x, y) ∈ G(T) and (x, z) ∈ G(S)}, and

G(RS) := {(x, z) ∈ X × Z : (x, y) ∈ G(S), (y, z) ∈ G(R) f or some y ∈ Y}

respectively, and if λ ∈ K, the λT is defined by

G(λT) := {(x, λy) : (x, y) ∈ G(T)}.

If T ∈ LR(X) and λ ∈ K, then the linear relation λ − T is indicated by

G(λ − T) := {(x, y − λx) : (x, y) ∈ G(T)}.

Let T ∈ LR(X,Y). We write QT for the quotient map from Y into Y/T(0). It’s clear, therefore, that QTT is
an operator. For all x ∈ D(T), we define ∥Tx∥ := ∥QTTx∥, and the norm of T is defined by ∥T∥ := ∥QTT∥. We
note that ∥Tx∥ and ∥T∥ are not real norms. In fact, a nonzero relation can have a zero norm. T is said to be
closed if its graph G(T) is a closed subspace of X × Y. The closure of T, denoted by T, is defined in terms of
its graph G(T) := G(T). We denote by CR(X,Y) the class of all closed linear relations on X into Y, if X = Y
would simply denote CR(X,X) := CR(X). If T is an extension to T (that is, T|D(T)), we say that T is closable.
Let T ∈ LR(X,Y). We say that T is continuous if for each neighbourhood V in R(T), the inverse image
T−1(V) is a neighbourhood inD(T) equivalently to ∥T∥ < ∞; open if T−1 is continuous, bounded ifD(T) = X
and T is continuous, bounded below if it is injective and open, and compact if QTT(BD(T)) is compact in Y
(BD(T) := {x ∈ D(T) : ∥x∥ ≤ 1}). We denote by KR(X,Y) the class of all compact linear relations on X into Y,
if X = Y would simply denoteKR(X,X) := KR(X).
We present the following definitions suggegted by R. W. Cross [11]:

Definition 1.1. [11, Definition, IV.3.1] Let T ∈ LR(X,Y), and let XT denote the vector spaceD(T) normed by

∥x∥T := ∥x∥ + ∥Tx∥, f or all x ∈ D(T).

Let GT ∈ LR(XT,X) be the identity injection of XT = (D(T), ∥.∥T) into X, i.e.,
D(GT) = XT, GT(x) = x, f or all x ∈ XT.
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Definition 1.2. [11, Definition, VII.2.1] Let S, T ∈ LR(X,Y). S is said to be T-bounded if D(T) ⊂ D(S), and there exist
non-negative constants a, and b, such that

∥Sx∥ ≤ a∥x∥ + b∥Tx∥ f or all x ∈ D(T). (1)

In that case, the infimum of the constant b which satisfies (1) is called the T-bound of S.

Definition 1.3. [11, Definition VII.2.1] Let T ∈ LR(X,Y). A relation S ∈ LR(X,Y) is said to be T-compact if
D(T) ⊂ D(S), and SGT is compact.
S is called T-precompact ifD(T) ⊂ D(S), and SGT is precompact.

Remark 1.4. It is clear that GT is a bounded operator, and if T is single valued, then XT is norm isomorphic to the
subspace G(T) ⊂ X × Y.

If X is a normed linear space, then X′

will denote the dual norm of X, i.e.,the space of all continuous
linear functionals x′ are defined on X, with the norm

∥x′∥ = inf{λ : |x′x| ≤ λ∥x∥ f or all x ∈ X}.

If K ⊂ X, and L ⊂ X′

, we shall adopt the following notation:

K⊥ := {x′ ∈ X
′

: x′ = 0 f or all x ∈ K},
L⊤ := {x ∈ X : x′ = 0 f or all x′ ∈ L}.

It’s obvious then that, K⊥ and L⊤ are closed linear subspaces of X′

and X respectively.
The adjoint of T, T′, is defined by

G(T′) = G(−T−1)⊥ ⊂ Y
′

× X
′

where ⟨(y, x), (y′, x′)⟩ := ⟨x, x′⟩ + ⟨y, y′⟩. This implies that

(y′, x′) ∈ G(T′) if, and only if, y′y − x′x = 0 for all (x, y) ∈ G(T).

Similarly, we have y′y = x′x for all y ∈ Tx, x ∈ D(T). Hence, x′ ∈ T′y if, and only if, y′Tx = x′x for all
x ∈ D(T).

Definition 1.5. [11, Definition, V.1.1] (i) A linear relation T ∈ LR(X,Y) is said to be upper semi-Fredholm, and
denoted by T ∈ F+(X,Y), if there exists a finite codimensional subspace M of X is for which T|M is injective and open.
(ii) A linear relation T is said to be lower semi-Fredholm, and is indicated by T ∈ F−(X,Y), if its conjugate T′ is upper
semi-Fredholm.

For the case when X and Y are Banach spaces, we extend the class of closed single valued Fredholm
type operators given earlier to include closed multivalued operators, and we note that the definitions of
the F+(X,Y) and F−(X,Y) are consistent with

Φ+(X,Y) := {T ∈ CR(X,Y) : R(T) is closed, and α(T) < ∞},

Φ−(X,Y) := {T ∈ CR(X,Y) : R(T) is closed, and β(T) < ∞}.

If X = Y, this would simply denote Φ+(X,Y), Φ−(X,Y), F+(X,Y), and F−(X,Y) by respectively Φ+(X),
Φ−(X), F+(X), and F−(X).

Definition 1.6. [2, Definition, 4.1] Let T ∈ CR(X). The resolvent set of T is defined by

ρ(T) := {λ ∈ C : (λ − T)−1 is everywhere de f ined, and sin1le valued}.

The spectrum of T is σ(T) := C \ ρ(T).
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Definition 1.7. [1] Let T ∈ CR(X).
(i) We define the essential approximate point spectrum of T by:

σeap(T) :=
⋂

K∈KT(X)

σap(T + K).

(ii) We define the essential defect spectrum of T by:

σeδ(T) :=
⋂

K∈KT(X)

σδ(T + K),

whereKT(X) := {K ∈ KR(X) : D(T) ⊂ D(K),K(0) ⊂ T(0)},

σap(T) := {λ ∈ C : T − λ is not bounded below},

and
σδ(T) := {λ ∈ C : T − λ is not surjective}.

In [11], R. W. Cross introduced a concept of essential spectrum of a multivalued linear operator (also
called linear relations or subspaces) in a complex normed space in terms of the nullity, and deficiency of its
complete closure. He demonstrated its stability under relative compact perturbation with certain additional
conditions (see [11, Theorem VII.3.2]). In the thesis [22], D. Wicox identified five distinct essential spectra
of linear relations in Banach spaces in terms of semi-Fredholm properties, and highlighted their stability
under relative compact perturbation with some additional conditions, and under compact perturbation,
separately, in [21] (see Remarks 5.1, and 5.2 for more detailed discussions about their relations with those
obtained in the present paper). In [1], the authors characterized such essential spectra in terms of semi-
Fredholm linear relations and they also obtained set forward spectral mapping theorems for σeap(T) and
σeδ(T). They established a characterization of σeap(T) and σeδ(T) by means of upper and lower semi-Fredholm
a linear relations.
This paper, is devoted in the first place, to the study of some properties of unbounded linear relations.
Among other things, we show that most of the results obtained by A. Jeribi [16, Theorems, 2.1.4 and 2.1.5]
remain valid for operators in the context of multivalued linear operators. In this work, we present some
sufficient conditions so that if A, and B are two unbounded linear relations, then their algebraic sum A + B
is also a closed linear relation. In addition, we focus on the stability of the essential spectra of A + B.
In the second place, the purpose of this paper is to investigate perturbation theorems for semi-Fredholm
linear relations so as to verify the stability properties of the essential approximate point spectrum σeap(T)
and the essential defect spectrum σeδ(T) of closed and closable linear relations under relatively compact and
precompact perturbation on Banach spaces.
The paper is organized as follows. Section 2 displays preliminaries which will be needed in the sequel. In
section 3, we establish criteria for closedness and closability of the algebraic sum A + B in case A and B are
two unbounded linear relations given that A is B-bounded with A-bound δ (see Theorem 3.7). In section 4,
we investigate the stability of the essential approximate point spectrum and the essential defect spectrum
of closed and closable linear relations under relatively compact and precompact perturbation on Banach
spaces (see Theorem 4.6).

2. Preliminaries

The mains objective of this section is to introduce the basic concepts, notations, and elementary results
which are used throughout the work.

Definition 2.1. [11, Definition IV.1.1] Let I(X), C(X), andP(X) denote respectively the infinite dimensional, finite
codimensional, and closed finite codimensional subspaces of a normed linear space X.
Let ΥXY := {Γ,Γ0,Γ0,∆} where f : LR(X,Y) → [0, ∞] ∈ ΥXY is defined as follows: If dimD(T) < ∞, then
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f (T) := 0 for all f ∈ ΥXY. Otherwise,

Γ(T) := inf
M∈I(D(T))

∥T|M∥,

Γ0(T) := inf
M∈C(D(T))

∥T|M∥,

Γ0(T) := inf
M∈P(D(T))

∥T|M∥,

∆(T) := sup
M∈I(D(T))

Γ(T|M ).

Hence, the following inequalities hold: Γ(T) ≤ ∆(T) ≤ Γ0(T) ≤ Γ0(T).

Definition 2.2. [11, Definition V.1.1] Let T ∈ LR(X,Y). We say that T is precompact if QTTBD(T) is totally
bounded in Y, and strictly singular if there is no infinite dimensional subspace M ofD(T) for which T|M is injective,
and open.

Remark 2.3. Let S, T ∈ LR(X,Y).

(i) If S is 0-bounded, then S is bounded.

(ii) The inequality (1) is equivalent to

∥Sx∥2 ≤ a2
1∥x∥

2 + b2
1∥Tx∥2 , x ∈ D(T), (2)

where a1 = (a2 + ab)
1
2 , and b1 = (b2 + ab)

1
2 .

(iii) S is T-bounded if, and only if, S is (λ − T)-bounded for some λ ∈ C.

(iv) S is T-bounded if, and only if,D(T) ⊂ D(S), and SGT is bounded.

(v) S is T-bounded with T-bound δ if, and only if, QSS is QTT-bounded with QTT-bound δ.

Lemma 2.4. Let T,S, and U ∈ LR(X,Y).

(i) [2, Lemma 2.5] If S(0) ⊂ T(0), andD(T) ⊂ D(S), then T − S + S = T.

(ii) [2, Lemma 2.5] If S(0) ⊂ T(0),D(T) ⊂ D(S), and U ⊂ T − S, then U + S ⊂ T.

(iii) [22, Proposition 2.8.2] If T ∈ CR(X,Y), then XT and T(0) are complete.

Lemma 2.5. [5, Lemma 3.1] Let S, T ∈ LR(X,Y). If S(0) ⊂ T(0), and S is T-bounded with T-bound δ < 1, then S
is (T + S)-bounded with (T + S)-bound ≤ δ

1−δ .

Proposition 2.6. [11, Proposition II.5.3] Let T ∈ LR(X,Y), the following properties are equivalent:

(i) T is closed.

(ii) QTT is closed, and T(0) is closed.

Proposition 2.7. [11, Proposition II.5.7] Let T ∈ LR(X,Y), the following properties are equivalent:

(i) T is closable.

(ii) QTT is closable, and T(0) is closed.

In particular, if T is continuous, and T(0) is closed, then T is closable.

Lemma 2.8. [11, Exercise II.5.18] Let S ∈ CR(Y,Z) and T ∈ L(X,Y). Then ST is closed.

Proof. Let (xn, yn) ∈ G(ST) such that (xn, yn) converges to (x, y). Then yn ∈ STxn = S(Txn). This implies
that (Txn, yn) ∈ G(S). Given that T is a bounded operator, and S is closed, then (Tx, y) ∈ G(S). From this
perspective, y ∈ S(Tx) = STx.
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Proposition 2.9. [11, Proposition II.5.8] Let T ∈ LR(X,Y). We have ∥T∥ ≤ ∥T∥ with equality holding if
T(0) = T(0).

Lemma 2.10. [1, Lemma 2.3] Let X be complete, T ∈ CR(X), and K ∈ KT(X).

(i) If T ∈ Φ+(X), then T + K ∈ Φ+(X) with i(T + K) = i(T).

(ii) If T ∈ Φ−(X), then T + K ∈ Φ−(X) with i(T + K) = i(T).

Proposition 2.11. Let T ∈ LR(X,Y)

(i) [11, Theorem V.2.6] T is strictly singular if, and only if, ∆(T) = 0.

(ii) [11, Corollary V.7.6] If X, Y are complete and T ∈ CR(X,Y), then T ∈ F+(X,Y) if, and only if, T ∈ Φ+(X,Y).

(iii) [11, Theorem V.2.4] If dimD(T) = ∞, then T ∈ F+(X,Y) if, and only if, Γ(T) > 0.

(iv) [11, Corollary V.2.5] T ∈ F+(X,Y) if, and only if, TGT ∈ F+(XT,Y).

(v) [11, Theorem V.2.2] T is precompact if, and only if, Γ0(T) = 0.

(vi) [11, Corollary V.2.8, and Theorem V.2.2] If Γ0(T) = 0, then T is strictly singular.

(vii) [11, Corollary IV.2.14] T is continuous if, and only if, Γ0(T) < ∞.

(viii) [11, Corollary V.2.3] If T is precompact, then T is continuous.

Theorem 2.12. [11, Theorem V.3.2] Let S, T ∈ LR(X,Y) such that S(0) ⊂ T(0). If ∆(S) < Γ(T), then T + S ∈
F+(X,Y).

Proposition 2.13. Let T, S ∈ LR(X,Y).

(i) [11, Proposition III.1.5] LetD(T) ⊂ D(S). If S is continuous, then (T + S)′ = T′ + S′.

(ii) [11, Proposition V.5.15] Let T ∈ CR(X,Y). T ∈ KR(X,Y) if, and only if, T′ ∈ KR(Y′,X′).

(iii) [11, Proposition V.7.5] T ∈ F+(X,Y) if, and only if, T′ ∈ F−(Y′ ,X′

) and T′ ∈ F+(Y′ ,X′

) if, and only if,
T ∈ F−(X,Y).

(iv) [11, Proposition V.7.8] If dim S(0) < ∞, then T + S − S ∈ F+(X,Y) if, and only if, T ∈ F+(X,Y).

(v) [11, Proposition V.5.27] If T is closable, then T ∈ F−(X,Y) if, and only if, TGT ∈ F−(XT,Y).

(vi)[11, Proposition V.5.12] LetD(T) ⊂ D(S), and let T ∈ F−(X,Y). If S is precompact, then T + S ∈ F−(X,Y).

Proposition 2.14. [9, Theorem 2.17] Let S ∈ LR(X,Y), T ∈ F+(X,Y) with G(S) ⊂ G(T) , and dim D(S) = ∞.
Then, S ∈ F+(X,Y).

Proposition 2.15. [11, Propositions VII.2.2 and VII.2.3] Let T,S ∈ LR(X,Y).

(i) Let λ ∈ C, the norms ∥.∥T and ∥.∥λ−T are equivalent.

(ii) If S(0) ⊂ T(0), and S is T-bounded with T-bound δ < 1, then the norms ∥.∥T, and ∥.∥T+S are equivalent.

In [1], the authors displayed the characterisation for the essential approximate point spectrum as well
as the essential defect spectrum of T. Hence, we have the following Lemma:

Proposition 2.16. [1, Theorem 3.1] Let X be complete, T ∈ CR(X) and λ ∈ C. Then,

(i) λ < σeap(T) if, and only if, T − λ ∈ Φ+(X) and i(T − λ) ≤ 0.

(ii) λ < σeδ(T) if, and only if, T − λ ∈ Φ−(X) and i(T − λ) ≥ 0.



F. Author, S. Author / FAAC 14 (2) (2022), 51–62 57

3. Main results

In this section, we establish criteria and we give a necessary and sufficient condition for closedness and
closability of two linear relations of which there is one of the two relatively bounded entries.

Lemma 3.1. Let S, T ∈ LR(X,Y) satisfies S(0) ⊂ T(0) andD(T) ⊂ D(S). If S is T-compact, then S is T-bounded.

Proof. Suppose that S is not bounded. Then, assume without loss of generality that for each positive
integer n, there exists an {xn}n ∈ D(T) such that

∥xn∥ + ∥Txn∥ = 1, and ∥Sxn∥ > n

which implies that {xn}n, and {Txn}n are bounded, and that S is T-compact. Let yn ∈ Sxn. We can extract a
convergent subsequence, which is a contradiction.

Lemma 3.2. Let A, B, and C ∈ LR(X,Y).

(i) If A is B-bounded with B-bound δ1, and B is C-bounded with C-bound δ2, then A is C-bounded with C-bound δ1δ2.

(ii) If B is T-bounded with T-bound δ1, and C is T-bounded with T-bound δ2, then A = B ± C is T-bounded with
T-bound (δ1 + δ2).

Proof. (i) Since A is B-bounded, and B is C-bounded, there exist a, b, c, d ≥ 0, such that ∥Ax∥ ≤ a∥x∥+b∥Bx∥
for all x ∈ D(B), and ∥Bx∥ ≤ c∥x∥ + d∥Cx∥ for all x ∈ D(C). It follows that, for all x ∈ D(C), ∥Ax∥ ≤
(a + bc)∥x∥ + bd∥Cx∥, andD(C) ⊂ D(A).

(ii) Since B is T-bounded, and C is T-bounded, there exist a, b, c, d ≥ 0, such that ∥Bx∥ ≤ a∥x∥ + b∥Tx∥ for
all x ∈ D(T), and ∥Cx∥ ≤ c∥x∥ + d∥Tx∥, for all x ∈ D(T). It follows that, for all x ∈ D(T), ∥Ax∥ = ∥(B ± C)x∥ ≤
∥Bx∥ + ∥Cx∥ ≤ (a + c)∥x∥ + (b + d)∥Tx∥, andD(T) ⊂ D(A).

Lemma 3.3. Let T, S ∈ LR(X,Y) such that S(0) ⊂ T(0), andD(T) ⊂ D(S).

(i) QTS is single valued.

(ii) ∥QTS∥ ≤ ∥S∥.

Proof. (i) QTS(0) ⊂ QTT(0) = 0.
(ii) ∥QTSx∥ = d(T(0),Sx) ≤ d(S(0),Sx) = ∥Sx∥.

Lemma 3.4. Let S, T, A and B ∈ LR(X,Y).

(i) If S and T are closable, and D(T) ⊂ D(S), then S is T-bounded with T-bound α if, and only if, S is T-bounded
with T-bound α.

(ii) If S = A + B is T-bounded with T-bound β, B is A-bounded with A-bound δ < 1, and B(0) ⊂ A(0), then A is
T-bounded with T-bound γ ≤ β

1−δ .

Proof. (i) Let S be T-bounded with T-bound α. Then, we obtain by Remark 2.3 (v), QSS which is QTT-
bounded with QTT-bound α. The latter is equivalent to QSS is QTT-bounded with QTT-bound α by [12,
Lemma, 8.1]. Since D(T) = D(QTT), and QTT = QTT (by [11, Proposition, II.5.2]), the latter holds if, and
only if, S is T-bounded with T-bound α.

(ii) Since B is A-bounded with A-bound δ < 1, and B(0) ⊂ A(0), then if we apply Lemma 2.5, we obtain B
which is S-bounded with S-bound α ≤ δ

1−δ . Also, S is T-bounded with T-bound β. Hence, by Lemma 3.2
(i), it follows that B is T-bounded with T-bound αβ ≤ δβ

1−δ . So, B is T-bounded with T-bound αβ ≤ δβ
1−δ , and

knowing that S is T-bounded with T-bound β and A = S − B, then by Lemma 3.2 (ii), we get A which is
T-bounded with T-bound γ ≤ β

1−δ .

Remark 3.5. Lemma 3.4 is a generalization of [12, Lemma, 8.1].
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Lemma 3.6. Let S, T ∈ LR(X,Y) such that S(0) ⊂ T(0). Suppose that S is T-bounded with T-bound δ, and Y is
complete.

(i) If T is closable, and δ < 1, then T + S is closable.

(ii) If T + S is closable, and δ < 1
2 , then T is closable.

If in addition we have S is closable, then we get S + T = S + T andD(T + S) = D(T).

Proof. (i) Let (T + S)(0) = T(0) and T be closable. Then, by Proposition 2.7, we obtain (T + S)(0) is closed,
and QTT is closable.
Since S is T-bounded with T-bound δ < 1, then ,by Remark 2.3 (v), we obtain QTS is QTT-bounded with
QTT-bound < 1. So, we get QS+T(T + S) = QT(T + S) = QTT + QTS is closable by [17, Theorem, IV.1.1].
Applying Proposition 2.7, it follows that T + S is closable.

(ii) Since T + S is closable, S is T-bounded with T-bound δ < 1
2 , and by Lemma 2.4, we get T = T + S − S.

Besides, by Lemma 2.5, we get S which is (T + S)-bounded with (T + S)-bound < 1. Therefore, using (i),
it follows that T is closable. Since T and S are closable, and S is T-bounded with T-bound < 1, then, by
Lemma 3.4 (i), we obtain S is T-bounded with T-bound < 1. So, by Lemma 3.7 (i), we get S + T is closed.

Since T ⊂ T, and S + T ⊂ S + T, then T + S ⊂ T + S = T + S (S + T is closed).
On the one hand, we obtain by Lemma 2.4, T = T+S−S. Thus, T = T+S−S ⊂ T + S−S. On the other hand,
we have S is T-bounded with T-bound δ < 1

2 . Hence, by Lemma 2.5 S is (T+S)-bounded with (T+S)-bound
< 1. Using Lemma 3.4 (i), we obtain S which is (T + S)-bounded with (T + S)-bound < 1. Therefore, by

Lemma 3.7, we get T + S−S is closed. Therefore, T ⊂ T + S − S = T + S−S, and by Lemma 2.4 (ii) we obtain
T + S ⊂ T + S. As a matter of fact, T + S = T + S, andD(T + S) = D(T + S) = D(T).

Theorem 3.7. Let T ∈ LR(X,Y), and S ∈ LR(X,Y) be T-bounded with T-bound δ satisfying S(0) ⊂ T(0).

(i) If T is closed, and δ < 1, then T + S is closed.

(ii) If T + S is closed, and δ < 1
2 , then T is closed.

Proof. (i) Clearly (T + S)(0) = T(0). Let T be closed. Then, we get, by Proposition 2.6, (T + S)(0) which is
closed, and QTT which is closed. Since S is T-bounded with T-bound δ < 1, then, by Remark 2.3 (v), we
obtain QTS which is QTT-bounded with QTT-bound < 1. Therefore, QS+T(T + S) = QT(T + S) = QTT +QTS
which is closed by [17, Theorem, IV.1.1 p 190]. Applying Proposition 2.6, it follows that T + S is closed.

(ii) Since T+S is closed, S is T-bounded with T-bound δ < 1
2 , and by Lemma 2.4, we get T = T+S−S. Then,

by Lemma 2.5, we obtain S which is (T + S)-bounded with (T + S)-bound < 1. Applying (i), it follows that
T is closed.

Lemma 3.8. Let T ∈ CR(X,Y), and S ∈ LR(X,Y). IfD(T) ⊂ D(S), and S is closable, then S is T-bounded.

Proof. Let S1 := S|D(T). Since S is closable, then S1 is closable, and hence S1 is a closed extension to S1. It
follows from Lemma 2.8 that S1GT is closed, and thus by Lemma 2.4 (ii), it follows that S1GT is bounded
recalling that XT is complete. This implies that S1 is T-bounded. Thus, by Lemma 3.4 S1 is T-bounded i.e.,
S is T-bounded.

Lemma 3.9. Let A, B and C ∈ LR(X,Y) satisfying B(0)∪C(0) ⊂ A(0). Suppose that B is A-bounded with A-bound
δ1, C is A-bounded with A-bound δ2, and Y is complete.

(i) If δ1 + δ2 < 1, and A is closed, then A + B + C is closed.

(ii) If δ1 + δ2 < 1
2 , and A + B + C is closed, then A is closed.

Proof. (i) Since B is A-bounded with A-bound δ1, and C is A-bounded with A-bound δ2, then we get, by
Lemma 3.2 (ii), B + C which is A-bounded with A-bound (δ1 + δ2) < 1. Applying Lemma 3.7 (i), we obtain
A + B + C which is closed.
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(ii) Since B is A-bounded with A-bound δ1, and C is A-bounded with A-bound δ2. Then, for all x ∈ D(A),
we have

∥(B + C)x∥ ≤ ∥Bx∥ + ∥Cx∥
≤ (a1 + a2)∥x∥ + (b1 + b2)∥Ax∥
≤ (a1 + a2)∥x∥ + (b1 + b2)∥(A + B + C − B − C)x∥
≤ (a1 + a2)∥x∥ + (b1 + b2)∥(A + B + C)x∥ + (b1 + b2)∥(B + C)x∥

≤
(a1 + a2)

1 − (b1 + b2)
∥x∥ +

(b1 + b2)
1 − (b1 + b2)

∥(A + B + C)x∥.

Therefore, we obtain (B + C) which is (A + B + C)-bounded with (A + B + C)-bound < 1. On the other side,
by Lemma 2.4 (i), we get A = A + B + C − B − C. As a matter of fact, A + B + C is closed, and (B + C) is
(A + B + C)-bounded with (A + B + C)-bound < 1. Finally applying (i), it follows that A is closed.

Lemma 3.10. Let A, B and C ∈ LR(X,Y) such that C(0) ⊂ B(0) ⊂ A(0). Suppose that B is A-bounded with
A-bound δ1 < 1, C is B-bounded with B-bound δ2, and Y is complete. Then,
If δ1δ2

1−δ1
< 1, and A is closed, then A + B + C is closed.

Proof. Since A is closed and B is A-bounded with A-bound δ1 < 1, then, by Lemma 3.7 (i), we get A + B
which is closed.
On the one hand, B is A-bounded with A-bound δ1 < 1, then by Lemma 2.5, we obtain B which is (A + B)-
bounded with (A+B)-bound ≤ δ1

1−δ1
. On the other hand, C is B-bounded with B-bound δ2. Then, by Lemma

3.2, we get C which is (A + B)-bounded with (A + B)-bound ≤ δ1δ2
1−δ1

.
Since C is (A + B)-bounded with (A + B)-bound < 1, and A + B is closed. Then, by Lemma 3.7, we obtain
A + B + C which is closed.

4. Stability of σeap(T) and σeδ(T)

In this section, we explore the stability of the essential approximate point spectrum and the essential de-
fect spectrum of closed and closable linear relations under relatively compact and precompact perturbation
on Banach spaces.

Lemma 4.1. Let S ∈ LR(X,Y) and T ∈ F+(X,Y) with dimD(T) = ∞.
If S is precompact, then S is strictly singular, and ∆(S) < Γ(T).
If additionally, S(0) ⊂ T(0), then T + S ∈ F+(X,Y).

Proof. Since T ∈ F+(X,Y), and dimD(T) = ∞, then Γ(T) > 0 by Proposition 2.11 (iii). Using Proposition
2.11 (v), we get Γ0(S) = 0 (S is precompact). Since ∆(S) ≤ Γ0(S) = 0 we have ∆(S) = 0 . Then, S is strictly
singular by Proposition 2.11 (i). Thus, by Theorem 2.12, it follows that T + S ∈ F+(X,Y).

Lemma 4.2. Let S, T ∈ LR(X,Y). If S is T-precompact, then S is strictly singular.

Proof. Since S is T-precompact, then SGT is precompact. By Proposition 2.11 (viii), it follows that SGT is
continuous.
On the one hand, referring to [11, Exercise IV.1.5 p 95], we obtain 0 = Γ0(SGT) = Γ0(SGT). On the other
hand, Γ0(SGT) = Γ0(S)

1+Γ0(T) by Proposition [11, Proposition IV.3.4 p 104]. So, Γ0(S) = 0. Therefore S is strictly
singular by Proposition 2.11 (vi).

Proposition 4.3. Let S,T ∈ LR(X,Y) with G(S) ⊂ G(T), and dimD(S) = ∞. Then,

(i) If T ∈ F+(X,Y), then T + S ∈ F+(X,Y).

(ii) If T + S ∈ F+(X,Y), and dim S(0) < ∞, then T ∈ F+(X,Y).
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Proof. (i) Since we have G(S) ⊂ G(T), then we get

G(T + S) := {(x, y + z) ∈ X × Y : (x, y) ∈ G(T) and (x, z) ∈ G(S)}
⊂ {(x, y + z) ∈ X × Y : (x, y) ∈ G(T) and (x, z) ∈ G(T)}
⊂ G(T).

Now dimD(T + S) = dimD(T) ∩D(S) = dimD(S) = ∞. So, by Proposition 2.14, we have T + S ∈ F+(X,Y).

(ii) Since we have G(S) ⊂ G(T), then we obtain

G(S) := {(x, y) ∈ X × Y : x ∈ D(S) ⊂ D(T) and y ∈ Sx ⊂ Tx}
⊂ {(x, y) ∈ X × Y : x ∈ D(S) ∩D(T) and y ∈ Tx + Sx}
:= {(x, y) ∈ X × Y : x ∈ D(S + T) and y ∈ (T + S)x}
:= G(T + S).

G(T + S − S) := {(x, y + z) ∈ X × Y : (x, y) ∈ G(T + S) and (x, z) ∈ G(S)}
⊂ {(x, y + z) ∈ X × Y : (x, y) ∈ G(T + S) and

(x, z) ∈ G(S) ⊂ G(T + S)}
:= G(T + S).

dimD(T + S − S) = dimD(T) ∩ D(S) = dimD(S + T) = ∞. Therefore, by Proposition 2.14, we have
T + S − S ∈ F+(X,Y). Thus, by Proposition 2.13 (iv), it follows that T ∈ F+(X,Y).

Corollary 4.4. Let S ∈ LR(X,Y), and T ∈ LR(X,Y) be continuous with G(S′ ) ⊂ G(T′ ), and dimD(S′ ) = ∞. Then,

(i) If T ∈ F−(X,Y), then T + S ∈ F−(X,Y).

(ii) If T + S ∈ F−(X,Y), and dim S′ (0) < ∞, then T ∈ F−(X,Y).

Proof. (i) Let T ∈ F−(X,Y). Then, by Proposition 2.13 (iii), T′ ∈ F+(Y′ ,X′

). Since G(S′ ) ⊂ G(T′ ), by
Proposition 4.3, we have T′ + S′ ∈ F+(Y′ ,X′

). Thus, by Proposition 2.13 (i), we have (T + S)
′

∈ F+(Y′ ,X′

).
So, T + S ∈ F−(X,Y) by Proposition 2.13 (iii).

(ii) Let T + S ∈ F−(X,Y), then by Proposition 2.13 (iii), and Proposition 2.13 (i), we get T′ + S′ ∈ F+(Y′ ,X′

).
By Proposition 4.3, we obtain T′ ∈ F+(Y′ ,X′

). Thus, by Proposition 2.13 (iii) T ∈ F−(X,Y).

Proposition 4.5. Let X, Y be complete, and let T, S ∈ LR(X,Y). If S is T-precompact, and S(0) ⊂ T(0), then
i(T) = i(T + S).

Proof. Clearly, R(TGT) = R(T),N(TGT) = N(T), R((T + S)GT) = R(T + S), andN((T + S)GT) = N(T + S).
Since S is T-precompact, then SGT is precompact, and Y is complete. By Remark [11, Note V.1 p 134], SGT
is compact. Then, by Lemma 2.10, we get i(T) = i(TGT) = i(TGT + SGT). So, we obtain i(T) = i(T + S).

Theorem 4.6. Let X be complete, and let T ∈ CR(X). Suppose S ∈ LR(X) is T-precompact with T-bounded δ < 1,
D(T) ⊂ D(S) with dimD(T) = ∞, and S(0) ⊂ T(0). Then,

σeap(T + S) = σeap(T),
and σeδ(T + S) = σeδ(T).

Proof. Let S be T-precompact, then SGT is precompact, and X as well as XT are complete. By Remark
[11, Note V.1 p 134], we get SGT which is compact. By Theorem 3.7, and Lemma 3.1, we obtain T + S is
closed. Suppose that λ < σeap(T). Then, by Proposition 2.16 (i) λ − T ∈ Φ+(X). By Proposition 2.11 (iv), we
get (λ − T)Gλ−T ∈ Φ+(XT), which gives (λ − T)GT ∈ Φ+(XT) by referring to Proposition 2.15 (i). Since SGT
is compact, then using Lemma 4.1, it follows that (λ − T + S)GT ∈ Φ+(XT). Hence, by Proposition 2.15 (ii),
we obtain (λ − (T + S))Gλ−(T+S) ∈ Φ+(XT). Thus, (λ − (T + S)) ∈ Φ+(X) by Proposition 2.11 (iv). We have
i(λ − T) = i(λ − (T + S)) by Proposition 4.5, that is λ < σeap(T + S) by Proposition 2.16 (i). Referring to the
above, we infer that

σeap(T + S) ⊆ σeap(T).



F. Author, S. Author / FAAC 14 (2) (2022), 51–62 61

Conversely, let λ < σeap(T + S). Then, based upon Proposition 2.16 (i), (λ − (T + S)) ∈ Φ+(X). Similary, it
follows that (λ − (T + S − S)) ∈ Φ+(X). If we use Lemma 2.4 (i), then λ − T ∈ Φ+(X). By Proposition 4.5, we
have i(λ − T) = i(λ − (T + S)) that is λ < σeap(T) relying on Proposition 2.16 (i). Therefore, we infer that

σeap(T + S) = σeap(T).

Now, suppose that λ < σeδ(T). Then, by Proposition 2.16 (ii), λ − T ∈ Φ−(X). Applying Proposition 2.13
(v), we obtain (λ − T)Gλ−T ∈ Φ−(XT). Using Proposition 2.15 (i), we get (λ − T)GT ∈ Φ−(XT). Since SGT is
precompact, then by Proposition 2.13 (vi), we obtain, (λ− (T + S))G(λ−T) ∈ Φ−(XT). Resorting to Proposition
2.15 (i), as well as (ii), we get (λ − (T + S))Gλ−(T+S) ∈ Φ−(XT). So, applying Proposition 2.13 (v), we get
(λ− (T+S)) ∈ Φ−(X). By Proposition 4.5, we have i(λ−T) = i(λ− (T+S)), that is λ < σeδ(T+S) by Proposition
2.16 (ii). Then,

σeδ(T + S) ⊂ σeδ(T).

Conversely, letλ < σeδ(T+S). Then, by Proposition 2.16 (ii)λ−(T+S) ∈ Φ−(X). Using Proposition 2.13 (v), we
obtain (λ−(T+S))Gλ−(T+S) ∈ Φ−(XT). Referring to Proposition 2.15 (i) and (ii), we get (λ−(T+S))GT ∈ Φ−(XT).
The latter holds if, and only if, ((λ − (T + S))GT)

′

∈ Φ+(X′

T) which is maintained by Proposition 2.13 (iii). As
a matter of fact, using Proposition 2.11 (viii), and Proposition 2.13 (i), we get ((λ−T)GT)

′

+ (SGT)
′

∈ Φ+(X′

T).
Since SGT is precompact, then by Proposition 2.13 (ii) and arguing as before, we have ((λ−T)GT)

′

∈ Φ+(X′

T).
Besides, using Proposition 2.13 (iii), we get (λ − T)GT ∈ Φ−(XT). Therefore, by Proposition 2.13 (v),
((λ− T) ∈ Φ−(X). By Proposition 4.5, We have i(λ− T) = i(λ− (T + S)), that is λ < σeδ(T), which is confirmed
by Proposition 2.16 (ii). From this perspective, we infer that

σeδ(T + S) = σeδ(T).
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