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Abstract. In this article, we prove a unique common fixed point and a coincidence point theorems using
an implicit relation on weak partial metric spaces. The results presented in this paper extend and generalize
several results from the existing literature.

1. Introduction

The study of common fixed points was initiated by Jungck [11] in 1986, and this notion has attracted
many researchers to establish the existence of common fixed points by using various contractive conditions.

In 1994, Matthews [13] introduced the concept of partial metric space as a part of the study of denotational
semantics of dataflow networks [12, 13, 21, 23]. In partial metric spaces the distance of a point in the self
may not be zero. Introducing partial metric space, Matthews extended the Banach contraction principle [4]
and proved the fixed point theorem in this space.

Later on Heckmann [9] introduced the concept of weak partial metric space in 1999, which is a general-
ization of metric space. Some results are recently obtained in [3], [7], [8].

Many classical fixed point theorems and common fixed point theorems have been unified considering
a general condition by an implicit relation in [14], [15] and in some other papers.

This direction of research produced a consistent literature on fixed point, common fixed point and
coincidence point theorems in various ambient spaces. For more details see [1, 5, 6, 10, 16, 17].

In 2013, Vetro and Vetro [22] initiated the study of fixed points of self mappings in partial metric spaces
satisfying an implicit relation. In [2], Altun and Turkoglu launched a new type of implicit relation satisfying
ϕ-map.

Recently, Popa and Patriciu [18] have studied a new type of ϕ-implicit relation and established a unique
point of coincidence and unique common fixed point results and also as application of results they obtained
fixed point theorem for a sequence of mappings in partial metric spaces.

More recently, Popa and Patriciu [19] have proved fixed point theorem of Ćirić type in weak partial
metric spaces using implicit relation.
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Email address: saluja1963@gmail.com (G. S. Saluja)



G. S. Saluja / FAAC 14 (1) (2022), 39–46 40

The purpose of this paper is to prove a unique common fixed point and a coincidence point theorems
for two self mappings satisfying an implicit relation in the framework of weak partial metric spaces. The
results presented in this article extend and generalize several results in the literature.

2. Preliminaries

Now, we give some basic properties and auxiliary results on partial metric space (PMS).

Definition 2.1. ([12, 13]) Let X be a nonempty set and p : X × X → [0,∞) be such that for all x, y, z ∈ X the
following postulates are satisfied:

(P1) x = y⇔ p(x, x) = p(x, y) = p(y, y),
(P2) p(x, x) ≤ p(x, y),
(P3) p(x, y) = p(y, x),
(P4) p(x, y) ≤ p(x, z) + p(z, y) − p(z, z).
Then p is called partial metric on X and the pair (X, p) is called partial metric space.

Remark 2.2. It is clear that if p(x, y) = 0, then x = y. But, on the contrary p(x, x) need not be zero.

Each partial metric space on a set X generates a T0 topology τp on X which has a base the family of open
p-balls {Bp(x, ε) : x ∈ X, ε > 0}, where Bp(x, ε) = {y ∈ X : p(x, y) ≤ p(x, x) + ε} for all x ∈ X and ε > 0.

A sequence {xn} in the partial metric space (X, p) converges with respect to τp to a point x ∈ X if and only
if p(x, x) = limn→∞ p(xn, x).

If p is a partial metric on X, then

dw(x, y) = p(x, y) −min{p(x, x), p(y, y)}

is an ordinary metric on X.

Remark 2.3. Let {xn} be a sequence in partial metric space (X, p) and x ∈ X. Then limn→∞ dw(xn, x) = 0 if and only
if

p(x, x) = lim
n→∞

p(xn, x) = lim
n,m→∞

p(xn, xm).

Definition 2.4. ([13]) Let (X, p) be a partial metric space. Then

(1) a sequence {xn} is called a Cauchy sequence if limm,n→∞ p(xm, xn) exists and is finite,

(2) (X, p) is said to be complete if every Cauchy sequence {xn} in X converges with respect to τp to a point x ∈ X
such that p(x, x) = limm,n→∞ p(xm, xn).

Definition 2.5. ([9]) A weak partial metric space on a nonempty set X is a function p : X × X → [0,∞) such that
for all x, y, z ∈ X, the followings are satisfied:

(WP1) : x = y⇔ p(x, x) = p(x, y) = p(y, y),
(WP2) : p(x, y) = p(y, x),
(WP3) : p(x, y) ≤ p(x, z) + p(z, y) − p(z, z).
Then p is called weak partial metric on X and the pair (X, p) is called weak partial metric space.

If p(x, y) = 0, then x = y.
It is obvious that, every partial metric space is a weak partial metric space, but the converse is not true.

For example, if X = [0,∞) and p(x, y) = x+y
2 , then (X, p) is a weak partial metric space and (X, p) is not a

partial metric space. For another example, for x, y ∈ R the function p(x, y) = ex+ey

2 is a non partial metric but
weak partial metric on R.
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Definition 2.6. A point x in X is called a coincidence point of two self mappings f and S of X if f x = Sx for each
x ∈ X.

Theorem 2.7. ([3])) Let (X, p) be a weak partial metric space. Then dw : X × X→ [0,∞) is a metric on X.

Remark 2.8. In a weak partial metric space, the convergent Cauchy sequence and the completeness are defined as in
partial metric space.

Theorem 2.9. ([3])) Let (X, p) be a weak partial metric space.
(a) {xn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in (X, dw).
(b) (X, p) is complete if and only if (X, dw) is complete.

Lemma 2.10. ([19]) Let (X, p) be a weak partial metric space and {xn} is a sequence in (X, p). If limn→∞ xn = x and
p(x, x) = 0, then limn→∞ p(xn, y) = p(x, y), for all y ∈ X.

Remark 2.11. Remark 2.3 is still true for weak partial metric spaces.

3. Implicit relation

Now, an implicit relation has been introduced to investigate a unique common fixed point, and a
coincidence point theorems in weak partial metric spaces.

Definition 3.1. Let F4 be the set of all continuous functions F(t1, . . . , t4) : R4
+ → R such that:

(F1) : F is nonincreasing in variable t4,
(F2) : For all u, v ≥ 0, there exists k ∈ [0, 1) such that F(u, v, u+v

4 ,
u+v

4 ) ≤ 0 implies u ≤ k v,
(F3) : F(t, t, t

2 , 0) > 0, for all t > 0.

Example 3.2. F(t1, . . . , t4) = t1 − h max{t2, 2t3, 2t4}, where k ∈ [0, 1) and 0 ≤ k = h < 1.

Example 3.3. F(t1, . . . , t4) = t1 − h max{t2, t3, t4}, where k ∈ [0, 1
2 ) and 0 ≤ k = h < 1

2 .

Example 3.4. F(t1, . . . , t4) = t1− at2−2bt3−2ct4, where a, b, c ≥ 0 and 0 < a+ b+ c < 1 with 0 ≤ k = a+ b+ c < 1.

Example 3.5. F(t1, . . . , t4) = t1 − a max{t2, t3} − 2bt4, where a, b ≥ 0, a + b < 1, with and 0 ≤ k = a + b < 1.

The purpose of this paper is to establish a unique common fixed point and a coincidence point results
under implicit relation in the framework of weak partial metric spaces. The results of findings extend and
generalize several results from the existing literature.

4. Main Results

In this section, we shall prove a unique common fixed point and a coincidence point theorems under
implicit relation in the framework of weak partial metric spaces.

Theorem 4.1. LetT1 andT2 be two self-maps on a complete weak partial metric space (X, p) satisfying the condition:

F
(
p(T1x,T2y), p(x, y),

1
4

[
p(x,T2y) + p(y,T1x)

]
,

1
4

[
p(x,T1x) + p(y,T2y)

])
≤ 0, (1)

for all x, y ∈ X, where F ∈ F4. Then T1 and T2 have a unique common fixed point u in X with p(u,u) = 0.
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Proof. For each x0 ∈ X. Let x2n+1 = T1x2n = z2n and x2n+2 = T2x2n+1 = z2n+1 for n = 0, 1, 2, . . . . We prove that
{zn} is a Cauchy sequence in (X, p). It follows from (1) for x = z2n and y = z2n+1 that

F
(
p(T1x2n,T2x2n+1), p(x2n, x2n+1),

1
4

[
p(x2n,T2x2n+1) + p(x2n+1,T1x2n)

]
,

1
4

[
p(x2n,T1x2n) + p(x2n+1,T2x2n+1)

])
≤ 0.

F
(
p(z2n, z2n+1), p(z2n−1, z2n),

1
4

[
p(z2n−1, z2n+1) + p(z2n, z2n)

]
,

1
4

[
p(z2n−1, z2n) + p(z2n, z2n+1)

])
≤ 0. (2)

Since by (WP3),

p(z2n−1, z2n+1) ≤ p(z2n−1, z2n) + p(z2n, z2n+1) − p(z2n, z2n). (3)

By (2), (3) and (F1), we obtain

F
(
p(z2n, z2n+1), p(z2n−1, z2n),

1
4

[
p(z2n−1, z2n) + p(z2n, z2n+1)

]
,

1
4

[
p(z2n−1, z2n) + p(z2n, z2n+1)

])
≤ 0. (4)

By (F2) there exists k ∈ [0, 1), we obtain

p(z2n, z2n+1) ≤ k p(z2n−1, z2n).

By similar process using equation (1) for x = x2n+2 and y = x2n+1, we obtain

p(z2n+2, z2n+1) ≤ k p(z2n+1, z2n),

which implies

p(zn, zn+1) ≤ k p(zn−1, zn) ≤ k2 p(zn−2, zn−1) ≤ · · · ≤ kn p(z0, z1).

For n,m ∈Nwith m > n, by repeated use of (WP3), we have that

p(zn, zm) ≤ p(zn, zn+1) + p(zn+1, zn+2) + · · · + p(zm−1, zm)
−p(zn+1, zn+1) − p(zn+2, zn+2) − · · · − p(zm−1, zm−1)

≤ p(zn, zn+1) + p(zn+1, zn+2) + · · · + p(zm−1, zm)
≤ (kn + kn+1 + · · · + km)p(z0, z1)

≤

( kn

1 − k

)
p(z0, z1)→ 0 as n→∞.

By the definition of dw(x, y) we obtain

dw(zn, zm) ≤ p(zn, zm)→ 0 as n,m→∞.

This implies that {zn} is a Cauchy sequence in (X, dw). By Theorem 2.9, {zn} is a Cauchy sequence in (X, p).
Since (X, p) is complete, {zn} converges in (X, p) to a point u ∈ X and u = limn→∞ zn. By Theorem 2.9, we
obtain

p(u,u) = lim
n→∞

p(u, zn) = lim
n,m→∞

p(zn, zm) = 0. (5)
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Now, we show that u is a common fixed point of T1 and T2. Notice that due to (5), we have p(u,u) = 0. By
(1) with x = u and y = x2n+1 and using (5), we have

F
(
p(T1u,T2x2n+1), p(u, x2n+1),

1
4

[
p(u,T2x2n+1) + p(x2n+1,T1u)

]
,

1
4

[
p(u,T1u) + p(x2n+1,T2x2n+1)

])
≤ 0.

F
(
p(T1u, x2n+2), p(u, x2n+1),

1
4

[
p(u, x2n+2) + p(x2n+1,T1u)

]
,

1
4

[
p(u,T1u) + p(x2n+1, x2n+2)

])
≤ 0. (6)

Letting n→∞ in (6) and using (WP2), we obtain by Lemma 2.10 that

F
(
p(T1u,u), 0,

1
4

[
p(T1u,u) + 0

]
,

1
4

[
p(T1u,u) + 0

])
≤ 0.

By (F2) we obtain p(T1u,u) = 0. Hence, T1u = u. This shows that u is a fixed point of T1. Similarly, we can
show that T2u = u. Thus u is a common fixed point of T1 and T2.

Now, we have to show that the common fixed point of T1 and T2 is unique. Assume that u′ is another
common fixed point of T1 and T2 such that T1u′ = u′ = T2u′ with u , u′. Now using (1), (5) and (WP2)
with x = u and y = u′, we have

F
(
p(T1u,T2u′), p(u,u′),

1
4

[
p(u,T2u′) + p(u′,T1u)

]
,

1
4

[
p(u,T1u) + p(u′,T2u′)

])
≤ 0.

F
(
p(u,u′), p(u,u′),

1
4

[
p(u,u′) + p(u′,u)

]
,

1
4

[
p(u,u) + p(u′,u′)

])
≤ 0.

F
(
p(u,u′), p(u,u′),

p(u,u′)
2
, 0
)
≤ 0,

a contradiction of (F3) if p(u,u′) > 0. Hence, p(u,u′) = 0 which implies u = u′. This shows that the common
fixed point of T1 and T2 is unique. This completes the proof.

Theorem 4.2. Let S and 1 be two self-maps on a complete weak partial metric space (X, p) satisfying the condition:

F
(
p(Sx,Sy), p(1x, 1y),

1
4

[
p(1x,Sy), p(1y,Sx)

]
,

1
4

[
p(1x,Sx) + p(1y,Sy)

])
≤ 0, (7)

for all x, y ∈ X, where F ∈ F4. If the range of 1 contains the range of S and 1(X) is a complete subspace of X, then S
and 1 have a coincidence fixed point with p(1v, 1v) = 0.

Proof. Let x0 ∈ X and choose a point x1 in X such that Sx0 = 1x1, . . . ,Sxn = 1xn+1 = wn+1. Then from (7) for
x = xn−1 and y = xn, we have successively

F
(
p(Sxn−1,Sxn), p(1xn−1, 1xn),

1
4

[
p(1xn−1,Sxn) + p(1xn,Sxn−1)

]
,

1
4

[
p(1xn−1,Sxn−1) + p(1xn,Sxn)

])
≤ 0.

F
(
p(wn,wn+1), p(wn−1,wn),

1
4

[
p(wn−1,wn+1) + p(wn,wn)

]
,

1
4

[
p(wn−1,wn) + p(wn,wn+1)

])
≤ 0. (8)
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Since by (WP3),

p(wn−1,wn+1) ≤ p(wn−1,wn) + p(wn,wn+1) − p(wn,wn). (9)

By (8), (9) and (F1), we obtain

F
(
p(wn,wn+1), p(wn−1,wn),

1
4

[
p(wn−1,wn) + p(wn,wn+1)

]
,

1
4

[
p(wn−1,wn) + p(wn,wn+1)

])
≤ 0. (10)

By (F2), there exists k ∈ [0, 1) such that

p(wn,wn+1) ≤ k p(wn−1,wn),

which implies

p(wn,wn+1) ≤ k p(wn−1,wn) ≤ k2 p(wn−2,wn−1) ≤ · · · ≤ kn p(w0,w1).

For n,m ∈Nwith m > n, by repeated use of (WP3), we have that

p(wn,wm) ≤ p(wn,wn+1) + p(wn+1,wn+2) + · · · + p(wm−1,wm)
−p(wn+1,wn+1) − p(wn+2,wn+2) − · · · − p(wm−1,wm−1)

≤ p(wn,wn+1) + p(wn+1,wn+2) + · · · + p(wm−1,wm)
≤ (kn + kn+1 + · · · + km)p(w0,w1)

≤

( kn

1 − k

)
p(w0,w1)→ 0 as n→∞.

By the definition of dw(x, y) we obtain

dw(wn,wm) ≤ p(wn,wm)→ 0 as n,m→∞.

This implies that {wn} is a Cauchy sequence in (X, dw). By Theorem 2.9, {wn} is a Cauchy sequence in (X, p).
Since (X, p) is complete, {wn} converges in (X, p) to a point v ∈ X such that wn → v ⇒ 1wn → 1v as n → ∞,
since 1(X) is a complete subspace of X. Moreover by Lemma 2.10,

p(1v, 1v) = lim
n→∞

p(1v, 1wn) = lim
n,m→∞

p(1wn, 1wm) = 0, (11)

Now, we show that v is a coincidence point of S and 1. Notice that due to (11), we have p(1v, 1v) = 0. By
(7) with x = v and y = wn, we have

F
(
p(Sv,Swn), p(1v, 1wn),

1
4

[
p(1v,Swn) + p(1wn,Sv)

]
,

1
4

[
p(1v,Sv) + p(1wn,Swn)

])
≤ 0.

F
(
p(Sv, 1wn+1), p(1v, 1wn),

1
4

[
p(1v, 1wn+1) + p(1wn,Sv)

]
,

1
4

[
p(1v,Sv) + p(1wn, 1wn+1)

])
≤ 0. (12)

Letting n→∞ in (12) and using (WP2), we obtain by Lemma 2.10 that

F
(
p(Sv, 1v), 0,

1
4

[
p(Sv, 1v) + 0

]
,

1
4

[
p(Sv, 1v) + 0

])
≤ 0. (13)

By (F2) we obtain p(Sv, 1v) = 0. Hence, Sv = 1v. This shows that v is a coincidence point of S and 1. This
completes the proof.
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If take T1 = T2 = T in Theorem 4.1, then we have the following result.

Corollary 4.3. Let T be a self-map on a complete weak partial metric space (X, p) satisfying the condition:

F
(
p(T x,T y), p(x, y),

1
4

[
p(x,T y) + p(y,T x)

]
,

1
4

[
p(x,T x) + p(y,T y)

])
≤ 0,

for all x, y ∈ X, where F ∈ F4. Then T has a unique fixed point z in X with p(z, z) = 0.

By Corollary 4.3 and Example 3.2 we obtain a theorem of Rhoades type ([20]) in complete weak partial
metric spaces.

Theorem 4.4. Let T be a self-map on a complete weak partial metric space (X, p) such that for all x, y ∈ X

p(T x,T y) ≤ k max
{
p(x, y),

1
2

[
p(x,T y) + p(y,T x)

]
,

1
2

[
p(x,T x) + p(y,T y)

]}
where k ∈ [0, 1). Then T has a unique fixed point z in X with p(z, z) = 0.

Remark 4.5. By Corollary 4.3 and Example 3.3-3.5 we obtain new results.

Remark 4.6. If we take 1 = I, the identity map and S = T is the single valued mapping in Theorem 4.2, then we
obtain Corollary 4.3 of this paper.

5. Conclusion

In this paper, we establish a unique common fixed point and a coincidence point theorems under an
implicit relation in the framework of weak partial metric spaces. The results presented in this article extend
and generalize several results in the existing literature.
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