A Note on Unilateral Weighted Left Shift Operators

Miloš D. Cvetkovića ${ }^{\text {a }}$
${ }^{a}$ University of Niš, Faculty of Occupational Safety, Čarnojevića 10a, 18000 Niš, Serbia

Abstract

We give an estimation of the spectrum and the surjective spectrum of unilateral weighted left shifts $L: \ell_{\infty} \rightarrow \ell_{\infty}$, where ℓ_{∞} is the space of all bounded complex sequences.

1. Introduction

Let ℓ_{∞} be the Banach space of all bounded sequences of complex numbers with usual linear operations and sup norm. A unilateral weighted left shift $L: \ell_{\infty} \rightarrow \ell_{\infty}$ is defined by

$$
L\left(\xi_{1}, \xi_{2}, \xi_{3}, \cdots\right)=\left(w_{1} \xi_{2}, w_{2} \xi_{3}, \cdots\right)
$$

where $\left(\xi_{1}, \xi_{2}, \xi_{3}, \cdots\right) \in \ell_{\infty}$ and $\left(w_{n}\right)$ is a sequence of complex numbers satisfying $\left|w_{n}\right| \leq 1$ for every $n \in \mathbb{N}$. The objective of this note is to estimate the spectrum of L and the surjective spectrum of L by applying elementary arguments. In a particular situation when $w_{n}=1$ for all $n \in \mathbb{N}$ we give a complete description of these spectra.

The following proposition summarizes the basic properties of L.
Proposition 1. A weighted left shift $L: \ell_{\infty} \rightarrow \ell_{\infty}$ with the corresponding weight sequence (w_{n}) satisfying $\left|w_{n}\right| \leq 1$, $n \in \mathbb{N}$, is a bounded linear operator. In addition, $\|L\|=\sup _{i \in \mathbb{N}}\left|w_{i}\right|$.
Proof. Let $x=\left(\xi_{1}, \xi_{2}, \xi_{3}, \cdots\right) \in \ell_{\infty}$. Since $\left|w_{n} \xi_{n+1}\right|=\left|w_{n} \| \xi_{n+1}\right| \leq \sup _{i \in \mathbb{N}}\left|\xi_{i}\right|$ for every $n \in \mathbb{N}$, it follows that $L x=\left(w_{1} \xi_{2}, w_{2} \xi_{3}, \cdots\right) \in \ell_{\infty}$.

Obviously, L is linear. Moreover,

$$
\|L(x)\|=\sup _{n \in \mathbb{N}}\left|w_{n} \xi_{n+1}\right| \leq\left(\sup _{i \in \mathbb{N}}\left|w_{i}\right|\right)\left(\sup _{j \in \mathbb{N}}\left|\xi_{j}\right|\right)=\left(\sup _{i \in \mathbb{N}}\left|w_{i}\right|\right)\|x\|,
$$

and hence $\|L\| \leq \sup _{i \in \mathbb{N}}\left|w_{i}\right|$. Now, consider vectors $e_{i}=(0, \cdots, 0,1,0, \cdots), i \in \mathbb{N}$, where 1 is in the i th position, 0 elsewhere. Clearly, $\left\|e_{i+1}\right\|=1$ and $\left\|L e_{i+1}\right\|=\left|w_{i}\right|$ for all $i \in \mathbb{N}$, so we have

$$
\|L\| \geq \sup _{i \in \mathbb{N}}\left\|L e_{i+1}\right\|=\sup _{i \in \mathbb{N}}\left|w_{i}\right|
$$

and consequently $\|L\|=\sup _{i \in \mathbb{N}}\left|w_{i}\right|$.

[^0]Let X be a Banach space and let T be a bounded linear operator on X. The spectrum of T and the surjective spectrum of T will be denoted by $\sigma(T)$ and $\sigma_{s u}(T)$, respectively. The injectivity modulus of T is defined by

$$
j(T)=\inf \left\{\frac{\|T x\|}{\|x\|}: x \in X, x \neq 0\right\} .
$$

We say that T is bounded below if $j(T)>0$. The approximate point spectrum of T, denoted by $\sigma_{a p}(T)$, is the set of all $\lambda \in \mathbb{C}$ such that $T-\lambda I$ is not bounded below. It is well known that $\partial \sigma(T) \subset \sigma_{s u}(T) \cap \sigma_{a p}(T)[4$, Theorem 12.11], where $\partial \sigma(T)$ is the boundary of the spectrum. We will use the symbol $\mathbb{D}(0, r)$ to denote the set $\mathbb{D}(0, r)=\{\lambda \in \mathbb{C}:|\lambda| \leq r\}, r>0$. If $|\lambda|<j(T), \lambda \in \mathbb{C}$, then $T-\lambda I$ is bounded below [4, Proposition 9.10]. Since $\sigma_{a p}(T) \subset \sigma(T) \subset \mathbb{D}(0,\|T\|)$, we obtain a rough description of the approximate point spectrum

$$
\begin{equation*}
\sigma_{a p}(T) \subset\{\lambda \in \mathbb{C}: j(T) \leq|\lambda| \leq\|T\|\} \tag{1}
\end{equation*}
$$

2. The main result

Theorem 2. Let $L: \ell_{\infty} \rightarrow \ell_{\infty}$ be a unilateral weighted left shift with the corresponding weight sequence (w_{n}) satisfying $0<\inf _{i \in \mathbb{N}}\left|w_{i}\right| \leq\left|w_{n}\right| \leq 1$ for every $n \in \mathbb{N}$. Then:
(i) $\mathbb{D}\left(0, \inf _{i \in \mathbb{N}}\left|w_{i}\right|\right) \subset \sigma(L) \subset \mathbb{D}\left(0, \sup _{i \in \mathbb{N}}\left|w_{i}\right|\right)$;
(ii) $\sigma_{\text {su }}(L) \subset\left\{\lambda \in \mathbb{C}: \inf _{i \in \mathbb{N}}\left|w_{i}\right| \leq|\lambda| \leq \sup _{i \in \mathbb{N}}\left|w_{i}\right|\right\}$.

In particular, if $w_{n}=1$ for all $n \in \mathbb{N}$ then $\sigma(T)=\sigma_{\text {ap }}(T)=\mathbb{D}(0,1)$ and $\sigma_{\text {su }}(T)=\{\lambda \in \mathbb{C}:|\lambda|=1\}$.
Proof. The proof will be divided into four steps.
Step 1: We solve the equation

$$
\begin{equation*}
(L-\lambda I)\left(\xi_{1}, \xi_{2}, \cdots\right)=\left(\eta_{1}, \eta_{2}, \cdots\right) \tag{2}
\end{equation*}
$$

where $\lambda \in \mathbb{C}, I$ is the identity operator on $\ell_{\infty}, y=\left(\eta_{1}, \eta_{2}, \cdots\right) \in \ell_{\infty}$ is a given vector, and $x=\left(\xi_{1}, \xi_{2}, \cdots\right)$ is unknown. Precisely, in this step the domain of L and I is extended to the space of all complex sequences and it is possible that (2) has a solution which is not necessarily in ℓ_{∞}.

Step 2: We apply Step 1 to prove that for $|\lambda| \leq \inf _{i \in \mathbb{N}}\left|w_{i}\right|$ there exists a non zero vector $x=\left(\xi_{1}, \xi_{2}, \cdots\right) \in \ell_{\infty}$ such that $(L-\lambda I) x$ is the zero vector.

Step 3: Using Step 1 we show that for $|\lambda|<\inf _{i \in \mathbb{N}}\left|w_{i}\right|$ the equation (2) has a solution $x \in \ell_{\infty}$ for every $\left(\eta_{1}, \eta_{2}, \cdots\right) \in \ell_{\infty}$.

Step 4: The result follows by applying Proposition 1 and Steps 2 and 3. Indeed, it is clear that $\sigma_{s u}(L) \subset \sigma(L) \subset \mathbb{D}(0,\|L\|)$. According to Proposition 1, we have

$$
\begin{equation*}
\sigma_{s u}(L) \subset \sigma(L) \subset \mathbb{D}\left(0, \sup _{i \in \mathbb{N}}\left|w_{i}\right|\right) \tag{3}
\end{equation*}
$$

Further, from Step 2 we conclude that $L-\lambda I$ is not injective for $|\lambda| \leq \inf _{i \in \mathbb{N}}\left|w_{i}\right|$. Consequently, $L-\lambda I$ is not invertible for $|\lambda| \leq \inf _{i \in \mathbb{N}}\left|w_{i}\right|$, thus

$$
\begin{equation*}
\mathbb{D}\left(0, \inf _{i \in \mathbb{N}}\left|w_{i}\right|\right) \subset \sigma(L) \tag{4}
\end{equation*}
$$

From (3) and (4) we obtain (i). Moreover, Step 3 implies that if $|\lambda|<\inf _{i \in \mathbb{N}}\left|w_{i}\right|$ then $\lambda \notin \sigma_{s u}(L)$. Using this fact and (3) gives (ii).

The details are as follows.

Step 1: (2) can be rewritten in the form

$$
\left(w_{1} \xi_{2}-\lambda \xi_{1}, w_{2} \xi_{3}-\lambda \xi_{2}, \cdots\right)=\left(\eta_{1}, \eta_{2}, \cdots\right)
$$

or equivalently

$$
\begin{equation*}
\eta_{n}=w_{n} \xi_{n+1}-\lambda \xi_{n}, n \in \mathbb{N} \tag{5}
\end{equation*}
$$

If we put $n=1$ in (5) we obtain $\eta_{1}=w_{1} \xi_{2}-\lambda \xi_{1}$, and hence

$$
\begin{equation*}
\xi_{2}=\frac{\eta_{1}}{w_{1}}+\frac{\lambda \xi_{1}}{w_{1}} \tag{6}
\end{equation*}
$$

Let $n=2$. (5) becomes $\eta_{2}=w_{2} \xi_{3}-\lambda \xi_{2}$, and thus

$$
\begin{equation*}
\xi_{3}=\frac{\eta_{2}}{w_{2}}+\frac{\lambda \xi_{2}}{w_{2}} \tag{7}
\end{equation*}
$$

Combining (6) with (7) gives

$$
\xi_{3}=\frac{\eta_{2}}{w_{2}}+\frac{\lambda \eta_{1}}{w_{1} w_{2}}+\frac{\lambda^{2} \xi_{1}}{w_{1} w_{2}}
$$

Proceeding further in this direction, we obtain

$$
\begin{equation*}
\xi_{n+1}=\frac{\eta_{n}}{w_{n}}+\frac{\lambda \eta_{n-1}}{w_{n-1} w_{n}}+\frac{\lambda^{2} \eta_{n-2}}{w_{n-2} w_{n-1} w_{n}}+\cdots+\frac{\lambda^{n-1} \eta_{1}}{w_{1} \cdots w_{n}}+\frac{\lambda^{n} \xi_{1}}{w_{1} \cdots w_{n}} \tag{8}
\end{equation*}
$$

for every $n \in \mathbb{N}$. It follows that $x=\left(\xi_{1}, \xi_{2}, \cdots\right)$, where ξ_{1} is arbitrary and $\xi_{n}, n \geq 2$, is as in (8), is a formal solution of the equation $(L-\lambda I) x=y$.

Step 2: Let $|\lambda| \leq \inf _{i \in \mathbb{N}}\left|w_{i}\right|$. Using Step 1 we see that the equation $(L-\lambda I)\left(\xi_{1}, \xi_{2}, \cdots\right)=(0,0, \cdots)$ has a particular solution $x=\left(\xi_{1}, \xi_{2}, \cdots\right)$ such that

$$
\xi_{1}=1, \quad \xi_{n+1}=\frac{\lambda^{n}}{w_{1} \cdots w_{n}}, n \in \mathbb{N} .
$$

Clearly, x is not the zero vector. Further,

$$
\left|\xi_{n+1}\right|=\frac{|\lambda|^{n}}{\left|w_{1}\right| \cdots\left|w_{n}\right|} \leq\left(\frac{|\lambda|}{\inf _{i \in \mathbb{N}}\left|w_{i}\right|}\right)^{n} \leq 1, n \in \mathbb{N}
$$

which proves that $x \in \ell_{\infty}$.
Step 3: Let $|\lambda|<\inf _{i \in \mathbb{N}}\left|w_{i}\right|$ and $y=\left(\eta_{1}, \eta_{2}, \cdots\right) \in \ell_{\infty}$. According to Step 1, $x=\left(\xi_{1}, \xi_{2}, \cdots\right)$, where

$$
\xi_{1}=0, \xi_{n+1}=\frac{\eta_{n}}{w_{n}}+\frac{\lambda \eta_{n-1}}{w_{n-1} w_{n}}+\frac{\lambda^{2} \eta_{n-2}}{w_{n-2} w_{n-1} w_{n}}+\cdots+\frac{\lambda^{n-1} \eta_{1}}{w_{1} \cdots w_{n}}, n \in \mathbb{N}
$$

satisfies $(L-\lambda I) x=y$. We have the following estimation

$$
\left|\xi_{n+1}\right| \leq \frac{\sup _{i \in \mathbb{N}}\left|\eta_{i}\right|}{\left|w_{n}\right|}\left[1+\frac{|\lambda|}{\left|w_{n-1}\right|}+\frac{|\lambda|}{\left|w_{n-2}\right|} \frac{|\lambda|}{\left|w_{n-1}\right|}+\cdots+\frac{|\lambda|}{\left|w_{1}\right|} \frac{|\lambda|}{\left|w_{2}\right|} \cdots \frac{|\lambda|}{\left|w_{n-1}\right|}\right], n \geq 2 .
$$

Using $1 /\left|w_{k}\right| \leq 1 / \inf _{i \in \mathbb{N}}\left|w_{i}\right|, k \in \mathbb{N}$, we deduce

$$
\left|\xi_{n+1}\right| \leq \frac{\sup _{i \in \mathbb{N}}\left|\eta_{i}\right|}{\inf _{i \in \mathbb{N}}\left|w_{i}\right|}\left[1+\sum_{k=1}^{\infty}\left(\frac{|\lambda|}{\inf _{i \in \mathbb{N}}\left|w_{i}\right|}\right)^{k}\right], n \geq 2
$$

Since $\frac{|\lambda|}{\inf _{i \in \mathbb{N}}\left|w_{i}\right|}<1$, the above series converges, and hence $x \in \ell_{\infty}$.
To prove the last statement, let $w_{n}=1$ for all $n \in \mathbb{N}$. Since $\inf _{i \in \mathbb{N}}\left|w_{i}\right|=\sup _{i \in \mathbb{N}}\left|w_{i}\right|=1, \sigma(L)=\mathbb{D}(0,1)$ and $\sigma_{s u}(L) \subset\{\lambda \in \mathbb{C}:|\lambda|=1\}$ by (i) and (ii). In addition, we have $\{\lambda \in \mathbb{C}:|\lambda|=1\}=\partial \sigma(L) \subset \sigma_{s u}(L)$, and consequently $\sigma_{s u}(L)=\{\lambda \in \mathbb{C}:|\lambda|=1\}$. Furthermore, it is easy to see that $\sigma(L)=\sigma_{a p}(L) \cup \sigma_{s u}(L)$ and $\partial \sigma(L) \subset \sigma_{a p}(L)$ imply $\sigma_{a p}(L)=\sigma(L)=\mathbb{D}(0,1)$, which completes the proof.

3. Remarks

A unilateral weighted right shift operator $R: \ell_{\infty} \rightarrow \ell_{\infty}$ is defined similarly as

$$
R\left(\xi_{1}, \xi_{2}, \cdots\right)=\left(0, w_{1} \xi_{1}, w_{2} \xi_{2}, \cdots\right), \quad\left(\xi_{1}, \xi_{2}, \cdots\right) \in \ell_{\infty}
$$

The following result provides a first insight into the spectral properties of R. For completeness of exposition, we include the proof.

Proposition 3. Let $R: \ell_{\infty} \rightarrow \ell_{\infty}$ be a unilateral weighted right shift with the corresponding weight sequence $\left(w_{n}\right)$ satisfying $0<\inf _{i \in \mathbb{N}}\left|w_{i}\right| \leq\left|w_{n}\right| \leq 1$ for every $n \in \mathbb{N}$. Then:
(i) $\mathbb{D}\left(0, \inf _{i \in \mathbb{N}}\left|w_{i}\right|\right) \subset \sigma(R) \subset \mathbb{D}\left(0, \sup _{i \in \mathbb{N}}\left|w_{i}\right|\right)$;
(ii) $\sigma_{\text {ap }}(R) \subset\left\{\lambda \in \mathbb{C}: \inf _{i \in \mathbb{N}}\left|w_{i}\right| \leq|\lambda| \leq \sup _{i \in \mathbb{N}}\left|w_{i}\right|\right\}$.

In particular, if $w_{n}=1$ for all $n \in \mathbb{N}$ then $\sigma(R)=\sigma_{s u}(R)=\mathbb{D}(0,1)$ and $\sigma_{\text {ap }}(R)=\{\lambda \in \mathbb{C}:|\lambda|=1\}$.
Proof. It is easily seen that $\|R\|=\sup _{i \in \mathbb{N}}\left|w_{i}\right|$ and $j(R)=\inf _{i \in \mathbb{N}}\left|w_{i}\right|$. The statement (ii) follows immediately from (1).
(i). It is clear that $\sigma(R) \subset \mathbb{D}\left(0, \sup _{i \in \mathbb{N}}\left|w_{i}\right|\right)$. Since R is not surjective, $0 \in \sigma(R)$. Let $0<|\lambda|<\inf _{i \in \mathbb{N}}\left|w_{i}\right|$. We consider the equation $(R-\lambda I)\left(\xi_{1}, \xi_{2}, \cdots\right)=(-\lambda, 0,0, \cdots)$. An easy computation shows that the only solution of this equation is

$$
x=\left(\xi_{1}, \xi_{2}, \cdots\right), \quad \xi_{1}=1, \quad \xi_{n+1}=\frac{w_{1} \cdots w_{n}}{\lambda^{n}}, \quad n \in \mathbb{N} .
$$

From

$$
\left|\xi_{n+1}\right|=\frac{\left|w_{1}\right|}{|\lambda|} \cdots \frac{\left|w_{n}\right|}{|\lambda|} \geq\left(\frac{\inf _{i \in \mathbb{N}}\left|w_{i}\right|}{|\lambda|}\right)^{n} \rightarrow \infty(n \rightarrow \infty)
$$

we see that $x \notin \ell_{\infty}$. It follows that $R-\lambda I$ is not surjective, i.e. $\lambda \in \sigma(R)$. Since $\sigma(R)$ is closed, $\mathbb{D}\left(0, \inf _{i \in \mathbb{N}}\left|w_{i}\right|\right) \subset$ $\sigma(R)$.

The remaining part follows by the same method as in Theorem 2.
Unilateral weighted shifts (left and right) can be considered in other sequence spaces (say $\ell_{p}, 1 \leq p<\infty$) and have been widely studied in the literature. It is worth noting that our primary goal is to localize the surjective spectrum and the spectrum of L using a simple approach. For a comprehensive treatment on the subject one may refer to [1, Problems 89-94], [2, Examples III-3.16, IV-5.3 and IV-5.4], [3, Section 1.6] and [5].

Acknowledgment. The author wishes to express his sincere gratitude to the anonymous referee for several helpful comments concerning the paper.

References

[1] P. Halmos, A Hilbert space problem book, Springer-Verlag (1982).
[2] T. Kato, Perturbation theory for linear operators, Springer-Verlag (1980).
[3] K. B. Laursen, M. M. Neumann, An introduction to local spectral theory, Oxford University Press (2000).
[4] V. Müller, Spectral Theory of linear operators and spectral systems in Banach algebras, Birkhäuser (2007).
[5] W. Ridge, Approximate point spectrum of a weighted shift, Trans. Amer. Math. Soc. 147 (1970), 349-356.

[^0]: 2010 Mathematics Subject Classification. 47A10.
 Keywords. Unilateral weighted left shift; Spectrum; Surjective spectrum.
 Received: 24 March, 2020; Accepted: 29 March 2020
 Communicated by Dragan S. Djordjević
 Email address: miloscvetkovic83@gmail.com (Miloš D. Cvetković)

