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Abstract. In this paper, we investigate the existence and uniqueness of solutions for the following
abstract multi-term fractional differential equation:

Dαn
t u(t) +

n−1∑
i=1

AiD
αi
t u(t) = 0, t > 0,

u(k)(0) = uk, k = 0, · · ·, ⌈αn⌉ − 1,

(1)

where n ∈ N \ {1, 2}, A1, · · ·, An−1 are closed linear operators on a sequentially complete locally convex
space X, 0 = α1 < · · · < αn, and Dα

t denotes the Caputo fractional derivative of order α ([3]). Plenty of
various examples illustrates our abstract theoretical results obtained throughout the paper.

1. Introduction and preliminaries

Fractional differential equations and fractional calculus have been attracted the attention of many authors
during past three decades or so, primarily from their invaluable importance in modeling of various phenomena
appearing in physics, chemistry, mathematical biology and engineering. For more details on these topics,
the reader may consult the monographs by D. Baleanu, K. Diethelm, E. Scalas, J. Trujillo [2], K. Diethelm
[6], K. S. Miller-B. Ross [26], I. Podlubny [29] and S. G. Samko, A. A. Kilbas, O. I. Marichev [31].

Abstract multi-term fractional differential equations have become a very active field of research (cf. [8],
[14]-[15], [17] and [33]-[34] for the basic information in this direction). Without going into full details,
we want to observe here that our results can be applied in the analysis of a great number of fractional
PDEs describing certain real physical phenomena; for example, in the analysis of various generalizations of
fractional telegraph equation, and in the analysis of the so called composite fractional relaxation-oscillation
equation

Dα
t u(t) +BDβ

t u(t) +Au(t) = f(t), t ∈ [0, 2π], (2)
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where A and B are closed linear operators defined on a complex Banach space X, 0 ≤ β < α ≤ 2 and
f ∈ C([0, 2π] : X) (cf. the reference [7] by R. Gorenflo and F. Mainardi for a detailed explanation of
physical meaning of fractional differential equations that are special cases of (2), and the reference [8] by V.
Keyantuo and C. Lizama for more details on periodic solutions of (2), in this work the authors have used
the so-called Liouville-Grünwald fractional derivatives instead of Caputo’s ones).

Let us also quote some other special cases of (1). The study of qualitative properties of the abstract
Basset-Boussinesq-Oseen equation

u′(t)−ADα
t u(t) + u(t) = f(t), t ≥ 0, u(0) = 0; α ∈ (0, 1), (3)

describing the unsteady motion of a particle accelerating in a viscous fluid under the action of the gravity,
has been initiated by C. Lizama and H. Prado in [24]. In 1991, S. Westerlund suggested using fractional
derivatives for the description of propagation of plane electromagnetic waves in an isotropic and homogeneous
material, lossy dielectric. In the abstract form, the equation suggested by S. Westerlund takes the following
form (cf. [29, (10.107)]):

u′′(t) + cADα
t u(t) + u(t) = f(t), t ≥ 0; u(0) = x, u′(0) = y, (4)

where c ∈ R, A = ∆ and 1 < α < 2. Notice that Theorem 2.4 applies to various generalizations of problems
(3)-(4).

In [20]-[23], T. A. M. Langlands, B. I. Henry and S. L. Wearne have considered various types of fractional
cable equation models describing electrodiffusion of ions in neurons for the case of anomalous subdiffusion.
Notice that in some of these models abstract multi-term fractional equations with the Riemann-Liouville
fractional derivatives have occurred, and that it is not clear whether these derivatives can be replaced by
Caputo fractional derivatives or some combination of Caputo and Riemann-Liouville fractional derivatives,
without losing some physical meaning (see e.g. the problems [20, (1.18)], [21, (22), (25)] and [23, (69)]). In
this place, we wish to point out that we could not find in the existing literature any reference which treats
the abstract multi-term fractional differential equations with fractional derivatives that are not of Caputo’s
type.

I. Podlubny [29] and K. Diethelm [6, Chapter 8] have analyzed scalar-valued multi-term Caputo fractional
differential equations. We know that there will be one and only one solution u(t) of the equation (1) with
A ≡ 0, f(t) ≡ 0 and Aj = cjI (cj ∈ C, j ∈ Nn−1) and that the solution u(t) can be expressed in terms of
the Mittag-Leffler functions and their derivatives (see [29] and [15, Example 8.1]).

The organization and main ideas of this paper can be briefly described as follows. The main purpose of
the paper, as already mentioned in the abstract, is to study some existence and uniqueness theorems for the
equation (1). Although we formulate our results in the setting of sequentially complete locally convex spaces,
they seem to be new even in the case of abstract multi-term fractional differential equations considered in
Banach spaces; it is worth noticing here that several problems occuring in the theory of abstract Volterra
integro-differential equations can be analysed more effectively on locally convex spaces as on Banach spaces;
see e.g. [19] for the analysis of a control problem for a one-dimensional heat equation for materials with
memory (cf. [30, pp. 146-147]), which is closely connected with the problem of gluing in manufacturing
polymeric materials. We continue by recalling the well-known fact from the theory of higher order abstract
differential equations that the operator −An−1 plays a crucial role for the solvability of equation (1), and that
the operators −An−2, · · ·,−A1 are subordinated to −An−1 in some sense. F. Neubrander [27] was the first
who investigated the well-posedness of problem (1) in the case that αn = n−1, n ∈ N\{1, 2} and that −An−1

is the integral generator of a strongly continuous semigroup on a Banach space X. Concerning equations with
integer order derivatives, the further contributions have been obtained by R. deLaubenfels [5] and T.-J. Xiao-
J. Liang [35] (cf. also [28], [32] and [36]-[38] for more details on the subject), where the authors have analyzed
the well-posedness of problem (1) in the case that there exists a number r ∈ N0 such that the operator −An−1

is the integral generator of an exponentially bounded r-times integrated semigroup on X. The genesis of
this paper is based on the fact that the methods developed in [35] cannot be so simply modified to cover the
case in which r is a non-integer number. We overcome the problem mentioned above by using an additional
assumption that the operator −An−1 is the integral generator of an exponentially bounded C-regularized
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semigroup on X, for a suitable chosen injective operator C ∈ L(X) that is practically always different from
the operator (µ0 −An−1)

−r, for some µ0 ∈ ρ(An−1); furthermore, we consider the case in which there exist
numbers σ ∈ [1, 2], r ≥ 0 and ω ≥ 0 such that (ωσ,∞) ⊆ ρ(−An−1) and that the operator −An−1 generates
an exponentially equicontinuous (gσ, gσr+1)-regularized resolvent family or an exponentially equicontinuous
(gσ, C)-regularized resolvent family (cf. Theorem 2.1). Concerning the abstract Cauchy problem (ACP )n,
such reasoning produces, on the concrete level, significant improvements of regularity properties of the initial
data which guarantee the existence and uniqueness of solutions; cf. Example 2.3(i). On the other hand, we
feel in duty bound to say that Theorem 2.1 has several disadvantages in the case that the equation under
its consideration contains more than two dominating terms, the restriction in applications to real problems
comes from the fact that fractional derivatives of order > 2 are allowed. This is, certainly, not the case with
Theorem 2.4, whose main purpose is to transfer the assertions of [36, Theorem (∗)] and [35, Theorem 3.4.2]
to abstract multi-term fractional differential equations. The formulations of our main results, Theorem 2.1
and Theorem 2.4, are very clear and concise. Finally, we would like to observe that there exists a very large
class of important multi-term problems, like the fractional analog of damped Klein-Gordon equation [14,
(5.14)] or problem

D
4/3
t u(t) +

(
I −∆

)1/2
D

1/2
t u(t) + (I −∆)u(t) = 0,

to which both Theorem 2.1 and Theorem 2.4 cannot be applied.
We use the standard notation throughout the paper. A Hausdorff sequentially complete locally convex

space over the field of complex numbers, SCLCS for short, will be denoted by X. The abbreviations ~ and
L(X) stand for the fundamental system of seminorms which defines the topology of X, and the space of all
continuous linear mappings from X into X, respectively. Let B be the family of bounded subsets of X and
let pB(T ) := supx∈B p(Tx), p ∈ ~, B ∈ B, T ∈ L(X). Then pB(·) is a seminorm on L(X) and the system
(pB)(p,B)∈~×B induces the Hausdorff locally convex topology on L(X). Henceforth C ∈ L(X) is an injective

operator, and the convolution like mapping ∗ is given by f ∗g(t) :=
∫ t

0
f(t−s)g(s) ds. The domain, resolvent

set and range of a closed linear operator A acting on X are denoted by D(A), ρ(A) and R(A), respectively.
In the case that X is a Banach space, then we denote by ∥ · ∥ the norm on X. Recall that the C-resolvent
set of A, denoted by ρC(A), is defined by ρC(A) := {λ ∈ C ; λ − A is injective and (λ − A)−1C ∈ L(X)}.
By I we denote the identity operator on X.

Given s ∈ R in advance, set ⌊s⌋ := sup{l ∈ Z : s ≥ l} and ⌈s⌉ := inf{l ∈ Z : s ≤ l}. The Gamma
function is denoted by Γ(·) and the principal branch is always used to take the powers. Set C+ := {z ∈
C : ℜz > 0}, Nl := {1, · · ·, l}, N0

l := {0, 1, · · ·, l}, 0ζ := 0, gζ(t) := tζ−1/Γ(ζ) (ζ > 0, t > 0) and g0 := the
Dirac δ-distribution; the symbol δkl denotes the Kronecker delta. If ω ≥ 0, then we say that a function
f : (ω,∞) → X belongs to the class LT −X, if there exists a function h(·) ∈ C([0,∞) : X) such that, for
every p ∈ ~, there exists Mp > 0 satisfying p(h(t)) ≤ Mpe

ωt, t ≥ 0 and f(t) =
∫∞
0
e−λth(t) dt, λ > ω.

In the sequel, we shall always assume that A1, · · ·, An−1 are closed linear operators on X as well as that
0 = α1 < ··· < αn; notice that the assumption α1 = 0 is not restrictive since we can always add the additional
term A0u(t) ≡ 0u(t) on the left hand side of (1). Set mj := ⌈αj⌉, 1 ≤ j ≤ n, Di := {j ∈ Nn−1 : mj − 1 ≥ i}
(i ∈ N0

mn−1), and

Pλ := λαn +
n−1∑
j=1

λαjAj , λ ∈ C \ {0}.

If α > 0 and β > 0, then we define the Mittag-Leffler function Eα,β(z) by Eα,β(z) :=
∑∞

n=0 z
n/Γ(αn+ β),

z ∈ C; set, for short, Eα(z) := Eα,1(z), z ∈ C (cf. [3, Section 1.3] for more details about the Mittag-Leffler
functions).

We need the following definition from [11].

Definition 1.1. Let k ∈ C([0,∞)), k ̸= 0, and let a ∈ L1
loc([0,∞)), a ̸= 0. A strongly continuous operator

family (R(t))t≥0 ⊆ L(X) is called an (a, k)-regularized C-resolvent family having A as a subgenerator iff the
following holds:

(i) R(t)A ⊆ AR(t), t ≥ 0, R(0) = k(0)C and CA ⊆ AC,
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(ii) R(t)C = CR(t), t ≥ 0 and

(iii) R(t)x = k(t)Cx+
∫ t

0
a(t− s)AR(s)x ds, t ≥ 0, x ∈ D(A).

(R(t))t≥0 is said to be non-degenerate if the condition R(t)x = 0, t ≥ 0 implies x = 0, and (R(t))t≥0 is
said to be exponentially equicontinuous (equicontinuous) if there exists ω ∈ R (ω = 0) such that the family
{e−ωtR(t) : t ≥ 0} is equicontinuous.

In the case that k(t) ≡ 1, then it is also said that (R(t))t≥0 is an (a,C)-regularized resolvent family with
subgenerator A. Henceforth, any considered operator family will be non-degenerate, and the functions a(t),
k(t) will be scalar-valued kernels. Then we are in a position to define the integral generator Â of (R(t))t≥0

by setting

Â :=

{
(x, y) ∈ X ×X : R(t)x− k(t)Cx =

∫ t

0

a(t− s)R(s)y ds for all t ≥ 0

}
.

The integral generator Â of (R(t))t≥0 is a linear operator on X which extends any subgenerator of (R(t))t≥0

and satisfies C−1ÂC = Â. The exponential equicontinuity of (R(t))t≥0 guarantees that Â is a closed linear
operator on X; if, additionally,

A

t∫
0

a(t− s)R(s)x ds = R(t)x− k(t)Cx, t ≥ 0, x ∈ X, (5)

then R(t)R(s) = R(s)R(t), t, s ≥ 0, Â itself is a subgenerator of (R(t))t≥0 and Â = C−1AC. For further
information on subgenerators of (a, k)-regularized C-resolvent families, we refer the reader to [10]-[11]; in the
sequel, we shall always assume that the functional equation (5) holds for any considered (a, k)-regularized
C-resolvent family. By a∗,l(t) we denote the l-th convolution power of a(t).

We need the following condition.

(P1): k(t) is Laplace transformable, i.e., it is locally integrable on [0,∞) and there exists β ∈ R such that

k̃(λ) := L(k)(λ) := limb→∞
∫ b

0
e−λtk(t) dt :=

∫∞
0
e−λtk(t) dt exists for all λ ∈ C with ℜλ > β. Put

abs(k) :=inf{ℜλ : k̃(λ) exists}, δ̃(λ) := 1 and denote by L−1 the inverse Laplace transform.

Let σ > 0 and l ∈ N. Set, for any X-valued function f(t) satisfying (P1),

Fσ,f (z) :=

∫ ∞

0

e−z1/σtf(t) dt, z > max(abs(f), 0)σ.

Then there exist uniquely determined real numbers (cl0,l,σ)1≤l0≤l, independent of X and f(t), such that:

dl

dzl
Fσ,f (z) =

l∑
l0=1

cl0,l,σz
l0
σ −l

∞∫
0

e−z1/σttl0f(t) dt, z > max(abs(f), 0)σ. (6)

Notice that cl,l,σ = (−1)lσ−l, l ≥ 1 and that [13, Lemma 3] implies that there exists a number ζ ≥ 1 such
that

l∑
l0=1

l0!|cl0,l,σ| ≤ ζll! for all l ∈ N. (7)

Following [14, Definition 2.1], it will be said that a function u ∈ Cmn−1([0,∞) : X) is a (strong) solution

of (1) iff AiD
αi
t u ∈ C([0,∞) : X) for 1 ≤ i ≤ n − 1, gmn−αn ∗ (u −

∑mn−1
k=0 ukgk+1) ∈ Cmn([0,∞) : X)
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and (1) holds. Recall that the Caputo fractional derivative Dαn
t u(t) is defined for those functions u ∈

Cmn−1([0,∞) : X) for which gmn−αn ∗ (u−
∑mn−1

k=0 ukgk+1) ∈ Cmn([0,∞) : X), by

Dαn
t u(t) =

dmn

dtmn

[
gmn−αn ∗

(
u−

mn−1∑
k=0

ukgk+1

)]
.

We need the following recent result [17] on the existence and uniqueness of strong solutions of (1); notice
only that we always have in formulations of our results that Nn−1 \Dk ̸= ∅, k ∈ N0

mn−1.

Lemma 1.2. (i) Suppose A1, · · ·, An−1 are closed linear operators on X, ω ≥ 0, C ∈ L(X) is injective
and u0, · · ·, umn−1 ∈ X. Let the following conditions hold:

(a) The operator Pλ is injective for λ > ω and D(P−1
λ C) = X, λ > ω.

(b) If 1 ≤ j ≤ n− 1, 1 ≤ l ≤ n− 1, 0 ≤ k ≤ mn − 1, k > ml − 1 and λ > ω, then Cuk ∈ D(P−1
λ Al),

Aj

{
λαj

[
λ−k−1Cuk−

∑
l∈Nn−1\Dk

λαl−k−1P−1
λ AlCuk

]

−
mj−1∑
l=0

δklλ
αj−1−lCuk

}
∈ LT −X (8)

and

λαn

[
λ−k−1Cuk −

∑
l∈Nn−1\Dk

λαl−k−1P−1
λ AlCuk

]
− λαn−1−kCuk ∈ LT −X. (9)

Then the abstract Cauchy problem (1) has a strong solution, with uk replaced by Cuk (0 ≤ k ≤ mn−1).

Furthermore, u(t) =
∑mn−1

k=0 uk(t), t ≥ 0, where

∞∫
0

e−λtuk(t) dt = λ−k−1Cuk −
∑

l∈Nn−1\Dk

λαl−k−1P−1
λ AlCuk, (10)

for any k ∈ N0
mn−1.

(ii) Let λ > 0, let C ∈ L(X) be injective, and let D(P−1
nλ C) = X, n ∈ N. Suppose that, for every positive

real number σ > 0 and for every null sequence (xn)n∈N in X, one has:

lim
n→∞

e−nλσP−1
nλ Cxn = 0.

Then, for every u0, · · ·, umn−1 ∈ X, the abstract Cauchy problem (1) has at most one strong solution.

2. Applications of certain subclasses of (a, k)-regularized C-resolvent families in the analysis
of the abstract Cauchy problem (1)

We start this section by stating the following important result.

Theorem 2.1. Suppose n ∈ N \ {1, 2}, σ ∈ [1, 2], r ≥ 0, αn − αn−1 = σ, αn−1 − αn−2 ≥ σ, ω ≥ 0,

D(An−1) ⊆
∩n−2

i=0 D(Ai) and (ωσ,∞) ⊆ ρ(−An−1). Put Ăi(λ) := λαi−αn−1Ai(λ
σ + An−1)

−1, λ > ω,
i ∈ Nn−2 and suppose that the following conditions hold:
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(i) AiAjx = AjAix, 1 ≤ i, j ≤ n− 1, x ∈ D(A2
n−1) and CAj ⊆ AjC, j ∈ Nn−2.

(ii) There exists ω0 ≥ ω such that, for every p ∈ ~, there exists cp ∈ (0, 1/(n− 2)) satisfying

p
(
Ăi(λ)x

)
≤ cpp(x), λ > ω0, x ∈ X, i ∈ Nn−2. (11)

If

(a) The operator −An−1 is the integral generator of a (gσ, gσr+1)-regularized resolvent family (Sσ,r(t))t≥0

on X, the family {e−ωtSσ,r(t) : t ≥ 0} is equicontinuous, and Aluk ∈ D
(
A

max(⌈ 1
σ (σr+αl−k)⌉,0)

n−1

)
, provided

0 ≤ k ≤ mn − 1 and l ∈ Nn−1 \Dk,

or

(b) The operator −An−1 is the integral generator of a (gσ, C)-regularized resolvent family (Tσ(t))t≥0 on X,
the family {e−ωtTσ(t) : t ≥ 0} is equicontinuous, and uk ∈ C

(∩
l∈Nn−1\Dk

D(Al)
)
for 0 ≤ k ≤ mn − 1,

then the abstract Cauchy problem (1) has a unique strong solution.

Proof. Let µ0 < −ωσ
0 . By (ii), it follows that, for every p ∈ ~ and l ∈ N, one has p(Ăi(λ)

lx) ≤ clpp(x),
λ > ω0, x ∈ X, i ∈ Nn−2. Using this inequality and the polynomial formula, we obtain that, for every p ∈ ~,

p

([
n−2∑
i=1

Ăi(λ)

]k
x

)
≤ ckp(n− 2)kp(x), λ > ω0, k ∈ N0, x ∈ X.

Since cp(n− 2) < 1, p ∈ ~, the above implies that, for every x ∈ X and λ > ω0, the series

Bλx ≡
∞∑
k=0

(
λσ +An−1

)−1

[
−

n−2∑
i=1

Ăi(λ)

]k
x (12)

is convergent. Put Ãi := Ai(µ0 − An−1)
−1, i ∈ Nn−2. Then (11) implies Ãi ∈ L(X), i ∈ Nn−2. Using the

polynomial formula again, we get that, for every λ > ω, k ∈ N0 and j ∈ N0,[
n−2∑
i=1

λαi−αn−1+σÃi

]k(
1 +

µ0

λσ

)j
=

∑
(l1,···,ln−2)∈Nn−2

0
l1+···+ln−2=k

j∑
s=0

k!

l1! · · · ln−2!

×
(
λα1−αn−1+σÃ1

)l1 · · · (λαn−2−αn−1+σ ˜An−2

)ln−2

(
j

s

)
µs
0

λσs
. (13)

Since αn−1 − αn−2 ≥ σ, (13) yields that, for every k ∈ N0 and j ∈ N0 with 0 ≤ j ≤ k, there exist numbers
lkj ∈ N, β0, · · ·, βlkj

∈ (−∞, 0] and operators Akjm ∈ L(X) (0 ≤ m ≤ lkj) such that β0 > · · · > βlkj
and[

n−2∑
i=1

λαi−αn−1+σÃi

]k(
1 +

µ0

λσ

)j
=

lkj∑
m=0

λβmAkjm, λ > ω0.

Repeating literally the arguments given in the proof of [35, Theorem 3.2.1, p. 95], we obtain that:

Bλx =
∞∑
k=0

k∑
j=0

(
k

j

) lkj∑
m=0

λβmAkjm

[
(−1)j

λ(k−j)σ

(
λσ +An−1

)−j−1
x

]
, x ∈ X, λ > ω0.

Having in mind (12) and the equality αn − αn−1 = σ, it can be easily seen that

PλBλx = λαn−1x, x ∈ X, λ > ω0, (14)
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as well as that (cf. (i)): Ai(λ + An−1)
−2 = (λ + An−1)

−1Ai(λ + An−1)
−1, λ > ω, 1 ≤ i ≤ n − 2 and

Ai(λ+An−1)
−1Aj(λ+An−1)

−1 = Aj(λ+An−1)
−1Ai(λ+An−1)

−1, λ > ω, 1 ≤ i, j ≤ n−2. In combination
with (14), this implies that Pλ is injective for λ > ω0 and Bλx = λαn−1P−1

λ x, x ∈ X, λ > ω0. Then
the existence of strong solutions simply follows from Lemma 1.2 (cf. (8)-(9)) if we prove that, for every
k ∈ N0

mn−1 and j ∈ Nn−1,

λαjAj

∑
l∈Nn−1\Dk

λαl−k−1P−1
λ Aluk ∈ LT −X (15)

and

λαn

∑
l∈Nn−1\Dk

λαl−k−1P−1
λ Aluk ∈ LT −X. (16)

Clearly, the relation (15) with j = n− 1 is equivalent to say that

λαn−1
(
µ0 −An−1

) ∑
l∈Nn−1\Dk

λαl−k−1P−1
λ Aluk ∈ LT −X. (17)

Suppose first that (b) holds. We will prove that λσ−1BλCx ∈ LT −X for every fixed element x ∈ X. Owing
to [11, Theorem 2.7], we have

(
z +An−1

)−1
Cx = z(1−σ)/σ

∞∫
0

e−z1/σtTσ(t)x dt, x ∈ X, z > ωσ.

This equality in combination with (6) and

(−1)j
(
z +An−1

)−j−1
Cx = j!−1 d

j

dzj
(
z +An−1

)−1
Cx, z > ωσ, j ∈ N0, x ∈ X,

implies

λσ−1
(
λσ +An−1

)−j−1
Cx =

(−1)j

j!

j∑
l=0

(
j

l

)
1− σ

σ
· · ·
(1− σ

σ
− (j − l − 1)

)

×
l∑

l0=1

cl0,l,σλ
l0−jσ

∞∫
0

e−λttl0Tσ(t)x dt, x ∈ X, λ > ω, (18)

where we have put, by common consent,

1−σ
σ · · · ( 1−σ

σ − (j − l − 1)) ≡
{

1, if σ = 1 and j = l,
0, if σ = 1 and j > l,

and∑l
l0=1 cl0,l,σλ

l0−jσ
∫∞
0
e−λttl0Tσ(t)x dt ≡ λ−jσ

∫∞
0
e−λtTσ(t)x dt, t ≥ 0, x ∈ X, for l = 0. If k ∈ N0,

0 ≤ j ≤ k, t ≥ 0 and x ∈ X, then we define

Hσ
C,kj0(t; 0, 0)x := j!−1

j∑
l=0

l∑
l0=1

(
j

l

)
1− σ

σ
· · ·
(1− σ

σ
− (j − l − 1)

)
cl0,l,σ

[
gkσ−l0 ∗ ·l0Tσ(·)x

]
(t).

Using the estimate (7) and an elementary argumentation, it is checked at once that, for every x ∈ X, the
series

Hσ
C(t; 0, 0)x :=

∞∑
k=0

k∑
j=0

(
k

j

) lkj∑
m=0

Akjm

(
g−βm ∗Hσ

C,kj0(·; 0, 0)x
)
(t)
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converges uniformly on compacts of [0,∞). By definition of Hσ
C,kj0(·; 0, 0) and (16), it readily follows that:

∞∫
0

e−λtHσ
C,kj0(t; 0, 0)x dt = (−1)jλσ−1−(k−j)σ

(
λσ +An−1

)−j−1
Cx, (19)

provided k ∈ N0, 0 ≤ j ≤ k, x ∈ X and λ > ω0. Furthermore, there exists cσ > 0 such that∣∣∣1− σ

σ
· · ·
(1− σ

σ
− (j − l − 1)

)∣∣∣ ≤ cσ(j − l)!,

provided j ∈ N0 and 0 ≤ l ≤ j. Taken together with the inequality (7), the last estimate yields the existence
of a number η ≥ 1 such that, for every p ∈ ~, there exist cp > 0 and qp ∈ ~ such that

p
(
Hσ

C,kj0(t; 0, 0)x
)
≤ cpe

ωtηkgkσ+1(t)qp(x), x ∈ X, t ≥ 0, k ∈ N0, 0 ≤ j ≤ k. (20)

Since Eσ(a(bt)
σ) = O(a1/σebt), t ≥ 0 (a, b > 0), it is not difficult to show that the series appearing in the

definition of Hσ
C(t; 0, 0) converges uniformly on compacts of [0,∞) and that there exists ω′ > ω such that,

for every p ∈ ~, there exist cp > 0 and qp ∈ ~ satisfying p(Hσ
C(t; 0, 0)x) ≤ cpe

ω′tqp(x), x ∈ X, t ≥ 0. Clearly,

∞∫
0

e−λtHσ
C(t; 0, 0)x dt = λσ−1BλCx, x ∈ X, λ > ω0.

If k ∈ N0, 0 ≤ j ≤ k, l ∈ Nn−1 \Dk, x ∈ X and t ≥ 0, then we set

Fσ,l
C,kj0(t)x :=

{
−gkσ+k+1−αl

(t)Cx, if j = 0,(
gk−αl

∗Hσ
C,k(j−1)0(·; 0, 0)x

)
(t), if j > 0

+
([
gk−αl

(·) + µ0gk+σ−αl
(·)
]
∗Hσ

C,kj0(·; 0, 0)x
)
(t).

Using the resolvent equation and (19), it is checked at once that

L−1
((
µ0 −An−1

)
λαl−k−1BλCx

)
(t) =

∞∑
k=0

k∑
j=0

(
k

j

) lkj∑
m=0

Akjm

(
g−βm ∗ Fσ,l

C,kj0(·; 0, 0)x
)
(t),

provided k ∈ N0
mn−1, l ∈ Nn−1 \ Dk, x ∈ X and t ≥ 0. Since Aj(µ0 − An−1)

−1(µ0 − An−1)x = Ajx,
1 ≤ j ≤ n− 2, x ∈ D(An−1), the above ensures that

λαjAj

∑
l∈Nn−1\Dk

λαl−k−1P−1
λ CAlC

−1uk ∈ LT −X.

Suppose now that (a) holds and fix an element x ∈ X. If k ∈ N0, 0 ≤ j ≤ k and t ≥ 0, then we define,
as in the proof of theorem in the case that the initial values satisfy the condition (a),

Hσ
kj0(t; 0, σr + 1− σ) := j!−1

j∑
l=0

l∑
l0=1

(
j

l

)
× σr + 1− σ

σ
· · ·
(σr + 1− σ

σ
− (j − l − 1)

)
cl0,l,σ

[
gkσ−l0 ∗ ·l0Sσ,r(·)x

]
(t),

and

Hσ(t; 0, σr + 1− σ) :=

∞∑
k=0

k∑
j=0

(
k

j

) lkj∑
m=0

Akjm

(
g−βm ∗Hσ

kj0(·; 0, σr + 1− σ)x
)
(t),
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for any t ≥ 0. Clearly,

(
z +An−1

)−1
x = z(σr+1−σ)/σ

∞∫
0

e−z1/σtSσ,r(t)x dt, z > ωσ. (21)

By definition of Hσ
kj0(·; 0, σr + 1− σ) and (21), it readily follows that (cf. also the equation (18)):

∞∫
0

e−λtHσ
kj0(t; 0, σr + 1− σ)x dt = (−1)jλσ−1−(k−j)σλσ−σr−1

(
λσ +An−1

)−j−1
x,

provided k ∈ N0, 0 ≤ j ≤ k, λ > ω0, and

∞∫
0

e−λtHσ(t; 0, σr + 1− σ)x dt = λσ−σr−1Bλx, λ > ω0.

Assume r0 ∈ N0 ∪ {−1}, r1 ∈ R and r1 + r0σ ≥ σr + 1 − σ; notice that in the previous analysis we have
considered the case r0 = 0. If r0 = −1, then it is very simple to construct, with the help of resolvent equation
and the arguments given in the case r0 = 0, the continuous function t 7→ Hσ(t;−1, σr+1)x, t ≥ 0 such that
Hσ(t;−1, σr + 1) ∈ L(X) for t ≥ 0 and

Bλx = λrσ+1
(
µ0 −An−1

) ∞∫
0

e−λtHσ
(
t;−1, σr + 1

)
x dt, λ > ω0.

Suppose now r0 > 0. Then the identities

Sσ,r(t)y =

r0−1∑
l=0

(−1)lgσr+1+lσ(t)A
l
n−1y + (−1)r0

(
gσr0 ∗ Sσ,r(·)Ar0

n−1y
)
(t), t ≥ 0, y ∈ D

(
Ar0
)
,

and

∞∫
0

e−λttl0
(
gr0σ ∗ Sσ,r0(·)x

)
(t) dt

= λσ+r1−σr−1

∞∫
0

e−λt

{
l0∑

l1=0

(
l0
l1

)
(σr + 1− σ − r1) · · · (σr − σ − r1 + l0 − l1)

×
[
gl1−l0(·) ∗ (−1)r0 ·l1

(
gr0σ+σ+r1−σr−1 ∗ Sσ,r(·)Ar0

n−1

(
µ0 −An−1

)−r0
x
)]
(t)

}
dt,
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which holds for any l0 ∈ N and λ > ω suff. large, imply that

λ(j−k)σ−r1
(
µ0 −An−1

)−r0(
λσ +An−1

)−j−1
x

= (−1)jλ(j−k)σ−r1j!−1

j∑
l=0

l∑
l0=1

(
j

l

)
σr + 1− σ

σ
· · ·
(σr + 1− σ

σ
− (j − l − 1)

)

× cl0,l,σλ
σr+1−σ−(j−l)σλl0−lσ

∞∫
0

e−λttl0Sσ,r(t)
(
µ0 −An−1

)−r0
x dt

= (−1)jj!−1

j∑
l=0

l∑
l0=1

(
j

l

)
σr + 1− σ

σ
· · ·
(σr + 1− σ

σ
− (j − l − 1)

)
l0!cl0,l,σ

× λ−kσ−r1+σr+1−σ+l0

r0−1∑
m=0

(−1)m ˜gσr+1+l0+σm(λ)Am
n−1

(
µ0 −An−1

)−r0
x

+ (−1)jj!−1

j∑
l=0

l∑
l0=1

(
j

l

)
σr + 1− σ

σ
· · ·
(σr + 1− σ

σ
− (j − l − 1)

)
cl0,l,σ

× λl0−kσ

∞∫
0

e−λt

{
l0∑

l1=0

(
l0
l1

)
(σr + 1− σ − r1) · · · (σr − σ − r1 + l0 − l1)

[
gl1−l0(·) ∗ (−1)r0 ·l1

(
gr0σ+σ+r1−σr−1 ∗ Sσ,r(·)Ar0

n−1

(
µ0 −An−1

)−r0
x
)]
(t)

}
dt,

so that λ(j−k)σ−r1
(
µ0 −An−1

)−r0(
λσ +An−1

)−j−1
x ∈ LT −X. Put, for every t ≥ 0,

Hσ
kj0

(
t; r0, r1

)
x := L−1

(
λ(j−k)σ−r1

(
µ0 −An−1

)−r0(
λσ +An−1

)−j−1
x
)
(t)

and

Hσ
(
t; r0, r1

)
x :=

∞∑
k=0

k∑
j=0

(
k

j

) lkj∑
m=0

Akjm

(
g−βm

∗Hσ
kj0

(
·; r0, r1

)
x
)
(t).

Since r1 + r0σ ≥ σr + 1 − σ, we obtain by the foregoing arguments that the mapping t 7→ Hσ(t; r0, r1)x,
t ≥ 0 is continuous as well as that Hσ(t; r0, r1) ∈ L(X), t ≥ 0 and

Bλx = λr1
(
µ0 −An−1

)r0 ∞∫
0

e−λtHσ
(
t; r0, r1

)
x dt, λ > ω suff. large. (22)

Put sl,k,σ := max(⌈ 1
σ (σr+αl−k)⌉, 0). Using the first part of proof, it is not difficult to see that there exists

ω′ ≥ 0 such that, for every p ∈ ~, there exist cp > 0 and qp ∈ ~ such that p(Hσ(t; r0, r1)x) ≤ cpe
ω′tqp(x),

x ∈ X, t ≥ 0. Fix now an index k ∈ N0
mn−1 and l ∈ Nn−1 \Dk. Then (17) follows on account of (22), the

inequality (σ + αl − k − 1) + (σr + 1− sl,k,σσ) ≤ 0 and the following relation:

λαn−1+αl−k−1
(
µ0 −An−1

)
P−1
λ Aluk = λσ+αl−k−1λσr+1−sl,k,σσ

×
[
λ−(σr+1−sl,k,σσ)

(
µ0 −An−1

)1−sk,l,σBλ

(
µ0 −An−1

)sk,l,σAluk

]
∈ LT −X;

one can simply prove (15) by using (17) and decomposition Ajx = Aj(µ0 −An−1)
−1(µ0 −An−1)x, 1 ≤ j ≤

n−2, x ∈ D(An−1). Similarly, we have by (22) and the inequality (σ+αl−k−1)+(σr+1−σ−sl,k,σσ) ≤ 0
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that

λαn+αl−k−1P−1
λ Aluk = λσ+αl−k−1λσr+1−σ−sl,k,σσ

×
[
λ−(σr+1−σ−sl,k,σσ)

(
µ0 −An−1

)−sk,l,σBλ

(
µ0 −An−1

)sk,l,σAluk

]
∈ LT −X.

Hence, (16) holds and the proof of theorem is thereby completed.

Remark 2.2. (i) For every i ∈ Nn−2, the operator Ãi is closed, linear and defined on the whole space X.
If we assume that αn−2 − αn−1 + σr < 0 as well as that X is a webbed bornological space (this holds
provided that X is a Fréchet space) and that there exists M ≥ 1 such that

p
(
Sσ,r(t)x

)
≤Meωtp(x), p ∈ ~, t ≥ 0, x ∈ X, (23)

then (11) holds.

(ii) Suppose that (a) holds with some r > 0. Then [12, Corollary 2.4] implies that the operator −An−1 is
the integral generator of an exponentially equicontinuous (gσ, (µ0 − An−1)

−⌈r⌉)-regularized resolvent
family. By Theorem 2.1(b), we obtain that there exists a unique strong solution of (1) provided that the
initial values satisfy the condition uk ∈ (µ0−An−1)

−⌈r⌉(
∩

l∈Nn−1\Dk
D(Al)) for 0 ≤ k ≤ mn−1. Since

sl,k,σ ≤ ⌈r⌉ (in many concrete situations, the above inequality is strict), the use of integrated operator
solution families produces here better results, so that the choice C ̸= (µ0 −An−1)

−⌈r⌉ is inevitable for
obtaining larger initial data sets Tk such that the equation (1) has a unique strong solution provided
uk ∈ Tk (0 ≤ k ≤ mn − 1).

(iii) Set, for every k ∈ N0
mn−1 and l ∈ Nn−1 \Dk, Qk,l := max(⌈ 1

σ (σr+αl−k−αn)⌉, 0). Suppose that (23)
holds with (Sσ,r(t))t≥0, and with (Sσ,r(t))t≥0 replaced by (Tσ(t))t≥0 therein. Then it is not difficult to
see that the assumptions 0 ≤ k ≤ mn − 1 and Dk = ∅ imply

x−
∑

l∈Nn−1\Dk

λαlP−1
λ Alx = λαnP−1

λ x, x ∈ X.

In this case, the Laplace transform of strong solution uk(t) of (1) with u
(j)
k (0) = δjkuk can be also

computed by∫ ∞

0

e−λtuk(t) dt = λσ−k−1Bλuk

= λσ−k−1

[
λk+1−σ

∫ ∞

0

e−λtHσ
(
t;max

(⌈
σ−1(σr − k)

⌉
, 0
)
, k + 1− σ

)
uk dt

]
,

for λ > ω suff. large; cf. Lemma 1.2, the equation (10). Then the proof of Theorem 2.1, taken together
with (10) and the equality

gr0 ∗Hσ
k′j0

(
·; r0, σr + 1− σ − r0

)(
µ0 −An−1

)r0
x

= gr′0 ∗H
σ
k′j0

(
·; r′0, σr + 1− σ − r′0

)(
µ0 −An−1

)r′0x,
which holds provided x ∈ D(A

max(r0,r
′
0)

n−1 ) and r0, r
′
0 ∈ N0, implies that the strong solution u(t) of (1)

has the following form:

u(t) =

mn−1−1∑
k=0

[
gk+1(t)uk −

∑
l∈Nn−1\Dk

(
gαn+k−r+σQk,l−αl−σr ∗

∞∑
k′=0

k′∑
j=0

(
k′

j

) lk′j∑
m=0

Ak′jm

(
g−βm

∗

×Hσ
k′j0

(
·;Qk,l, σr + 1− σ −Qk,l

)(
µ0 −An−1

)Qk,lAluk

))
(t)

]
+

mn−1∑
k=mn−1

uk(t), t ≥ 0, (24)
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where Hσ
k′j0(·;Qk,l, r−Qk,l)(t) can be further expressed in terms of (Sσ,r(t))t≥0. Then a straightforward

computation shows that there exist M ′ ≥ 1 and ω′ > ω such that, for every p ∈ ~ and t ≥ 0,

p(u(t)) ≤M ′eω
′t

{
mn−1∑

k=mn−1

max(⌈ 1
σ (σr−k)⌉,0)∑
l=0

p
(
Al

n−1uk
)

+

mn−1−1∑
k=0

[
p
(
uk
)
+

∑
l∈Nn−1\Dk

Qk,l∑
s=0

p
(
As

n−1Aluk
)]}

.

Similarly, if (b) holds, then
∫∞
0
e−λtuk(t) dt = λ−kλσ−1BλCC

−1uk provided that λ > ω is suff. large
and mn−1 ≤ k ≤ mn − 1. The strong solution u(t) of (1) has the following form

u(t) =

mn−1∑
k=mn−1

uk(t) +

mn−1−1∑
k=0

[
gk+1(t)uk −

∑
l∈Nn−1\Dk

(
gk−αl

∗Hσ
C(·; 0, 0)AlC

−1uk

)
(t)

]
, (25)

for any t ≥ 0, and the following estimate holds

p(u(t)) ≤M ′eω
′t

{
mn−1∑

k=mn−1

p
(
C−1uk

)
+

mn−1−1∑
k=0

∑
l∈Nn−1\Dk

[
p
(
uk
)
+ p
(
AlC

−1uk
)]}

,

for any p ∈ ~ and t ≥ 0.

(iv) Suppose that (a) holds with (Sσ,r(t))t≥0 being an exponentially equicontinuous analytic (gσ, gσr+1)-
regularized resolvent family of angle θ ∈ (0, π/2]. Then the formula appearing in the brackets of the
second addend on the right hand side of (24) represents the solution uk(t) for each k ∈ N0

mn−1. Using
this fact and [11, Lemma 3.3, Theorem 3.4(i)], it is not difficult to prove that the mapping t 7→ uk(t),
t > 0 can be analytically extended to the sector Σθ. Similarly, if (b) holds with (Tσ(t))t≥0 being an
exponentially equicontinuous analytic (gσ, C)-regularized resolvent family of angle θ, then the solution
uk(t) of (1) can be analytically extended to the sector Σθ.

(v) It is worth noting that we do not assume in the formulation of Theorem 2.1(a) that r ∈ N0. In the
case of abstract Cauchy problem (ACPn), we cannot use this fact for obtaining some better results on
the wellposedness of (1); the situation is quite different in the case of a general multi-term fractional
differential equation (1), and we shall illustrate this by the following example. Consider the equation

u′′′(t) +A3u
′′(t) +A2D

1/2
t u(t) +A1u(t) = 0, t > 0,

u(0) = 0, u′(0) = u1, u
′′(0) = 0.

(26)

Assuming that the operator −A3 generates an exponentially equicontinuous r-times integrated semi-
group (S1,r(t))t≥0 for some r ∈ (0, 1/2], the abstract Cauchy problem (26) has a unique solution for
any u1 ∈ D(A1) ∩D(A2). If r = 1, then we obtain a weaker result on the wellposedness of (26) since
we must impose the condition that u1 ∈ D(A1) ∩D(A3A2).

Example 2.3. (i) The conditions of [5, Theorem 3.3] (cf. also [36, Theorem (∗)]) are not fulfilled in
the situation of [35, Example 6.2.5, Example 6.2.6], Theorem 2.1 produces here much better results
compared with [35, Theorem 6.3.1]. In order to illustrate this, we shall first consider the equation

∂2u(t, x)

∂t2
+

(
ρ1

∂3

∂x3
− ρ2

∂2

∂x2

)
∂u(t, x)

∂t
+ c

∂2u(t, x)

∂x2
= 0, t ≥ 0, x ∈ R,

u(0, x) = φ(x), ut(0, x) = ψ(x), x ∈ R,

(27)
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where ρ1 ∈ R, ρ2 > 0 and c ∈ C. Let X = Lp(R) for some p ∈ (1,∞), and let the fractional
Sobolev space Sα,p(Rn) be defined in the sense of [25, Definition 12.3.1, p. 297] (n ∈ N, α ∈ C+).

By [35, Theorem 1.5.10], the operator −(ρ1
∂3

∂x3 − ρ2
∂2

∂x2 ), considered with its maximal distributional

domain, generates an exponentially bounded (I−∆)−(3/2)|1/p−1/2|-regularized semigroup (T1(t))t≥0 on
X. Applying Theorem 2.1, we obtain that there exists a unique solution of problem (27) provided that
φ ∈ S2+3|1/p−1/2|,p(R) and ψ ∈ S3+3|1/p−1/2|,p(R); observe, however, that the existence and uniqueness
of solutions of (27) have been proved in [35, Example 6.2.5] under the assumptions φ ∈ S5,p(R),
ψ ∈ S6,p(R). Furthermore, [16, Theorem 2.18] and the analysis given in the example preceding [16,
Remark 3.9] imply that the mapping t 7→ T1(t) ∈ L(X), t > 0 is infinitely differentiable and that, for

every compact set K ⊆ (0,∞), there exists hK > 0 such that supp′∈N0,t∈K(hp
′

K || d
p′

dtp′
T1(t)||/p′!3/2) <∞,

i.e., (T1(t))t≥0 is 3
2 -hypoanalytic in the sense of [16, Definition 2.14]. Now we will prove that, for

every φ ∈ S2+3|1/p−1/2|,p(R) and ψ ∈ S3+3|1/p−1/2|,p(R), the corresponding solutions u0(t) and u1(t)
of problem (1) are also 3

2 -hypoanalytic (with the clear meaning). Let K ⊆ (0,∞) be a compact set. By
the proofs of [16, Lemma 2.15, Theorem 2.10] and the representation formula (25), it suffices to prove
that, for every x ∈ X, the mapping t 7→ H1

C(t; 0, 0)x, t > 0 is 3
2 -hypoanalytic. With the notation used

so far, we have that the mapping t 7→ H1
C(t; 0, 0)x, t > 0 is infinitely differentiable with

dp
′

dtp′H
1
C(·; 0, 0)x =

∞∑
k=0

k∑
j=0

j∑
s=0

(−1)j

j!

(
k

j

)(
j

s

)
µs
0Ã1

k dp
′−(s+k−j)

dtp′−(s+k−j)

[
·jT1(·)x

]
, (28)

for any p′ ∈ N0, where we have put dv

dtv [·
jT1(·)x] ≡ g−v ∗ [·jT1(·)x] if −v ∈ N. The 3

2 -hypoanalyticity of
above mapping now follows from the equality (28), the estimate

sup
t∈K

∥∥∥∥∥ dp
′−(s+k−j)

dtp′−(s+k−j)

[
·jT1(·)x

]
(t)

∥∥∥∥∥
≤
(
1 + cK

)k+p′[
p′!3/2(s+ k − j)!(−3/2) + (k − j + s− p′ + 1)!−1

]
,

which holds for any p′ ∈ N0 and an appropriately chosen constant cK > 0, and a simple computation
involving the 3

2 -hypoanalyticity of (T1(t))t≥0. We want also to note, without carrying out a deeper and
detailed analysis, that our results can be applied in the analysis of equation

∂2u(t, x)

∂t2
+

(
ρ1

∂3

∂x3
− ρ2

∂2

∂x2

)
∂u(t, x)

∂t
+

(
c
∂2

∂x2
+ a(x)

)
u(t, x) = 0, t ≥ 0,

u(0, x) = φ(x), ut(0, x) = ψ(x), x ∈ R,

(29)

where a ∈ L∞(R); cf. [37, Example 4.2] and [14, Example 5.3] for more details. Speaking-matter-
of-factly, the estimates obtained in the proof of Theorem 2.1(b), in combination with [37, Theo-
rem 2.7(a)] (cf. also [14, Theorem 3.5(b)]), indicate that there exists an exponentially bounded
(I−∆)−(3/2)|1/p−1/2|-existence family (E(t))t≥0 for (27), in the sense of [37, Definition 2.1], and that
there exist M ≥ 1 and ω ≥ 0 such that ||E(t)||+ ||E′(t)|| ≤Meωt, t ≥ 0. Designate S0,2(R) := L∞(R).
Then the perturbation result [17, Theorem 2.3(i)] implies that there exists an exponentially bounded
(I−∆)−(3/2)|1/p−1/2|-existence family (E0(t))t≥0 for (29), provided that a ∈ L∞(R)∩S3|1/p−1/2|,p(R).
If the function a(x) satisfies the above condition, then there exists a unique solution of (29) provided
φ ∈ S2+3|1/p−1/2|,p(R), ψ ∈ S3+3|1/p−1/2|,p(R), aφ ∈ S3|1/p−1/2|,p(R) and aψ ∈ S3|1/p−1/2|,p(R). Notice
that T.-J. Xiao and J. Liang have imposed in [37, Example 4.2] much stronger conditions a ∈W 3,∞(R)
and φ ∈ S5,p(R), ψ ∈ S6,p(R). Consider now the problem

uttt(t, x) + iρ∆utt(t, x) +
∑
|α|≤2

aαD
αut(t, x) +

∑
|β|≤2

bβD
βu(t, x) = 0, t ≥ 0,

u(0, x) = φ(x), ut(0, x) = ψ(x), utt(0, x) = ϕ(x), x ∈ Rn,

(30)
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where ρ ∈ R \ {0} and aα, bβ ∈ C (|α|, |β| ≤ 2). Let X = Lp(Rn) for some p ∈ (1,∞). Then the
operator −iρ∆ generates an exponentially bounded (I−∆)−n|1/p−1/2|-regularized semigroup on X, and

lim
λ→+∞

λ1−κ
∥∥∥(λ+ iρ∆

)−1
∥∥∥ = 0, κ > 0,

because the operator ∆ generates a bounded analytic semigroup of angle π/2 on X. By Theorem 2.1,
we know that there exists a unique solution of (30) provided φ, ψ, ϕ ∈ S2+2n|1/p−1/2|,p(Rn). In [35,
Example 6.2.6], the authors have considered the case n = 3 and p ∈ (6/5, 6), where the assumptions
φ, ψ, ϕ ∈ S4,p(R3) have been required for the existence and uniqueness of solutions of (30); notice
that our result produces better results here since 2 + 6|1/p− 1/2| < 4 for any p ∈ (6/5, 6).

(ii) Let X be one of the spaces Lp(Rn) (1 ≤ p ≤ ∞), C0(Rn), Cb(Rn), BUC(Rn), and let 0 ≤ l ≤ n.
Put Nl

0 := {η ∈ Nn
0 : ηl+1 = · · · = ηn = 0}. Then the space Xl is defined by Xl := {f ∈ X; f (η) ∈

X for all η ∈ Nl
0}, and totality of seminorms (qη(f) := ||f (η)||X , f ∈ Xl; η ∈ Nl

0) induces a Fréchet
topology on Xl. Let the symbol Tl⟨·⟩ possess the same meaning as in [18, Remark 2.2]; cf. also [35,
Chapter 1] for more details. Suppose 1 ≤ σ < 2, n = 3, A2 := −ei(2−σ)π

2 ∆, A1 :=
∑

|β|≤1 aβD
β (aβ ∈

C, |β| ≤ 1), γ > n/2, resp. γ = n|1/p−1/2| if 1 < p <∞ and X = Lp(Rn). Set C := T0⟨(1+ |x|2)−γ⟩
and consider the equation (1) with α3 = α2 + σ and α2 ∈ [σ, 2). By [18, Theorem 2.1, Remark 2.2],
we know that the operator −A2 is the integral generator of a global (gσ, C)-regularized resolvent family
(Rσ(t))t≥0 satisfying that there exists M ≥ 1 such that

qη
(
Rσ(t)f

)
≤M

(
1 + tn/2

)
qη(f), t ≥ 0, f ∈ Xl, η ∈ Nl

0, resp.,

qη
(
Rσ(t)f

)
≤M

(
1 + tn|

1
p−

1
2 |
)
qη(f), t ≥ 0, f ∈ Xl, η ∈ Nl

0. (31)

The estimate (11) is also valid since, for every ζ > 0, the operator ∆ generates an exponentially bounded
analytic ζ-times integrated semigroup of angle π/2 on X, satisfying additionally an estimate like (31).
If 1 < σ < 2, resp. σ = 1, then Theorem 2.1(b) shows that the equation (1) has a unique strong solution
provided that u0, u1 ∈ C(D(A1)) and u2 ∈ C(D(A2)), resp. u0 ∈ C(D(A1)) and u1 ∈ C(D(A2)); if
X = Lp(Rn) for some p ∈ (1,∞), and l = 0, this simply means that u0, u1 ∈ S2n|1/p−1/2|+1,p(Rn) and
u2 ∈ S2n|1/p−1/2|+2,p(Rn), resp., u0 ∈ S2n|1/p−1/2|+1,p(Rn) and u1 ∈ S2n|1/p−1/2|+2,p(Rn). It can be
easily seen that the use of integrated operator solution families produces here weaker results; however,
it should be noted that the non-existence of an appropriate reference which systematically treats the
generation of (gσ, gσr+1)-regularized resolvent families by coercive differential operators (cf. [18] for
the notion) additionally hinders possibility of proper applications of Theorem 2.1(a). As an illustrative
example, we would like to quote the operator ei(2−σ)π

2 ∆ acting on L1(R) with its maximal distributional
domain (1 < σ < 2); then it is not clear whether there exists a number ζ ∈ (0, 1) such that ei(2−σ)π

2 ∆
generates an exponentially bounded (gσ, g1+ζ)-regularized resolvent family, see e.g. [3, Example 3.7]
and [13, Example 23]. Notice, finally, that Theorem 2.1(b) can be applied with C = I if X = L2(Rn)
and the operator −A2 satisfies the conditions clarified in the formulation of [18, Theorem 2.2].

Before stating the following theorem, we would like to recall that the number sl,k,σ = max(⌈ 1
σ (αl − k +

σr)⌉, 0) has been already defined in the proof of Theorem 2.1, for any k ∈ N0
mn−1 and l ∈ Nn−1 \Dk.

Theorem 2.4. Suppose n ∈ N \ {1, 2}, σ ∈ (0, 2], r ≥ 0, αn − αn−1 = σ, M ≥ 1, ω ≥ 0, D(An−1) ⊆∩n−2
i=0 D(Ai) and (ωσ,∞) ⊆ ρ(−An−1). Put Ài(λ)x := λαi−αn−1(λσ + An−1)

−1Aix, bi := max(⌈σ−1(αi −
αn−1 + σr + 1)⌉, 0) and vi := max(⌈σ−1(αi − αn−1 + 1)⌉, 0) for x ∈ D(An−1), λ > ω and i ∈ Nn−2. Let
µ0 < −ωσ. If

(a) The operator −An−1 is the integral generator of a (gσ, gσr+1)-regularized resolvent family (Sσ,r(t))t≥0

satisfying (23) as well as

p
((
µ0 −An−1

)bi
Aix

)
≤M

[
p(x) + p

(
An−1x

)]
, (32)

for any x ∈ D
(
An−1

)
, p ∈ ~, i ∈ Nn−2, and Aluk ∈ D(A

sl,k,σ

n−1 ), provided 0 ≤ k ≤ mn − 1 and
l ∈ Nn−1 \Dk,
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or

(b) The operator −An−1 is the integral generator of a (gσ, C)-regularized resolvent family (Tσ(t))t≥0 sat-
isfying (23) with (Sσ,r(t))t≥0 replaced by (Tσ(t))t≥0 therein, as well as

p
((
µ0 −An−1

)vi
C−1Aix

)
≤M

[
p(x) + p

(
An−1x

)]
, (33)

for any x ∈ D
(
An−1

)
, p ∈ ~, i ∈ Nn−2, and Aluk ∈ R(C), provided 0 ≤ k ≤ mn−1 and l ∈ Nn−1\Dk,

or

(c) The operator −An−1 is the integral generator of a (gσ, C)-regularized resolvent family (Tσ(t))t≥0 sat-
isfying (23) with (Sσ,r(t))t≥0 replaced by (Tσ(t))t≥0 therein, as well as (a) holds and Aluk ∈ R(C),
provided 0 ≤ k ≤ mn − 1 and l ∈ Nn−1 \Dk,

then the abstract Cauchy problem (1) has a unique strong solution.

Proof. We shall only consider the case in which X is a Banach space; although technically complicated,
the proof of theorem in general case is quite similar and follows from the proofs of [35, Theorem 1.1.11]
and Theorem 2.1, along with the dominated convergence theorem and the sequential completeness of X. In
any of the cases (a), (b) or (c) set out above, the uniqueness of strong solutions is a simple consequence of
Lemma 1.2(ii); because of that, we shall only prove the existence of such solutions. Suppose first that (a)
holds. Using the generalized resolvent equation

(
z −An−1

)−1(
λ−An−1

)−k
x =

(−1)k

(z − λ)k
(
z −An−1

)−1
x+

k∑
i=1

(−1)k−i
(
λ−An−1

)−i
x(

z − λ
)k+1−i

, (34)

for any x ∈ X, k ∈ N0 and λ, z ∈ ρ(A) with z ̸= λ, we easily infer that, for every m ∈ {0, 1}, i ∈ Nn−2

and x ∈ X, we have λαi−αn−1Am
n−1(λ

σ + An−1)
−1(µ0 − An−1)

−bix ∈ LT − X. Keeping in mind (32), it
readily follows that there exist M ′ ≥ M and ω′ ≥ ω (universal constants in the remaining part of proof,
possibly different from line to line) such that, for every i ∈ Nn−2, m ∈ {0, 1} and x ∈ D(An−1), there exists
a continuous function t 7→ Fm,i(t;x), t ≥ 0 so that F1,i(t;x) = An−1F0,i(t;x), t ≥ 0, x ∈ D(An−1),∥∥Fm,i(t;x)

∥∥ ≤M ′eω
′t
∥∥∥(µ0 −An−1

)bi
Aix

∥∥∥ ≤M ′eω
′t
[
∥x∥+

∥∥An−1x
∥∥],

provided t ≥ 0, x ∈ D(An−1), and

λαi−αn−1Am
n−1

(
λσ +An−1

)−1
Aix =

∞∫
0

e−λtFm,i(t;x) dt, x ∈ D
(
An−1

)
, λ > ω′.

Setting F0,i(t)x := F0,i(t;x), t ≥ 0, x ∈ D(An−1), it is not difficult to prove that (F0,i(t))t≥0 ⊆ L([D(An−1)])
is exponentially bounded, strongly continuous and that

n−2∑
i=1

Ài(λ)x =

∞∫
0

e−λt
n−2∑
i=1

F0,i(t)x dt, x ∈ D
(
An−1

)
, λ > ω′.

In particular, there exists c ∈ (0, 1/(n− 2)) such that, for every x ∈ D
(
An−1

)
, λ > ω′ and i ∈ Nn−2,∥∥Ài(λ)x

∥∥+ ∥∥An−1Ài(λ)x
∥∥ ≤ c

[
∥x∥+

∥∥An−1x
∥∥]. (35)

Then the proof of Theorem 2.1 in combination with (35) shows that, for every x ∈ D(An−1) and λ > ω′,
the series

Bλx :=

∞∑
k=0

[
−

n−2∑
i=1

Ài(λ)

]k
x
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is convergent in the topology of [D(An−1)]. Taking into account the equality αn−αn−1 = σ, it can be easily
seen that the operator Pλ is injective for λ > ω′ as well as that

Bλ

(
λσ +An−1

)−1
x = λαn−1P−1

λ x, x ∈ X, λ > ω′. (36)

Define now F0(t) := −
∑n−2

i=1 F0,i(t), t ≥ 0. The foregoing arguments in combination with the proof of [35,
Theorem 1.1.11] imply that

Bλx− x =

∞∫
0

e−λt
∞∑
k=1

F ∗,k
0 (t)x dt, x ∈ D

(
An−1

)
, λ > ω′. (37)

Since Aluk ∈ D(A
sl,k,σ

n−1 ) for 0 ≤ k ≤ mn−1 and l ∈ Nn−1\Dk, it is very simple to prove with the help of (34)

that there exists a continuous function t 7→ G(t) ∈ [D(An−1)], t ≥ 0 such that ∥G(t)∥+∥An−1G(t)∥ ≤M ′eω
′t,

t ≥ 0 and

mn−1∑
k=0

∑
l∈Nn−1\Dk

λαl−k−1
(
λσ +An−1

)−1
Aluk =

∞∫
0

e−λtG(t) dt, λ > ω′. (38)

Define v(t) := G(t) + (
∑∞

k=1 F
∗,k
0 ∗ G)(t), t ≥ 0. Using (36)-(38), we get that the mapping t 7→ v(t) ∈

[D(An−1)], t ≥ 0 is continuous, exponentially bounded and that

ṽ(λ) = −λαn−1P−1
λ

mn−1∑
k=0

∑
l∈Nn−1\Dk

λαl−k−1Aluk, λ > ω′. (39)

Taken together with [35, Theorem 1.1.10], the equalities

Ai

∫ ∞

0

e−λt
(
gαn−1−αi ∗ v

)
(t) dt

= Ai

(
µ0 −An−1

)−1
λαi−αn−1

(
µ0 −An−1

)
ṽ(λ)

= Ai

(
µ0 −An−1

)−1L
(
gαn−1−αi ∗

[
µ0v(·)−An−1v(·)

])
(λ), λ > ω′,

show that the mapping t 7→ Ai(gαn−1−αi ∗ v)(t), t ≥ 0 is well defined and continuous (i ∈ Nn−1). Keeping
in mind that D

αj

t gk+1(t) identically equals 0, if mj − 1 ≥ k and t ≥ 0, resp. gk+1−αj
(t) if mj − 1 < k and

t ≥ 0 (j ∈ Nn, k ∈ N0
mn−1), a straightforward computation involving (39) yields that

λσ ṽ(λ) + L

(
n−1∑
i=1

Ai

(
gαn−1−αi ∗ v

)
(t)

)
(λ) + Ĩ0(λ) = 0,

where I0(t) :=
∑n−1

l=1

∑mn−1
k=ml

Algk+1−αj
(t)uk, t ≥ 0. The above simply implies that there exists a continuous,

exponentially bounded function t 7→ V (t), t ≥ 0 such that v ∈ C(⌈σ⌉−1)([0,∞) : X), v(k)(0) = 0 for
0 ≤ k ≤ ⌈σ⌉ − 1 and Dσ

t v(t) = V (t), t ≥ 0. Then the uniqueness theorem for Laplace transform, along with
the equality [3, (1.26)], shows that v(k)(0) = 0, k = 0, · · ·, ⌈σ⌉ − 1 and

Dσ
t v(t) +

n−1∑
i=1

Ai

(
gαn−1−αi ∗ v

)
(t) + I0(t) = 0, t ≥ 0.

Now one can prove, without any substantial difficulties, that the function

u(t) :=

mn−1∑
k=0

gk+1(t)uk +
(
gαn−1 ∗ v

)
(t), t ≥ 0,
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is a strong solution of (1). Observing that for each x ∈ D(An−1) there exists y ∈ X such that (cf. (33)), for
every λ > ω′ and m ∈ {0, 1},

λαi−αn−1Am
n−1

(
λσ +An−1

)−1
CC−1Aix

= λαi−αn−1Am
n−1

(
λσ +An−1

)−1
C
(
µ0 −An−1

)−vi
y,

and

λαl−k−1Am
n−1

(
λσ +An−1

)−1
CC−1Aluk ∈ LT −X, m ∈ {0, 1},

provided 0 ≤ k ≤ mn− 1 and l ∈ Nn−1 \Dk, the proof of theorem in the case that (b) holds can be deduced
similarly. The proof of (c) becomes standard and therefore omitted.

Remark 2.5. (i) A careful examination of the proof of Theorem 2.4 shows the following. In the case that
(a) holds, we have the following estimate on the growth rate of constructed solution u(t) :

p

(
u(t)−

mn−1∑
k=0

gk+1(t)uk

)
+ p

(
An−1

[
u(t)−

mn−1∑
k=0

gk+1(t)uk

])

≤M ′eω
′t

mn−1∑
k=0

∑
l∈Nn−1\Dk

sl,k,σ∑
q=0

p
(
Aq

n−1Aluk
)
, t ≥ 0, p ∈ ~.

Similarly, in the case that (b) or (c) holds, we have that

p

(
u(t)−

mn−1∑
k=0

gk+1(t)uk

)
+ p

(
An−1

[
u(t)−

mn−1∑
k=0

gk+1(t)uk

])

≤M ′eω
′t

mn−1∑
k=0

∑
l∈Nn−1\Dk

p
(
C−1Aluk

)
, t ≥ 0, p ∈ ~.

(ii) Keeping in mind the first part of this remark as well as the estimate (32), it can be easily seen that
Theorem 2.4(a) provides a generalization of [36, Theorem (∗)] and [35, Theorem 3.4.2], where the
cases σ = 1 and σ = 2 have been considered. Although formulated with an arbitrary number r ≥ 0,
the choice σr /∈ N does not produce here any refinement of already known results on the wellposedness
of abstract Cauchy problems [36, (1.1)] and [35, (4.1), p. 111] (cf. also Remark 2.2(v)). It is also
worth noting that [36, Theorem (∗)] has been generalized in [36, Proposition 3.4, Theorem 3.5]; the
proofs of these results rely upon a similar analysis on the Banach space (D(Ap), ∥ · ∥p), where p ≥ 2
and ∥x∥p ≡ ∥x∥ + · · · + ∥Apx∥, x ∈ D(Ap). Witout giving full details, we wish to observe only that
Theorem 2.4(b), compared with [36, Theorem 3.5], can produce a larger set of initial date for which a
strong solution of problem [36, (1.1)] exists.

(iii) There exists a large number of concrete examples in which the condition (i) stated in the formulation of
Theorem 2.1 is not fulfilled, in many of them Theorem 2.4(c) is applicable and produces better results
than Theorem 2.4(a). Notice also that Theorem 2.1 can be applied only in the case that σ ∈ [1, 2] and
αn−1 − αn−2 ≥ σ. Using the recent results from [18], we can provide several applications of Theorem
2.4 with σ ∈ (0, 1).

3. Inhomogeneous abstract multi-term Cauchy problems

In this section, we shall consider the well-posedness results for the inhomogeneous Cauchy problem:

Dαn
t u(t) +

n−1∑
i=1

AiD
αi
t u(t) = f(t), t > 0,

u(k)(0) = uk, k = 0, · · ·,mn − 1,

(40)
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where f ∈ C([0,∞) : X). Let the estimate (23) hold with (Sσ,r(t))t≥0, and with (Sσ,r(t))t≥0 replaced by
(Tσ(t))t≥0 therein. Suppose first that the assumptions of Theorem 2.1(a) hold as well as that the mapping

t 7→ (µ0 − An−1)
⌈σ−1(σr+1)⌉f(t), t ≥ 0 is continuous and satisfies that, for every p ∈ ~, there exists cp > 0

such that

p
((
µ0 −An−1

)⌈σ−1(σr+1)⌉
f(t)

)
≤ cpe

ωt, t ≥ 0. (41)

Then (22) implies that the function

Bλf̃(λ) = λσ
(
µ0 −An−1

)⌈σ−1(σr+1)⌉ ×
∞∫
0

e−λtHσ
(
t; ⌈σ−1(σr + 1)⌉,−σ

)
f̃(λ) dt

belongs to the class LT −X. Therefore, there exists a function vf ∈ C([0,∞) : X) such that λ−σBλf̃(λ) =∫∞
0
e−λtvf (t) dt, λ > ω suff. large. Set uf (t) := (gαn−1−σ ∗ vf )(t), t ≥ 0. Then ũf (λ) = P−1

λ f̃(λ) for λ > ω
suff. large, and it is not difficult to prove with the help of (22) that, for every j ∈ Nn−1,

λαj
(
µ0 −An−1

)
P−1
λ f̃(λ)

= λαj+σ−αn
(
µ0 −An−1

)1−⌈σ−1(σr+1)⌉
Bλ

(
µ0 −An−1

)⌈σ−1(σr+1)⌉
f̃(λ)

= λαj+σ−αnλσr+1−σ−
(
⌈σ−1(σr+1)⌉−1

)
σ

×
∞∫
0

e−λtHσ
(
t; ⌈σ−1(σr + 1)⌉ − 1, σr + 1− σ −

(
⌈σ−1(σr + 1)⌉ − 1

)
σ
)

×
(
µ0 −An−1

)⌈σ−1(σr+1)⌉
f̃(λ) dt ∈ LT −X,

because σr + 1 − σ − ⌈σ−1(σr + 1)⌉σ + 2σ + αj − αn ≤ 0. The above implies that, for every j ∈ Nn−1,

λαjAjP
−1
λ f̃(λ) ∈ LT −X. By [35, Theorem 1.1.10], we may conclude that, for every j ∈ Nn−1, the mapping

t 7→ AjD
αj

t uf (t), t ≥ 0 is well defined, continuous and that

∞∫
0

e−λtAjD
αj

t uf (t) dt = λαjAjP
−1
λ f̃(λ), (42)

for λ > ω suff. large. Now a trivial computation involving the uniqueness theorem for the Laplace transform
shows that (40) holds with uk = 0 for 0 ≤ k ≤ mn − 1. Hence, the function u(t) := uf (t) +

∑mn−1
k=0 uk(t),

t ≥ 0, is a strong solution of (40), with the clear meaning. Furthermore,

uf (·) = Hσ
(
·;max

(
⌈σ−1(σr + 1− αn)⌉,−1

)
, αn−1

)
∗
(
µ0 −An−1

)max
(
⌈σ−1(σr+1−αn)⌉,−1

)
f(·),

which implies that in the estimate of growth rate of p(u(t)), given after the equation (24), we need to add
the additional term

Meω
′t sup

0≤s≤t
p

((
µ0 −An−1

)max
(
⌈σ−1(σr+1−αn)⌉,−1

)
f(s)

)
, t ≥ 0. (43)

In such a way, we have proved a proper extension of [39, Theorem 2.2]. Let us mention that the proof given
above is different from that appearing in [39] and, in our opinion, much simpler even for the equations with
integer order derivatives.

Suppose now that (b) holds as well as that the mapping t 7→ (µ0 − An−1)
⌈σ−1⌉C−1f(t), t ≥ 0 is well

defined, continuous and satisfies that, for every p ∈ ~, there exists cp > 0 such that

p
((
µ0 −An−1

)⌈σ−1⌉
C−1f(t)

)
≤ cpe

ωt, t ≥ 0.
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Arguing in a similar fashion, we obtain that there exists a unique strong solution of (40) and that in the
estimate of growth rate of p(u(t)) we need to add the additional term

Meω
′t sup

0≤s≤t
p
((
µ0 −An−1

)−1
C−1f(s)

)
, t ≥ 0.

Concerning inhomogeneous abstract multi-term Cauchy problems, Theorem 2.1 produces similar results
as Theorem 2.4 and we shall explain this fact only in the case that σ ∈ (0, 2) and the assumptions of Theorem
2.4(a) hold. Suppose that u(t) is the solution of homogeneous counterpart of (40) with the initial values

uk (0 ≤ k ≤ mn − 1). Let the mapping t 7→ (µ0 − An−1)
⌈σ−1(σr+1)⌉f(t), t ≥ 0 be continuous, and let the

estimate (41) hold, for any p ∈ ~ and a corresponding cp > 0. Then the generalized resolvent equation (34)
implies, along with the formulae [3, (1.26)-(1.27)] and (41), that

λσ
(
λσ +An−1

)−1
f̃(λ) ∈ LT −X. (44)

Designate xf (t) := L−1(λσ(λσ + An−1)
−1f̃(λ))(t), t ≥ 0 and yf (t) := L−1((λσ + An−1)

−1f̃(λ))(t), t ≥ 0.
Taking into account [35, Theorem 1.1.10] and (44), it is very simple to prove that (µ0 − An−1)yf (t) =
µ0yf (t)− f(t) + xf (t), t ≥ 0. In the sequel, we shall employ the same notation as in the proof of Theorem

2.4; recall that the operator family (Q(t) ≡
∑∞

k=0 F
∗,k
0 (t))t≥0 ⊆ L([D(An−1)]) is exponentially bounded.

Then the mappings t 7→
∫ t

0
Q(t − s)yf (s) ds, t ≥ 0 and t 7→

∫ t

0
(µ0 − An−1)Q(t − s)yf (s) ds, t ≥ 0 are well

defined and exponentially bounded. Applying [35, Theorem 1.1.10] again, we obtain that

(
µ0 −An−1

) ∞∫
0

e−λtQ(t)
(
λσ +An−1

)−1
f̃(λ) dt =

∞∫
0

e−λt
((
µ0 −An−1

)
Q ∗ yf

)
(t) dt,

for λ > ω suff. large. For j ∈ Nn−1 fixed, we obtain similarly that

λαj
(
µ0 −An−1

)
P−1
λ f̃(λ) = λαj−αn−1

[(
λσ +An−1

)−1(
µ0 −An−1

)
f̃(λ)

+

∫ ∞

0

e−λt
(
µ0 −An−1

)
Q(t)

(
λσ +An−1

)−1
f̃(λ) dt

]
∈ LT −X.

Using the resolvent equation, (44) and the foregoing arguments, we get that λαjAjP
−1
λ f̃(λ) ∈ LT − X,

j ∈ Nn−1 and that (42) holds. Since

λαn−1An−1P
−1
λ f̃(λ) = f̃(λ)− λαnP−1

λ f̃(λ)−
n−2∑
j=1

λαjAjP
−1
λ P−1

λ f̃(λ), (45)

the above yields that λαnP−1
λ f̃(λ) ∈ LT−X. Hence, there exists a unique continuous, exponentially bounded

function t 7→ wf (t), t ≥ 0 such that L(wf (t))(λ) = λαnP−1
λ f̃(λ) for λ > ω suff. large. Set Uf (t) :=

(gαn ∗ wf )(t), t ≥ 0. Then Uf ∈ Cmn−1([0,∞) : X), (Uf )
(k)(0) = 0 for 0 ≤ k ≤ mn − 1 and the Caputo

derivative Dζ
tUf (t) is defined for any ζ ∈ [0, αn]. Furthermore, a simple computation involving the Laplace

transform shows that the function t 7→ u(t)+Uf (t), t ≥ 0 is a unique solution of the problem (40). By (45),
we have that

Ũf (λ) = P−1
λ f̃(λ) = λ−αn

[
f̃(λ)−

n−2∑
j=1

λαjAj

(
µ0 −An−1

)−1(
µ0 −An−1

)
P−1
λ f̃(λ)

+ λαn−1

(
µ0 −An−1

)
P−1
λ f̃(λ)− µ0λ

αn−1P−1
λ f̃(λ)

]
,
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for λ > ω suff. large. It can be simply checked with the help of (21) and the generalized resolvent equation
(34) that

λ−αn−1
(
λσ +An−1

)−1(
µ0 −An−1

)−max
(
⌈σ−1(σr+1−αn)⌉,−1

)
× L

((
µ0 −An−1

)max
(
⌈σ−1(σr+1−αn)⌉,−1

)
f ·

)
(λ) ∈ LT −X

and that the inverse Laplace transform of this function, denoted by z(·), satisfies that, for every t ≥ 0,

∥z(t)∥ ≤Meω
′t sup

0≤s≤t

∥∥∥∥∥(µ0 −An−1

)max
(
⌈σ−1(σr+1−αn)⌉,−1

)
f(s)

∥∥∥∥∥, t ≥ 0. (46)

If ⌈σ−1(σr + 1− αn)⌉ ≥ 0, then we can use (46), (32) and the equality

λ−σ
(
µ0 −An−1

)
P−1
λ f̃(λ)

= µ0λ
−αn

(
λσ +An−1

)−1
f̃(λ) + λ−αn−1

(
λσ +An−1

)−1
f̃(λ)− λ−αn f̃(λ)

+ λ−αn

∞∫
0

e−λt
(
µ0 −An−1

)
Q(t)

(
λσ +An−1

)−1
f̃(λ) dt,

so as to conclude that, in the final estimate of growth rate of p(u(t)), we need to add the term appearing in
(43). If ⌈σ−1(σr + 1 − αn)⌉ ≤ −1, then the best we can do is show (a slightly weaker estimate than (43))
that, in the final estimate of growth rate of p(u(t)), one can add the term

Meω
′t sup

0≤s≤t
p(f(s)), t ≥ 0.
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