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Abstract. We present an abstract version of the “adjugate” or classical adjoint of a square matrix.

Introduction

The Adjugate, or “classical adjoint”, of a square matrix, is constructed [1] by a curiously elaborate
routine: striking out the row and column intersecting in an arbitrary entry of a (k + 1) × (k + 1) matrix,
replacing the original matrix entry by the determinant of the k × k matrix thus revealed, then moving the
result to its mirror image in the diagonal, and finally either changing its sign or not. Since the “determinant”
itself is derived from another adjugate, the stage would appear to be set for an induction. In this note we
try to ride two horses: on the one hand to provide this induction, and the other to embed it in a more
abstract, axiomatic, environment.

1. Cofactors

By a cofactor, on a real or complex linear algebra A, with identity 1, we shall understand a mapping

1.1 adj : a 7→ a∼

satisfying the following three conditions: for arbitrary a, b ∈ A

1.2 1∼ = 1 ;

1.3 (ba)∼ = a∼b∼ ;

1.4 a∼a = aa∼ = |a|1 ∈ K1 .

Here K ∈ {R,C} is either the real or the complex field, or possibly the rationals Q. The number |a| will be
referred to as the determinant of a:

1.5 adj(a)a = a adj(a) = det(a)1 ∈ K1 .
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The archetype of a cofactor is defined on the 2× 2 matrices A = K2×2:

1.6 adj

(
a m
n b

)
=

(
a m
n b

)∼

=

(
b −m
−n a

)
.

Evidently this is a very simple construction, easily remembered. For this very special case, there are
additional properties of the cofactor: for arbitrary a, b ∈ A and α, β ∈ K

1.7 (a∼)∼ = a ;

1.8 (αa+ βb)∼ = αa∼ + βb∼ ;

1.9 a+ a∼ = tr(a)1 ∈ K1 .

The reader will recall that

1.10 det

(
a m
n b

)
= ab−mn = ba−mn = ba− nm ;

for the trace of (1.9) we have

1.11 tr

(
a m
n b

)
= a+ b .

Part of our objective is to see that the adjugates of the Introduction are indeed “cofactors”, to characterize
them as cofactors which are in some sense “minimal”, and then to show that these abstract matrix cofactors
are accessible inductively for the square matrices Kk×k of all orders k ∈ N.

2. Invertibility and uniqueness

Our first observation is that the determinant of (1.5) satisfies conditions analagous to (1.2)-(1.4):

Lemma 2.1. For arbitrary a, b ∈ A

2.1 |1| = 1 ;

2.2 |ba| = |b| |a| = |a| |b| ;

2.3 |a|b = b|a| .

In particular the scalar element |a|1 ∈ K1 ⊆ A “commutes” with every b ∈ A.

Proof. Observe
|ba|1 = (ba)∼(ba) = a∼(b∼b)a = a∼|b|a = |a| |b|1.

The condition (1.3) in a sense nearly follows from (1.4): if a, b ∈ A there is implication

2.4 c = a∼b∼ =⇒ (ba)c = c(ba) = |a| |b|1 .

We next claim that the determinant “determines” whether or not an element is invertible:
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Lemma 2.2. For arbitrary a, b ∈ A there is implication

ba = 1 =⇒ |a| ≠ 0 .

Conversely if |a| ≠ 0 then

2.5 b = (1/|a|)a∼ =⇒ ba = 1 = ab .

Proof. Obviously
ba = 1 =⇒ |b| |a| = |ba| = |1| = 1.

Observe that we have shown more than we advertised; if a ∈ A has even half an inverse then it is fully
invertible:

2.6 a ∈ A−1
left ∪A

−1
right =⇒ a ∈ A−1 ≡ A−1

left ∩A
−1
right .

The implication (2.5) is sometimes known as Cramer’s Rule.
We notice that the conditions (1.2)-(1.4) do not uniquely determine the “cofactor”: indeed if the mapping

a 7→ a∼ satisfies these three conditions, and if k ∈ N, then so do the mappings

2.7 a 7→ |a|ka∼ , a 7→ −a∼ ,

with associated “determinants” |a|k+1, −|a|. The special case (1.6) is in a sense “minimal” among all
solutions of the system of conditions (1.2)-(1.4). We are not really troubled by this non-uniqueness; each
such cofactor does its job of providing an effective determinant of invertibility. If however we replace the
real or complex numbers K by the integers Z, or the continuous functions C(Ω) on a topological space Ω,
we need to be a little more careful:

2.8 a ∈ A−1 =⇒ |a| ∈ K−1 .

This is the same as the condition |a| ≠ 0 for the real and the complex numbers, but when K = Z it requires
that

2.9 |a| ∈ {1,−1} ,

while for C(Ω) it means

2.10 |a|−1(0) = ∅ ⊆ Ω .
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3. Block triangles

To inductively extend a cofactor from 2× 2 to k×k matrices we look at “block triangles”. Miraculously,
we can in a sense work with 2× 2 matrices throughout. We start by looking at linear algebras of the form

3.1 G =

(
A M
N B

)
=

{(
a m
n b

)
: (a,m, n, b) ∈ A×M ×N ×B

}
,

where A and B are linear algebras with identity, andM and N are bimodules over A and B. FormallyM
is a (left A, right B) bimodule and N a (left B, right A) bimodule; in addition there are bilinear mappings

3.2 (m,n) 7→ m · n :M ×N → A ; (m,n) 7→ n ·m :M ×N → B .

Formal multiplication of 2× 2 matrices lays the structure bare. There is an idempotent

3.3 P = P 2 =

(
1 0
0 0

)
∈ G ,

for which (to within isomorphism)

3.4 A = PGP , M = PG(I − P ) , N = (I − P )GP , B = (I − P )G(I − P ) .

The “block triangles” occur when eitherM = O or N = O; we now show that cofactors on A and B combine
to generate cofactors on both kinds of block triangle.

Theorem 3.1. Cofactors a 7→ a∼ and b 7→ b∼ on A and B generate cofactors

3.5

(
a m
0 b

)
7→

(
|b|a∼ −a∼mb∼
0 |a|b∼

)
and

3.6

(
a 0
n b

)
7→

(
|b|a∼ 0
−b∼na∼ |a|b∼

)
.

Proof. Perform the obvious multiplications.

If in particular A and B are the matrix algebras Kk×k and Kℓ×ℓ, and the cofactors a 7→ a∼ and b 7→ b∼

are generated by the traditional recipe, deleting rows and columns, then it is not hard to see that the
cofactors generated on the triangles by Theorem 3.1 are also given by the traditional recipe.

More generally if T = RS is the product of an upper and a lower block triangle we define T∼ = S∼R∼,
and more generally still for a word in upper and lower block triangles

3.7 T = Sk . . . S2S1 =⇒ T∼ = S∼
1 S

∼
2 . . . S

∼
k .

This gives a “partial generalization” of Theorem 3.1:
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Lemma 3.2. Generally

3.8 a ∈ A−1 =⇒
(
a m
n b

)
=

(
1 0

na−1 1

)(
a m
0 b− na−1m

)
,

and

3.9 b ∈ B−1 =⇒
(
a m
n b

)
=

(
1 mb−1

0 1

)(
a−mb−1n 0

n b

)
,

To produce the cofactors, and hence also the determinant, combine (3.5), (3.6) and (3.7).
Hence for example ([7] Problem 7.1 ; cf [5]) if a ∈ A−1

3.10

(
a m
n b

)
∈ G−1 ⇐⇒ b− na−1m ∈ B−1 .

To extend our cofactors from k × k to (k + 1) × (k + 1) matrices apply Lemma 3.2 with A = K and
B = Kk×k: if a ̸= 0 then a ∈ A−1 and (3.8) applies. If a = 0 then we may have to perform a row
interchange, premultiplying by another invertible matrix, which will have determinant ±1. While this seems
very simple, such a multiplier may not be accessible as a product of block triangles:

Theorem 3.3. T =

(
a m
n b

)
∈ K2×2 is triangular if and only if mn = 0, and is the product of two triangles

if and only if

3.11 ab = 0 =⇒ mn = 0 .

Proof. Observe (
a′′ m′′

0 b′′

)(
a′ 0
n′ b′

)
=

(
a m
n b

)
=⇒ mn = m′′bn′ ;

(
a′ 0
n′ b′

)(
a′′ m′′

0 b′′

)
=

(
a m
n b

)
=⇒ nm = n′am′′
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For a fundamental example

3.12 ω =

(
0 1
1 0

)
is not the product of an upper and a lower triangle. To derive the formula (1.6) for the adjugate of a

2× 2 matrix we combine Theorem 3.1 with two declarations:

Definition 3.4.

3.13 a ∈ K = K1×1 =⇒ a∼ = 1 ;

3.14 a = ω ∈ K2×2 =⇒ a∼ = −ω .

It is evident that arbitrary a ∈ K2×2 can be written in the form

3.15 a = ων0uν1vν−1 ,

where u and v are an upper and a lower triangle and each νj is in {0, 1}. Thus (3.14), together with Lemma
3.2, determines the cofactor for all 2× 2 matrices.

4. Interchanges

It turns out that the two assertions of Definition 3.4, together with Theorem 3.1, also determine the
cofactor for arbitrary 3 × 3 matrices, and indeed enable us to perform the induction which determines the
adjugate for an arbitrary square matrix:

Theorem 4.1. If

4.1 T =

(
a m
n b

)
∈ G =

(
A M
N B

)
with

4.2 A = K = K1×1 , B = Kk×k ,

then the cofactor T∼ ∈ G is determined by the cofactor b∼ ∈ B.

Proof. If 0 ̸= a ∈ K then b∼ ∈ B determines T∼ ∈ G by (3.8) from Lemma 3.2, while if a = 0 and also
n = 0 then (3.5) from Theorem 3.1 does the job. Writing

4.3 T =

(
a m
n b

)
=

 a m
n1 b1
n′1 b′1


gives

4, 4 S1 =

(
ω 0
0 1

)
=⇒ S1T =

n1 b1
a m
n′1 b′1

 .

We have just interchanged the first two rows of the matrix T , replacing a = 0 by n1. More generally,

4.5 T =


a m
n′′j b′′j
nj−1 bj−1

nj bj
n′′′j b′′′j

 , Sj =

1 0 0
0 ω 0
0 0 1

 =⇒ SjT =


a m
n′′j b′′j
nj bj
nj−1 bj−1

n′′′j b′′′j

 :
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we can interchange row j − 1 and row j, bringing nj one step closer to a = 0. Repeating the process,

4.6 Rj = S1S2 . . . Sj =⇒ RjT =

nj bj
a m
nivj bivj

 =⇒ T = Sj . . . S2S1

nj bj
a m
nivj bivj

 .

It follows that if nj ̸= 0 then the cofactor of the product RjT is again given by (3.8). Now each factor
Sℓ = S−1

ℓ can be treated as a block diagonal, is its own inverse, and has determinant −1; the induction is
complete.

It would of course be economical to take nj to be the first non-zero entry in the column n; it is not
however necessary for the argument. For example the 2 × 2 interchange ω is the tip of an iceberg, none of
the rest of which is needed to make the induction; for each k ∈ N:

4.7 ϖ1 = ω ; ϖk+1 =

(
0 ϖk

1 0

)
For example, to write out the adjugate of a general 3× 3 matrix, with

4.8 m =
(
m1 m2

)
∈ K1×2 ; n =

(
n1
n2

)
∈ K2×1 ,

write

4.9 m∼ =

(
m2

−m1

)
; n∼ =

(
n2 −n1

)
,

and observe

4.10 mm∼ = 0 = n∼n ; (nm)∼ = m∼n∼ .

Then with a ∈ K and b ∈ K2×2, we find, for general T ∈ K3×3,

4.11

(
a m
n b

)∼

=

(
|b| −mb∼
−b∼n ab∼ − (nm)∼

)
.

Notice that the entries in the row −m∼b, the column −bn∼ and the 2× 2 matrix −(nm)∼ are the familiar
2× 2 determinants from the classical recipe for the left hand side of (4.11). Checking the conditions (1.4),

4.12

(
|b| −mb∼
−b∼n ab∼ − (nm)∼

)(
a m
n b

)
=

(
|b|a−mb∼n |b|m−mb∼b

−b∼na+ ab∼n− (nm)∼n −(nm)∼b− b∼nm+ ab∼b

)
and

4.13

(
a m
n b

)(
|b| −mb∼
−b∼n ab∼ − (nm)∼

)
=

(
a|b| −mb∼n −amb∼ +mab∼ −m(nm)∼

n|b| − bb∼n −nmb∼ + bab∼ − b(nm)∼

)
.

On the right hand sides of (4.12) and (4.13) it is easy to see that the off-diagonals are all zero; to see that
all four diagonal entries coincide observe that

4.14 tr((nm)∼b) = tr(b(nm)∼) = mb∼n .

This is a familiar observation about the trace of a product of 2× 2 matrices, which apparently also extends
to products of rows and columns.

For example, from (4.7) with k = 2,

4.15 ϖ∼
2 = −ϖ2 = −ϖ−1

2 .
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Theorem 4.1 says that a cofactor mapping T 7→ T∼, defined on the disjoint union of all square matrices
Kk×k, and subject to (1.2)-(1.4), together with (3.5), (3.6), (3.13) and (3.14), is uniquely determined, and
therefore given by the classical recipe. Theorem 4.1 therefore also shows that the classical recipe for the
adjugate of a square matrix can be proved by induction. It also closes a tiny gap in our discussion [13] of
the extension of the adjugate to the “socle” of a Banach algebra, making it now self-contained.

We can also observe that the classical recipe a 7→ adj(a) generates a cofactor which is in a sense minimal
among adjugate mappings a 7→ a∼ satisfying the conditions (1.2)-(1.4):

4.16 a∼ ∈ {det(a)kadj(a) : k ∈ Z+} ∪ {−adj(a)} .

The condition (1.4) of course restricts a “cofactor” a 7→ a∼ to square matrices, making our little foray
into the realm of rows and columns (cf [10]) something of an abus de notation.

5. Operator matrices

The algebra of adjugates and determinants extends not just to the real and complex fields K ∈ {R,C}
but also to more general rings. If D is a ring, not necessarily commutative, with identity 1, then we can
consider the ring

5.1 D2×2 =

{
T =

(
a m
n b

)
: (a,m, n, b) ∈ D4

}
,

and write

5.2 T =

(
a m
n b

)
=⇒ [T ] = {a,m, n, b} ⊆ D ;

Now provided [T ] ⊆ D is commutative (but cf [6]), we more or less repeat verbatim the introductory
(1.2)-(1.11) with D in place of K. For the analogue of (1.3) we need to augment the commutivity of (5.2):

5.3 [T ] ∪ [S] commutative =⇒ (ST )∼ = T∼S∼ .

If the coefficient ring D is an algebra, and also carries an adjugate mapping d 7→ d∼, then there will be two
kinds of adjugate on E = D2×2:

5.4 T 7→ adjD(T ) ∈ E ; T 7→ detD(T )
∼adjD(T ) ∈ E ,

with induced determinants

5.5 T 7→ detD(T ) ∈ D ; T 7→ |detD(T )| ∈ K .

When the ring D is not commutative, the invertibility condition (2.8) subdivides: with E = D2×2 we have
[8],[9] two implications:

5.6 T ∈ E−1
left ⇐⇒ detD(T ) ∈ D−1

left

and

5.7 T ∈ E−1
right ⇐⇒ detD(T ) ∈ D−1

right .

Definition 5.1. If

5.8 T =

(
a m
n b

)
∈ E = D2×2
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then (1.6), (1.10),

5.9 adjD(T ) =

(
b −m
−n a

)
∈ E , detD(T ) = ab−mn = ba− nm ∈ D ;

adjK(T ) ∈ E and detK(T ) ∈ K are rather more complicated. The relationship between the two kinds of
determinant can be [16],[17],[14] rather simple. For example if

5.10 D = K2×2 ; E = D2×2 = K4×4

then

Theorem 5.2. If T ∈ E is given by (5.8), with D = K2×2, then

5.11 detK(T ) = detKdetD(T ) = detK(ab−mn) ∈ K

and

5.12 adjK(T ) =
(
adjKdetD(T )

)
adjD(T ) = adjK(ab−mn)

(
b −m
−n a

)
∈ E .

Proof. Towards (5.12), writing, for d ∈ D, adjK(d) = d∼ and detK(d) = |d|, (1.8) and (1.3) together with
the commutivity say that the right hand side of (5.12) takes the form(

(ab−mn)∼ 0
0 (ab−mn)∼

)(
b −m
−n a

)
=

(
a∼|b| −m∼bn∼ −a∼mb∼ + |m|n∼
−b∼na∼ + |n|m∼ |a|b−m∼an∼

)

We remark that while (5.11) obviously follows from (5.12), the implication also runs the other way: for
(5.11) says that in particular that

adjK(T )T = adjK(detD(T ))detD(T ) = adjK(detD(T ))adjD(T )T ∈ D ∈ E .

If however it should happen that T ∈ E is “epimorphic”, in the sense that there is implication

5.13 UT = O =⇒ U = O ,

this gives back (5.12).
If we now extend the whole argument from D and E to polynomials D[z] and E[z], and then [KSW]

replace T ∈ E by T − zI ∈ E[z], then we get the epimorphism (5.13).
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Theorem 5.2 extends [17] from D = K2×2 and E = D2×2 to D = Kℓ×ℓ and E = Dk×k:

Theorem 5.3. Suppose a ∈ D and b ∈ Dk×k, where D is a linear algebra with identity, then if T ∈ E is
given by the analogue of (5.8) then

5.14

(
1 0
−n △a

)
T =

(
a m
0 △ab− nm

)
,

and hence inductively (5.11).

Proof. Here △a ∈ B is the “diagonal” element aIB generated by the scalar a ∈ D. If a ∈ D is not a
zero-divisor, so that also (

1 0
0 △a

)
∈ D ×B

is not a zero-divisor, then the same will apply to the relevant “determinants”. Indeed if T ∈ E = Dk+1×k+1

is given by (5.8), with a ∈ D and b ∈ Dk×k then, inductively, we suppose that Theorem 5.3 holds with
b′ ∈ Dk×k in place of T : now [KSW] gives (5.14). It follows

detD

(
1 a
−m △a

)
detD(T ) = detD

(
a m
0 △ab− nm

)
.

That is to say
akdetD(T ) = a detD(△ab− nm) ,

and now applying the inductive hypothesis to b′ = △ab− nm gives

|a|k|detD(T )| = |a| |△ab− nm| .

Provided a ∈ D is not a zero divisor, this gives Theorem 5.3 for T . Once again we replace D and E by D[z]
and E[z] and replace T by T − zI

For example Theorem 5.2 applies to the 4× 4 version of (3.12): with k = 3 in (4.7)

5.15 T =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 =

(
0 ω
ω 0

)
= ϖ3 =⇒ detD(T ) = −ω2 = −1 ∈ D , adjD(T ) = −T ∈ E .

For another example

5.16 T = d ∈ D =⇒ detD(T ) = d ; adjD(T ) = 1 ,

for which Theorem 5.2 is trivial.

6. Quaternions

Complex numbers are traditionally introduced “rigourously” to real analysts as the cartesian product
R2 with a fancy multiplication on board. We are here able to see them as a subalgebra of the 2 × 2 real
matrices R2×2:

6.1 C = R+ Rι ⊆ R2×2 ,

where
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6.2 1 =

(
1 0
0 1

)
, ι =

(
0 1
−1 0

)
,

giving, for arbitrary (a, b) ∈ R2,

6.3 a+ bι =

(
a b
−b a

)
.

Theorem 3.3 tells us that ι, the mysterious “square root of minus one”, is not the product of two real
triangles. In the notation of (5.2), the “complex conjugate” of a+ bι is given by the adjugate matrix:

6.4 (a+ bι)∼ = a− bι = (a+ bι)∗ .

Of course

6.5 ι2 = −1 .

Complex number multiplication is commutative, and we have the vital observation that

6.6 0 ̸= a+ bι =⇒ ∃(a+ bι)−1 :

every non-zero complex number is invertible. Also - here our notation begins to crack - the determinant is
the square of the modulus:

6.7 det(a+ bι) = a2 + b2 .

It is also possible to represent Hamilton’s quaternions H as 2× 2 complex matrices: with

6.8 i =

(
ι 0
0 −ι

)
, j =

(
0 1
−1 0

)
, k =

(
0 ι
ι 0

)
we find

6.9 i2 = j2 = k2 = ijk = −1 .

The general quaternion is the 2× 2 complex matrix, with of course commuting entries,

6.10 T = t+ xi+ yj + zk =

(
t+ xι y + zι
−y + zι t− xι

)
=

(
α β

−β α

)
∈ C2×2 ∼= R4×4 .

If they were good for nothing else in mathematics, quaternions would earn their place for making sense
of three dimensional “vector products” and “scalar triple products”. Writing out the adjugate and the
determinant we can see that a non zero quaternion again has a two-sided inverse quaternion. The quaternion
(6.10) of course has both a “real” and a “complex” determinant:

6.11 detC(T ) = (t+ xι)(t− xι)− (y + zι)(−y + zι) = |α|2 + |β|2 ;

the real determinant is also, by (5.11), the real determinant of the complex determinant. Since the complex
determinant is itself “real”, and indeed positive, the real and the complex determinants coincide. The
“complex” adjugate is given by

6.12 adjC(T ) = t− (xi+ yj + zk) =

(
α −β
β α

)
.



Robin Harte, Carlos Hernández / FAAC 14 (1) (2022), 23–38 34

For the “real” adjugate we can go back to (5.12):

6.13 adjR(T ) =
(
adjRdetC(T )

)
adjC(T ) = (t2 + x2 + y2 + z2)(t− (xi+ yj + zk)) .

Roger Penrose observes [19] that, in contrast to complex numbers, the quaternion conjugate is in a sense
“holomorphic”, which somehow puts paid to “quaternion analysis”:

6.14 2T ∗ + T + iT i+ jT j + kTk = 0 .

We can also represent in this way more general “quadratic surds” [20]. If Q ⊆ F ⊆ R is a subfield of the
reals, with

6.15 0 < r ∈ R \ {t2 : t ∈ F}

then

6.16 c+ d
√
r ∈ F+ F

√
r ←→

(
c+ da dm
dn c− da

)
∈ F2×2

with

6.17 mn = r − a2 ;

the general solution in F2×2 of the equation T 2 =

(
r 0
0 r

)
is given by

6.18 T =

(
a m
n −a

)
,

subject to (6.17).

7. Bilateral Hankel operators

There is a similar pattern lurking in the theory of Hankel and Toeplitz operators. Toeplitz operators on
the unit circle S ⊆ C can be seen as truncations of Laurent operators, which collectively form the commutant
of the bilateral forward shift:

7.1 D = {Lφ : φ ∈ L∞(S)} = {T ∈ B(L2(S)) : TU = UT} .

where

7.2 U = Lz : f 7→ z · f : L2(S)→ L2(S)

is the bilateral forward shift, and z ∈ L∞(S) the fundamental complex co-ordinate. The spectral theory of
a Laurent operator Lφ is identical to that, the essential range, of its “symbol” φ:

7.3 σ(Lφ) = σ(φ) = φess(S) .

The bilateral Hankel operators, those which intertwine the forward and backward shifts,

7.4 TU = U∗T .

do not constitute a subalgebra of B(L2(S)), and are best understood [21],[18],[15] by adding them to Laurent
operators:

7.5 E = {Lφ + LψS : {φ,ψ} ⊆ L∞(S)} .
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Here the bilateral Hankel operator S is defined by setting

7.6 f ∈ L2(S) , λ ∈ S =⇒ (Sf)(λ) = f(−λ) .

The spectral theory of bilateral Hankel operators is derived from the correspondence

7.7 A+BS ←→
(

A B
SAS SBS

)
,

which gives rise to a “determinant”

7.8 detD(A+BS) = ASBS −BSAS ∈ D ,

and an “adjugate”

7.9 adjD(A+BS) = SBS −AS ∈ E .

In turn Laurent and bilateral Hankel operators can be represented as 2 × 2 matrices of Toeplitz and
Hankel operators: represented, via Fourier series, as operators on ℓ2 ≡ ℓ2(N), the Toeplitz and Hankel
operators intertwine the forward and backward unilateral shifts

7.10 u : (x1, x2. . . .) 7→ (0, x1, x2, . . .) , v : (x1, x2, . . .) 7→ (x2, x3, . . .) ;

formally a ∈ B(ℓ2) is Toeplitz provided

7.11 vau = a ,

and is Hankel provided

7.12 va = au .

For example

7.13 U =

(
u 1− uv
0 v

)
; V =

(
v 0

1− uv u

)
.

Now ([15] Theorem 2.5)

7.14

(
a m
n b

)
Laurent =⇒ a, b Toeplitz and m,n Hankel ,

and

7.15

(
a m
n b

)
bilateral Hankel =⇒ a, b Hankel and m,n Toeplitz .

Thus Laurent and bilateral Hankel operators can also be thought of as 4×4 matrices of Hankel and Toeplitz
operators; of course here neither the entries, nor the 2 × 2 submatrices, mutually commute. The spectral
theory of Toeplitz and Hankel operators is much more complicated than that of bilateral Hankel operators.

8. Tensor products

If cofactors a 7→ a∼ and b 7→ b∼ on linear algebras A and B satisfy the conditions (1.2)-(1.4) then so
does the mapping

8.1 a⊗ b 7→ a∼ ⊗ b∼ : A⊗B → A⊗B
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on the tensor product [9] A⊗B, with associated determinant |a| |b|. If in particular A = Kk×k then

8.2 B ⊗A ∼= A⊗B ∼= Bk×k .

If in particular k = 2 and the entries mutually commute, we are back in the situation of Definition 5.1, with
D = B; we shall then write

8.3 T =

(
a m
n b

)
=⇒ T ⊗ S =

(
aS mS
nS bS

)
.

Generally if a ∈ A = Kk×k and b ∈ B then

Theorem 8.1. If a ∈ A = Kk×k and b ∈ B then

8.4 detB(a⊗ b) = |a|bk ≡ detK(a)b
k ∈ B

and

8.5 adjB(a⊗ b) = a∼ ⊗ bk−1 ≡ adjK(a)⊗ bk−1 ∈ A⊗B .

Proof.

8.6 a⊗ b = (a⊗ 1B)(1A ⊗ b) ∈ A⊗B ∼= Bk×k

with

8.7 detB(a⊗ 1B) = |a|1B ∈ B

and

8.8 detB(1A ⊗ b) = bk ∈ B

and hence

8.7 detB(a⊗ b) = |a|bk ≡ detK(a)b
k ∈ B .

It follows

8.8 adjB(a⊗ b) = a∼ ⊗ bk−1 ≡ adjK(a)⊗ bk−1 ∈ A⊗B .

If we now specialize to also B = Kℓ×ℓ, then

Theorem 8.2. If a ∈ A = Kk×k and b ∈ B = Kℓ×ℓ then

8.9 (a⊗ b)∼ = (a⊗ 1B)
∼(1A ⊗ b)∼ = |a|ℓ−1|b|k−1(a∼ ⊗ b∼) ∈ A⊗B .

Proof. This is Theorem 3.1 together with Theorem 5.3

Alternatively prove it for a⊗1B , using Theorem 3.1 and induction on ℓ; similarly for 1A⊗b with induction
on k. For example “scalar multiplication”

8.10 T 7→ αT = α⊗ T

is a tensor product, if we interpret α ∈ K = K1×1 as a 1× 1 matrix.
For another example the matrix T = ϖ3 of (5.15) is the tensor product

8.11

(
0 ω
ω 0

)
= ω ⊗ ω .
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9. Spatial determinants

For a more “spatial” version of the the determinant, and the adjugate, of a square matrix, we recall
the Koszul complex [10],[12] of a pair of commuting linear operators, or more general algebra elements: If
t = (t1, t2) ∈ A2 then this is given [10],[12] by the sequence of matrices (0, T∼, T, 0), where, as in (4.8),

9.1 T =

(
t1
t2

)
, T∼ =

(
t2 −t1

)
.

As we recalled in the Introduction, in the traditional recipe [1] the adjugate of a square matrix is constructed
by carrying out two separate operations, which indeed commute with one another. Firstly each entry in
the matrix is replaced by the determinant of the matrix which is revealed when the row and the column
intersecting at that point are deleted; then secondly each entry is moved across the diagonal and either has
its sign changed or not. This determinant is of course what is traditionally referred to as the “cofactor” of
the particular entry; our matrix-valued cofactor is therefore an abus de language. The second of these two
operations by itself gives the adjugate of a 2 × 2 matrix, but can also [10] be carried out on an arbitrary
rectangular matrix, where it satisfies the condition (1.7) and (1.8), and indeed also (1.3). This what we have
just done in (9.1), but earlier in (4.8) to the row and the column of (4.7).
If now p = (p1, p2) is a pair of two-variable polynomials without constant term then the Koszul complex
(0, S∼, S, 0) of s = p(t) is related to the Koszul complex of t by factorizations

9.2 S = UT ; S∼U = |U |T ; S∼ = T∼U∼ ; U∼S = T |U | ,

where

9.3 U =

(
u11 u12
u21 u22

)
∈ A2×2 .

If it should happen that the Koszul complex of s is exact, in the sense that there are matrices R and R∼

for which

9.4 R∼S = 1 = S∼R ,

and also

9.5 RS∼ + SR∼ =

(
1 0
0 1

)
,

then we maintain that also the Koszul complex of t is exact. Indeed certainly

9.6 (R∼U)T = 1 = T∼(U∼R) ,

and then also

9.7 RT∼U∼ + UTR∼ =

(
1 0
0 1

)
;

but we now claim that (9.7) can be replaced by

9.8 U∼RT∼ + TR∼U =

(
1 0
0 1

)
.

Specifically, if

9.9 WT = 1 = T∼W∼
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with
{t1, t2} ⊆ comm{w1, w2} ,

then also ([12] (10.6), (10.7))

9.10 TW +W∼T∼ =

(
1 0
0 1

)
.

If define U by (9.3), with mutually commuting uij , and then vary {t1, t2} ⊆ comm{u11, u12, u21, u22}, then
the rest of the factorization (9.2) is given uniqely by

9.11 U∼ = adj(U) ; |U | = det(U) .
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