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Abstract. In this paper, we introduce a new classes of operators acting on a complex hilbert space H
, denoted by [(1n, m)DQH], called (n, m)-power-D-quasi-hyponormal associated with a Drazin invertible

operator usingits Drazin inverse. Somme properties of (11, m)-power-D-quasi-hyponormal, are investigated
and somme examples.

1. INTRODUCTION

Let H be a complex Hilbert space. Let B(H) be the algebra of all bounded linear operators defined in
‘H. Let T be an operator in B(H). The operator T is called normal if it satisfies the following condition
T"T =TT" ,ie. T commutes with T*. The class of quasinormal operators was first introduced and studied
by A. brown in [5] in 1953. The operator T is quasi-normal if T commutes with T°T, i.e. T(T*T) = (T"T)T
and it is denoted by [QON]. A.A.S. Jibril [7, 8], in 2008 introduced the class of n power normal operators as
a generalization of normal operators. The operator T is called n power normal if T" commutes with T*,
ie, T"T* = T*T" and is denoted by [nN]. In the year 2011, O.A. Mahmoud Sid Ahmed introduced n power
quasi normal operators [15], as a generalization of quasi normal operators. The operator T is called n power
quasi normal if T" commutes with T*T , i.e., T"(T*T) = (I"T)T" and it is denoted by [#QN].
Recently in [14], the authors introduced and studied the operator [(r, m)DN] and [(n, m)DQ].In this search,
we introduce a new class of operators T namely (1, m)-power-D-hyponormal operator for a positive integer
n,mif

T™"T(TPY" > (TPY'T™"T,m=n=1,2,...

denoted by [(n, m)DQH].

And we in this work, we will try to apply the same results obtained in [9] for this new classes.
Definition 1.1. An operator T € B(H) be Drazin inversible operator. We said that T is (n, m)-power-D-quasi-
hyponormal operator for a positive integer n, m if

T™"T(TPY > (TPY'T"T,m=n=1,2,..
We denote the set of all (n, m)-Power-D-quasi-hyponormal operators by [(n, m)QH]
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Remark 1.2. Clearly n = m = 1, then (1, 1)-Power-D-quasi-hyponormal operator is precisely Power-D-quasi-
hyponormal operator.

Definition 1.3. An operator T € B(H)P is said to be (n, m)-power-D-quasi-hyponormal if T T(TP)" — (TP)"T""T
is positive i.e: T™T(TP)" — (TP)"T*"T > 0 or equivalently

(T TPy = (T°)" T T)u | u) 2 0 forall ueH.
0 -3 -1 0
1(3 -2 0 -1 1 -1 30
D_ 21 D _ . .
Pogl 3= (0 V)20 5)

Then T € [(2,2)DQH], but T ¢ [(3,3)DQH] and S is (3, 2)-power-D-co-quasi-hyponormal , but S ¢ [(2,2)DQH]

Example 1.4. Let T = ( 3 2 ),S = ( 11 ) € B(IR?). A simple computation shows that

Proposition 1.5. If S, T € B(H)P are unitarily equivalent and if T is (n, m)-Power-D-quasi-hyponormal operators
then sois S

Proof. Let T be an (1, m)-Power-D-quasi-hyponormal operator and S be unitary equivalent of T. Then there
exists unitary operator U such that S = UTU" so " = UT"U*
We have
(SPy'sms = w(TPy'ur (UT"UuY) uTur
u(rPy"ururmTu:
TPy T Tur
ur"T(TPy"u-
Tuy uTuru(rPy u-
§5(SPy”

INIA

Hence, S""S(SP)* — (SP)'S™S >0 O

Proposition 1.6. Let T € B(H)P be an (n, m)-Power-D-quasi-hyponormal operator. Then T* is (n, m)-Power-D-co-
quasi-hyponormal operator

Proof. Since T is (1, m)-Power-D-quasi-hyponormal operator. We have
(TD)nT*mT < T*mT(TD)n = ((TD)n T*mT)* < (T*mT(TD)n)* N T*Tm(TD)*n < (TD)*nT*Tm‘
Hence, T* is (1, m)-Power-D-co-quasi-hyponormal operator. [

Proposition 1.7. Let T € B(H)P be an (n, m)-Power-D-quasi-hyponormal operator. Then T* is (n, m)-Power-D-co-
quasi-hyponormal operator

Proof. Since T is (n, m)-Power-D-quasi-hyponormal operator. We have
T"T(TP)" 2 (T°)'T™'T = (T T(TP)") 2 ((TD)”T**"T)* = (T°)y"T'T" > T'T"(T°)™.
Hence, T* is (1, m)-Power-D-co-quasi-hyponormal operator. [J

Theorem 1.8. If T, T* are two (n, m)-Power-D-quasi-hyponormal operator, then T is an (n, m)-Power-D-quasi-
normal operator.
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Proposition 1.9. If T is (2,2)-power-D-quasi-hyponormal operator such that T°T* = —T*TPand T°T = TTP.
Tthen T is (2, 2)-Power-D-quasi-normal operator.
Proof. Since (TP?*T=T = T°TPT*T*T = -TPT*TPT*T = T°T*T*TP°T = -T*T°T*T°T = T*T(TP)?
And
T2T(TP)? = T'T*'TTPTP = -T*T°T*TTP = T°T*T*TTP = -TPT*T°T*T = (T°)*TT
So
T is (2, 2)-Power-D-quasi-hyponormal, then
(TPYT2T < T*TPY = TPT°PT'T"T < T"T"TTPTP
-T°T'T°T'T < -T'T°T'TT"
T°TT'T°T > T°T'T"'TT”
-T'T°T'T°T > -T°T'T°T'T
-T'T°T'T°T > -T°T'T°T'T
T*ZT(TD)2 < (TD)zT*ZT.
Hence T2T(TP)? = (TP)*TT. O

LU Ul

0 0O 01 1
Example 1.10. Let T = [ 1 0 0]eBC®.A simple computation, shows that ; T* = [ 0 0 O ], TP =
1 0 1 0 0 1

0 0 0
0 0 0.
1 01

Then power-D-quasi-hyponormal operator, but
T2(TP)? # (TP)2T?and T'T(TP)? # (TP)*T'T.
Lemma 1.11. Let Ty, Sy € B(H)P, k =1,2 such that T > T > 0and S; > S, > 0, then
(T1®81) 2 (T2®8:) 2 0.
Theorem 1.12. . Let T, S € B(H)P, such that (SP)"S*S > 0 and (TP)"T*T > 0, then .
T ® S is (n, 1)-Power-D-quasi-hyponormal if and only if T and S are (n, 1)-Power-D-quasi-hyponormal operators
Proof. Assume that T, S are (1, 1)-power-D-quasi-hyponormal operators. Then
D * n

(Tes) y(Tes)(Tes) = (TPes”)(T'es)(Tes)
(TP)"T*T ® (SP)"S*S
< T'T(TP)" ® §*S(SP)"

5 D

(Tes)(res)(Tes) )"

A

Which implies that T ® S is (1, 1)-power-D-quasi-hyponormal operator.

Conversely, assume that T ® S is (1, 1)-power-D-quasi-hyponormal operator.We aim to show that T, S are
(n, 1)-power-D-quasi-hyponormal. Since T ® S is a (1, 1)-power-D-quasi-hyponormal operator, we obtain

(T® ) is (1, 1)-power-D-quasi-hyponormal &= ((T® S)D)"(T ®5)(Tes)<(Tes)
(Tes)(Tes))
= (T°)'T'T®(SP)"S*S < T*T(T")" ® S*S(SP)".
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Then, there exists d > 0 such that
d T*T(TP)" > (TP)"T"T.
and
d-15*S(SPy* > (SP)"s*s
a simple computation shows that d = 1 and hence
(TPY'T*T < T*T(TP)* and (SP)"S*S < §*S(SP)".

Therefore, T, S are (1, 1)-power-D-quasi-hyponormal.
|

Proposition 1.13. If T, S € B(H)P are (n, 1)-power-D-quasi-hyponormal operators commuting, such that such that
0 < (SP)"SY(TP)"T*TS < S*(SP)"T*(TP)"TS and (TP)"T*T > 0, then TS®T, TS®S, ST®T and STRS € B(HIH)P
are (n, 1)-power-D-quasi-hyponormal if the following assertions hold:

(1) S*(TPy" = (TP)"S".
(2) T*(SD)n — (SD)nT*.
(3) TS(SPYy(TP)" = (SPy"(TP)"TS.

Proof. Assume that the conditions (1), (2) and (3) are hold. Since T and S are (n, 1)-power-D-quasi-
hyponormal, we have

(Tse T)D)”(TS ® T)*(Ts ®7) (TS)P ® TD) ((Tsy e T)(TS®T)
(TS)Py TSy (TS) & (TP)'T" )
(« sD) (TPY)S'T'TS ® (T°)"T"T)

(
(
(
((SPy"s(TP)"T'TS ® (TP)"T*
(
(
(
(

IA

)
S (SP)"T(TP)"TS ® T*T(TP)")
STTS(SPY(TP)" @ T*T(TPY")

(TS)'(TS)(TS)P)" ® T*T(TP)" )
(TS) ® T)((TS) ® T)(((TS)P)" & (T)")

= (1501)(TS®T)(TS®T) )"

Then TS ® S is (n, 1)-power-D-quasi-hyponormal operator.
In the same way, we may deduce the (1, 1)-power-D-quasi-hyponormal operator of TS ® 5,ST ® T and
ST®S. O

Theorem 1.14. If T, S € B(H)P two operators commuting. Then :

(I ® S), (T ®I ) are (n, 1)-power-D-quasi-hyponormal then T @8 S is (n, 1)-power-D-quasi-hyponormal.

Proof. Firstly, observe that if (I ® S), (T ® I) are (n, 1)-power-D-quasi-hyponormal, then we have following
inequalities

(Tel)y(Tel)(Tel) < (Tel)(Tel)(Tel) )"
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and
(se1)y(sel)(sel) <(sel)(sol)(sel) ).

Then

(TmS)PY(TmS)(TmS)

(Tel+185)P) (Tel+Ies)(Tel+Igs)
(Ten®+uesP) (Tel +1es))((Teh+(e9))
= (TeD”)(Tel((Teh+(Te)’) (s s)*(T ®I)

+ (e9Py(TeIly(Teh+(Ie9P)'(es)(Te

+ (TeDP)(Tel((es)+(Te)P) (e s)"(l ®S)

+ ((IeSP)Y(Te® 1)*(1 ®S)+(I®SP)'(I® s)*(l ®S)

< (Tel(TeN(TeNP)' +(IeS) (eS)(Ten’)

+ (TN (TI)IeS)P) +(e s)*(I ®S)(®S)°)"

= (TwS)(TmS)(TmS)P)".

Then T @ S is (n, 1)-power-D-quasi-hyponormal. [J

Theorem 1.15. Let Ty, Ty, ...., Ty, are (n, 1)-power-D-quasi-hyponormal operator in B(H)P, such that (TE )"T;Tk >
0,Vke{1,2..m}. Then(T1 ® T2 & .... ® T}y,) is (n, 1)-power-D-quasi-hyponormal operators and (T1 ® Tr @ .... ® Ty,)
is (n, 1)-power-D-quasi-hyponormal operators.

Proof. Since

((T1 T, ®..0 Tm)D)" (T10T:®.. 0Ty T1®To®...0 Tp) ((T?)” o(M)'e..o (Tﬁ)”)
(TeThe..eT,T;,)
= (TOTTie(T))'TT2 ...
&(T))" Ty, i)
(T;Ty(TPYS To(TD) & ..
®T,, T(T;)")
= Moehoe..eT,)

(T80T, ®...0Ty)

((T1 T, ®..0 Tm)D)n .

IA

Then(T1 ® T2 & .... ® T)) is (1, 1)-power-D-quasi-hyponormal operators.
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Now,

(T18T2®..0T,P) (18 T2©..9T,) (18 T2®..8 Ty) (D) & (1D)" ® .. ® (T)")
(T8 T2 ®...0 T, Ty)
= (TOY'TTi & (TH)' T3 T2 ® ...
®(T;)" Ty, Tn)
(T;TI(TD)"To(T3)' ® ..
. ®T, Tu(TP)"
= (T1®T2®..® Tm)*

T80T Q.0 Ty)

(TieT®..TWP) .

IA

Then (T1 ® T> ® .... ® Tyy) is (1, 1) -power-D-quasi-hyponormal operators. [

Proposition 1.16. If T is (2, 1)-power-D-quasi-hyponormal and T is D-idempotent. Then T is power-D-quasi-
hyponormal operator

Proof. Since T is (2, 1)-power-D-quasi-hyponormal operator, then
(TP)2T*T < T*T(TP)?

since T is D-idempotent (TP)? = TP, wich implies

T°T*T < T*TTP

Thus T is is power-D-quasi-hyponormal operator [

Proposition 1.17. If T is (3, 1)-power-D-quasi-hyponormal and T is D-idempotent. Then T is power-D-quasi-
hyponormal operator

Proof. Since T is (3, 1)-power-D-quasi-hyponormal operator, then
(TPy*T*T < T*T(TP)?

since T is D-idempotent (TP)? = TP, wich implies

(TP)T*T < T*TTP

Then T is power-D-quasi-hyponormal operator [

Proposition 1.18. If T, S are (2, 1)-power-D-quasi-hyponormal operators commuting, such that T°S* = S*TP,
T*S+ ST = 0and TPS — STP =0, then S + T is (2, 1)-power-D-quasi-hyponormal operator.

Proof. Since TPS — ST = 0, hence (TP)25? + SX(TP)? = 0, s0 (SP + TD)2 = (SP)2 + (TP)2.

(T+9P) (S+T)(S+T)

((SPY +(TPP) (8" + T) (S +T)
= (SP)°S'S+ (SPYT'T +(TP)*S'S + (T°)*T°T
= (SP)*S'S + T"T(SP)* + S*S(TP)* + (TP T'T
< §'S(SPY2 4+ T°T(SP)? + S*S(TP)? +% T*T(TP)
= S+ S+D(T+5)P)

Then S + T is (2, 1)-power-D-quasi-hyponormal operator.

O

Proposition 1.19. If T, S are (2, 1)-power-D-quasi-hyponormal operators commuting, such that T°S* = S*TP,
T*S+ ST =0and TPS — STP =0, TS = ST = S + T then ST is (2, 1)-power-D-quasi-hyponormal operator.
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Proof. Since TPS — STP = 0, hence (TP)25? + SX(TP)? = 0, s0 (SP + TD)2 = (SP)2 + (TP)2.
Since,

(T+9P) (S+T)y(S+T)

= (PP +(TP)(S +T)S+T)

(SPY25*S + (SPY*T'T + (TP)2S*S + (TPY*T*T
(SPY?*S*S + T*T(SP)? + S*S(TP)? + (TP)*T°'T
$*S(SP)? + T*T(SP)? + S*S(TP)? +2 T*T(TP)
= S+ S+D(T+5)P)

((5T)PY (STY" (ST)

IA

Hence )
((ST)P)"(ST) (ST) < (ST)' (ST)((ST)P)
Then ST is (2, 1)-power-D-quasi-hyponormal operator. [J

2

Example 1.20. Let T = ( 1 _11 ),S = ( _11 i ) € B(C?). A simple computation shows that

. (11 . (-1 1).p 1
T_(l—l)’s_(l 1)'T T2

Then T is (2, 1)-power-D-quasi-hyponormal operator, but

<((TD)2T*T—T*T(TD)2)( ;‘ ) | ( Z )> -0

For all (u,v) € (C?)
and S is (2, 1)-power-D-quasi-hyponormal operator, but

<((SD)2S*S—S*5(5D)2)( ; ) | ( ; )> _

For all (u,v) € (C?)

Such that TS + ST =0, T*S + S*T # 0 and TPS* # S*TP

but S+ T and ST are (2, 1)-power-D-quasi-hyponormal operator

the following example shows that proposition (1.7) is not necessarily true if T°S* # S*TP

Proposition 1.21. Let T, S € B(H)P are commuting and are (n, 1)-power-D-quasi-hyponormal operators, such that
TPS*S = S*'STP, SPT*T = T*TSP, T*S + S'T = 0 and (T + S)* (T + S) is commutes with

Y (oorer)

1<p<n-1

Then (T + S) is an (n, 1)-power-D-quasi-hyponormal operator.
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Proof. Since

((T + S)D)"(T + S)*(T + S) = Z (Z)((TD)P(SD)"—P) (T + S)*(T + S)

0<p<n

= (Pyss+ Y (n)((TD)P(SD)”‘p)(T +S) +(TPY'S'S
+ SP'rT +1(S;;;;r*1*
= ($")'s'S+ 1<;_1 (Z)((TD)” (SD)”_”)(T +8) +8'S(TP)"
+ TT(SP)Y +(TOY'T'T
S8y + Y (Z)((TD)V(SD)”"’)(T +5) + 5Ty

1<p<n-1

IA

+ T'T(SP)" + T"T(TP)"

(T + S)*(T + S) Z (Z)((TD)P(SD)H—P)

O0<p<n

IA

n

(T+5) (T +5)((T +9)P)

Then (T + S) is an (1, 1)-power-D-quasi-hyponormal operator. [
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