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Abstract. Elementary number theory can be made to look like spectral theory.

Dedicated to Muneo Cho on his 70th birthday, and also to Woo Young Lee on his retirement after twenty-two Kotak
meetings

1. Introduction

Masquerading as part of the Langlands program, this jeu d’esprit is really nothing more than an old
Littlewood joke. It was sparked, initially, by a rumour that a subtle Japanese attack on Fermat’s last theorem
involved “square free” integers; then along came the book of “Rosenthal cubed”, which proved that a
veteran operator theorist could think of turning his hand to number theory. Also Read has demonstrated
that “primes” can turn up in unlikely places.

2. Natural numbers

J.E. Littlewood, in his “Miscellany” [5], quotes a nameless savant who maintained that, every once in
a while, a scientist should “perform a damfool experiment”, such as “playing the trumpet to his tulips”.
In that spirit, we observe that elementary number theory can be described in language very like spectral
theory. Recall

N = {1, 2, 3, . . .} =
∞⋃

n=1

Nn (2.1)

the natural numbers [8],[10], where

n ∈N =⇒Nn = {1, 2, . . .n} , (2.2)
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is an initial segment. The Principle of Induction says that, if K ⊆N is arbitrary, there is implication(
1 ∈ K and K + 1 ⊆ K

)
=⇒N ⊆ K . (2.3)

The formally weaker principle of complete induction says, with

K∧ =
⋃
k∈K

Nk , (2.4)

that there is also implication, for K , ∅,

K∧ + 1 ⊆ K =⇒N ⊆ K . (2.5)

Now declare m ∈N to be a factor or “divisor” of n, provided

n ∈Nm . (2.6)

Equivalently (Green’s relation)

Nn ⊆Nm . (2.7)

The traditional notation is m|n; we shall prefer instead

m ∈N−1{n} . (2.8)

Here, in contrast to residual quotients [3],[7],

K−1H = {x ∈ A : Kx ⊆ H} ; HK−1 = {x ∈ A : xK ⊆ H} , (2.9)

we write

K−1H = {x ∈ A : H ⊆ Kx} ; HK−1 = {x ∈ A : H ⊆ xK} . (2.10)

Thus

n ∈Nm⇐⇒ m ∈N−1{n} . (2.11)

The highest common factor hcf(m,n) = m∧n of m and n is defined by setting

N−1{m∧n} =N−1{n} ∩N−1{m} . (2.12)

It is curious how early in the discussion of the natural numbers, the subtleties of factorization present
themselves; as “Uncle Petros” [1] tells his nephew, “addition is natural, but multiplication is artificial”:

N = {1, 2, 3, 22, 5, 2 · 3, 7, 23, 32, 2 · 5, 11, 22
· 3, 13, 2 · 7, 3 · 5, 24, 17, . . .} . (2.13)

3. Primes

The subset P ⊆N of primes is fundamental:

P = {p ∈N :N−1{p} = {1, p}} \ {1} . (3.1)

We shall write, for n ∈N,

Pn = P ∩Nn . (3.2)
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The tactical decision to exclude the number 1 from the set P of primes contrasts with our attitude to the
empty set ∅, and to the zero subspace {0}.

It is the fundamental theorem of arithmetic ([10] Theorem 4.1.1) that

N =
∏
P : (3.3)

every natural number is (uniquely) a (finite) product of primes. We get about half way there if we observe
([10] Lemma 1.1.1) every non-trivial natural number has at least one prime factor:

1 < n ∈N =⇒ N−1{n} ∩ P , ∅ ; (3.4)

now proceed by (complete) induction. It follows that P is infinite: for if, to the contrary

P ⊆Nn ,

then nowhere in the product n! + 1 could there be any primes. Thus

P = {p1, p2, p3, . . .} = {2, 3, 5, 7, . . .} ⊆N , (3.5)

where, as sequences rather than sets,

p = (p1, p2, p3, . . .) = (2, 3, 5, 7, . . .) ∈NN ; (3.6)

recursively (Sieve of Eratosthenes)

pn+1 = Min(N \ {1} \ pnN) (3.7)

with of course
p1 = 2 = Min(N \ {1}) .

The fundamental theorem of arithmetic now gives the factorization, for 1 < n ∈N,

∏
{pνn(p) : p ∈ P} = n =

∞∏
j=1

pν j(n)
j , (3.8)

where νn : P→ P is the multiplicity function, and perversely we write ν j(n) = νn(p j). Formally, if 1 < n ∈N,

νn(p) = Max{k ∈N : pk
∈N−1{n}} . (3.9)

If we think of the natural numbers as “molecules”, then the primes can be thought of as “atoms”. There is
of course no simple formula for the mapping p : n 7→ pn :N→N. If we reflect that the factorial function

n 7→ n! = 1 · 2 · . . . · n =
∏
Nn (3.10)

has a significant extension to the complex plane (the Gamma function), we might wonder whether there
could be something similar for the inscrutable “prime function” p of (3.6). It is sometimes difficult to be
sure that n ∈N is prime: but if we can find p ∈ P for which

p < n < p2 , (3.11)

then we need only search Pp for factors of n; if there are none then n ∈ P. It is salutary, if you have a digital
clock beside your bed, and are finding it difficult to sleep, to lie there and factorize the time; you will get a
new problem every sixty seconds, and will be too drowsy to go and look anything up.
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4. Spectrum

If in a Littlewood “damfool experiment” we set [4]

$(n) = {p ∈ P : p ∈N−1{n}} , (4.1)

then we can think of $ as some kind of “spectrum”. Evidently

$(n) ⊆ Pn ⊆Nn . (4.2)

There is two way implication, for n ∈N,

n = 1⇐⇒ $(n) = ∅ . (4.3)

If n ∈N and p ∈ P then

p < n < p2 =⇒ $(n) ⊆ Pp ∪ {n} . (4.4)

n ∈N is a prime power provided its spectrum is a singleton

#$(n) = 1 , (4.5)

and square free provided every point of its spectrum has multiplicity one

p ∈ $(n) =⇒ νn(p) = 1 . (4.6)

Thus a square free prime power is itself a prime. The “spectral mapping theorem” here is [4],[9],([10]
Corollary 4.1.3 , Lemma 7.2.2) a sort of logarithmic law:

{m,n} ⊆N =⇒ $(mn) = $(m) ∪ $(n) . (4.7)

Fermat’s (little) theorem says ([10] Theorem 5.1.1) that

(1 < n ∈N and p ∈ P) =⇒ p ∈ $(n) ∪ $(np−1
− 1) , (4.8)

and Wilson’s theorem ([10] Theorem 5.2.1) that

p ∈ P =⇒ p ∈ $(1 + (p − 1)!) . (4.9)

Finally [4],[10], the Euclidean Algorithm demonstrates implication

$(m) ∩ $(n) = ∅ =⇒ 1 ∈ Zm + nZ : (4.10)

spectral disjointness appears to imply “splitting exactness”. Indeed there is two way implication

$(n) ∩ $(m) = ∅ ⇐⇒ m∧n = 1 , (4.11)

and generally

m∧n ∈ Zm + nZ . (4.12)

Supplementing (2.12) we have

$(m) ∩ $(n) = $(m∧n) (4.13)

and, dually,

$(m) ∪ $(n) = $(m∨n) = $(mn) (4.14)
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where

m∨n = mn/m∧n (4.15)

is the lowest common multiple of m and n. We might remark that for Read [9] the logarithmic law (4.7) is
the definition of “prime”; in contrast to (3.1), it is a little like the Carathéodore criterion for “measurability”.

Intermediate between the set of all natural numbers listed in (2.13) and the set of primes (3.5) would be
the set of square free numbers

{1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, . . .} ,

which form a sequence

q = (1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 6, 13, 14, 15, 2, 17 . . .) , (4.16)

in which, for each n ∈N, qn is a “reduced form” of n:

$(qn) = $(n) , (4.17)

with, for all p ∈ P,

νqn (p) ≤ 1 . (4.18)

Thus qn records the “spectrum” of n, discarding “multiplicity”.
As with linear algebra spectral theory, the spectrum gives only limited information about a number,

and “spectral multiplicity” adds more; indeed here, according to the fundamental theorem of arithmetic,
the spectrum $(n) and the multiplicity function νn together completely determine n ∈N.

Our spectrum is closely related to the “totatives” of n: with

Tot(n) = {k ∈Nn : k∧n = 1} � [Z]n/[Z]−1
n , (4.19)

where

[Z]n = Z/nZ (4.20)

we have

$(n) = Pn \ Tot(n) , (4.21)

and Euler’s totient function is defined by the formula

φ(n) = #Tot(n) . (4.22)

For example if p ∈ P then φ(p) = p − 1, and if {p, q} ⊆ P are distinct primes then ([10] Theorem 6.1.2)

φ(pq) = (p − 1)(q − 1) . (4.23)

5. Polynomials

Complex polynomials in one variable have arithmetic similar to the integers: if

p = zk + . . . + α1z + α0 ∈ Poly1 ⊆ C[z] ⊆ CC (5.1)

is a “monic” polynomial, then the fundamental theorem of algebra [8],[10] says that

p ≡ p(z) =

k∏
j=1

(z − λ j) =
∏
λ∈C

(z − λ)νp(λ) : (5.2)
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here there are possible repetitions among the {λ j : j ∈ {1, 2, . . . , k}}, while all but finitely many of the νp(λ)
vanish:

p ∈ Poly1 ⊆ C[z] =⇒ #{λ ∈ C : νp(λ) , 0} < ∞ . (5.3)

The “primes” among the monic polynomials are {z − λ : λ ∈ C}, and p ∈ Poly1 has both a “vector-valued”
spectrum

$(p) = {z − λ j : j ∈ {1, 2, . . . k}} = {z − λ : νp(λ) , 0} , (5.4)

with a multiplicity function νp : C→N ∪ {0}, defined as in (3.9), and a numerical spectrum

σ(1/p) = p−1(0) ⊆ C . (5.5)

Determination of the spectrum $(p) for the polynomial p of (5.1) is notoriously difficult when k ≥ 5, but
necessary and sufficient for p to be square-free is that its spectrum is disjoint from that of its derivative:

$(p) ∩ $(p′) = ∅ . (5.6)

The Euclidean algorithm continues to apply: if {q, r} ⊆ Poly1 then

q−1(0) ∩ r−1(0) = ∅ =⇒ 1 ∈ C[z]q + rC[z] . (5.7)

This has an application [2] to the “diagonalization” of a matrix T ∈ Ck×k: if

p ≡ p(z) = det(zI − T) (5.8)

is the Cayley-Hamilton polynomial and λ ∈ p−1(0) is an eigenvalue then we can write

p = q · r with q = (z − λ)` and q−1(0) ∩ r−1(0) = ∅ , (5.9)

and hence

(T − λI)−1(0) ⊆ q−1(0) ⊆ r(T)Ck : (5.10)

all the eigenvectors x ∈ (T − λI)−1(0) will be among the columns of the matrix r(T).
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